首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Precursor techniques, in particular those using geomagnetic indices, often are used in the prediction of the maximum amplitude for a sunspot cycle. Here, the year 2008 is taken as being the sunspot minimum year for cycle 24. Based on the average aa index value for the year of the sunspot minimum and the preceding four years, we estimate the expected annual maximum amplitude for cycle 24 to be about 92.8±19.6 (1-sigma accuracy), indicating a somewhat weaker cycle 24 as compared to cycles 21 – 23. Presuming a smoothed monthly mean sunspot number minimum in August 2008, a smoothed monthly mean sunspot number maximum is expected about October 2012±4 months (1-sigma accuracy).  相似文献   

2.
We demonstrate that a simple solar dynamo model, in the form of a Parker migratory dynamo with random fluctuations of the dynamo governing parameters and algebraic saturation of dynamo action, can at least qualitatively reproduce all the basic features of solar Grand Minima as they are known from direct and indirect data. In particular, the model successfully reproduces such features as an abrupt transition into a Grand Minimum and the subsequent gradual recovery of solar activity, as well as mixed-parity butterfly diagrams during the epoch of the Grand Minimum. The model predicts that the cycle survives in some form during a Grand Minimum, as well as the relative stability of the cycle inside and outside of a Grand Minimum. The long-term statistics of simulated Grand Minima appears compatible with the phenomenology of the Grand Minima inferred from the cosmogenic isotope data. We demonstrate that such ability to reproduce the Grand Minima phenomenology is not a general feature of the dynamo models but requires some specific assumption, such as random fluctuations in dynamo governing parameters. In general, we conclude that a relatively simple and straightforward model is able to reproduce the Grand Minima phenomenology remarkably well, in principle providing us with a possibility of studying the physical nature of Grand Minima.  相似文献   

3.
Designing a statistical solar flare forecasting technique can benefit greatly from knowledge of the flare frequency of occurrence with respect to sunspot groups. This study analyzed sunspot groups and Hα and X-ray flares reported for the period 1997 – 2007. Annual catalogs were constructed, listing the days that numbered sunspot groups were observed (designated sunspot group-days, SSG-Ds) and for each day a record for each associated Hα flare of importance category one or greater and normal or bright brightness and for each X-ray flare of intensity C 5 or higher. The catalogs were then analyzed to produce frequency distributions of SSG-Ds by year, sunspot group class, likelihood of producing at least one flare overall and by sunspot group class, and frequency of occurrence of numbers of flares per day and flare intensity category. Only 3% of SSG-Ds produced a substantial Hα flare and 7% had a significant X-ray flare. We found that mature, complex sunspot groups were more likely than simple sunspot groups to produce a flare, but the latter were more prevalent than the former. More than half of the SSG-Ds with flares had a maximum intensity flare greater than the lowest category (C-class of intensity five and higher). The fact that certain sunspot group classes had flaring probabilities significantly higher than the combined probabilities of the intensity categories when all SSG-Ds were considered suggest that it might be best to first predict the flaring probability. For sunspot groups found likely to flare, a separate diagnosis of maximum flare intensity category appears feasible.  相似文献   

4.
The Heliospheric Imager (HI) instruments on the Solar TErrestrial RElations Observatory (STEREO) observe solar plasma as it streams out from the Sun and into the heliosphere. The telescopes point off-limb (from about 4° to 90° elongation) and so the Sun is not in the field of view. Hence, the Sun cannot be used to confirm the instrument pointing. Until now, the pointing of the instruments have been calculated using the nominal preflight instrument offsets from the STEREO spacecraft together with the spacecraft attitude data. This paper develops a new method for deriving the instrument pointing solutions, along with other optical parameters, by comparing the locations of stars identified in each HI image with the known star positions predicted from a star catalogue. The pointing and optical parameters are varied in an autonomous manner to minimise the discrepancy between the predicted and observed positions of the stars. This method is applied to all HI observations from the beginning of the mission to the end of April 2008. For the vast majority of images a good attitude solution has been obtained with a mean-squared deviation between the observed and predicted star positions of one image pixel or less. Updated values have been obtained for the instrument offsets relative to the spacecraft, and for the optical parameters of the HI cameras. With this method the HI images can be considered as “self-calibrating,” with the actual instrument offsets calculated as a byproduct. The updated pointing results and their by-products have been implemented in SolarSoft.  相似文献   

5.
The high quality of the asteroseismic data provided by space missions such as CoRoT (Michel et al. in The CoRoT Mission, ESA Spec. Publ. vol. 1306, p. 39, 2006) or expected from new operating missions such as Kepler (Christensen-Dalsgaard et al. in Commun. Asteroseismol. 150:350, 2007) requires the capacity of stellar evolution codes to provide accurate models whose numerical precision is better than the expected observational errors (i.e. below 0.1 μHz on the frequencies in the case of CoRoT). We present a review of some thorough comparisons of stellar models produced by different evolution codes, involved in the CoRoT/ESTA activities (Monteiro in Evolution and Seismic Tools for Stellar Astrophysics, 2009). We examine the numerical aspects of the computations as well as the effects of different implementations of the same physics on the global quantities, physical structure and oscillations properties of the stellar models. We also discuss a few aspects of the input physics.  相似文献   

6.
The distribution of the shocks in the heliosphere and their characteristic variations are investigated using Ulysses observations. The jumps in solar wind velocity, IMF magnitude, and proton density across the shocks and discontinuities are evaluated and used to characterize them. The distribution of these discontinuities with respect to heliolatitude ± 80° and with radial distance 1 to 5 AU are analyzed during solar minimum and solar maximum to understand their global behavior. It is noticed that the jumps in solar wind parameters associated with shocks and discontinuities are more prominent during the second orbit of Ulysses, which coincided with the maximum phase of solar activity.  相似文献   

7.
It is generally accepted that transient coronal holes (TCHs, dimmings) correspond to the magnetic footpoints of CMEs that remain rooted in the Sun as the CME expands out into the interplanetary space. However, the observation that the average intensity of the 12 May 1997 dimmings recover to their pre-eruption intensity in SOHO/EIT data within 48 hours, whilst suprathermal unidirectional electron heat fluxes are observed at 1 AU in the related ICME more than 70 hours after the eruption, leads us to question why and how the dimmings disappear whilst the magnetic connectivity is maintained. We also examine two other CME-related dimming events: 13 May 2005 and 6 July 2006. We study the morphology of the dimmings and how they recover. We find that, far from exhibiting a uniform intensity, dimmings observed in SOHO/EIT data have a deep central core and a more shallow extended dimming area. The dimmings recover not only by shrinking of their outer boundaries but also by internal brightenings. We quantitatively demonstrate that the model developed by Fisk and Schwadron (Astrophys. J. 560, 425, 2001) of interchange reconnections between “open” magnetic field and small coronal loops is a strong candidate for the mechanism facilitating the recovery of the dimmings. This process disperses the concentration of  “open” magnetic field (forming the dimming) out into the surrounding quiet Sun, thus recovering the intensity of the dimmings whilst still maintaining the magnetic connectivity to the Sun. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

8.
We present a statistical analysis of the relationship between the kinematics of the leading edge and the eruptive prominence in coronal mass ejections (CMEs). We study the acceleration phase of 18 CMEs in which kinematics was measured from the pre-eruption stage up to the post-acceleration phase. In all CMEs, the three part structure (the leading edge, the cavity, and the prominence) was clearly recognizable from early stages of the eruption. The data show a distinct correlation between the duration of the leading edge (LE) acceleration and eruptive prominence (EP) acceleration. In the majority of events (78%) the acceleration phase onset of the LE is very closely synchronized (within ± 20 min) with the acceleration of EP. However, in two events the LE acceleration started significantly earlier than the EP acceleration (> 50 min), and in two events the EP acceleration started earlier than the LE acceleration (> 40 min). The average peak acceleration of LEs (281 m s−2) is about two times larger than the average peak acceleration of EPs (136 m s−2). For the first time, our results quantitatively demonstrate the level of synchronization of the acceleration phase of LE and EP in a rather large sample of events, i.e., we quantify how often the eruption develops in a “self-similar” manner.  相似文献   

9.
A set of smoothed temperature gradient profiles around overshooting layers at the solar convective zone bottom is considered. In classical local theories of convection the one point defined according to the Schwarzschild criterion is enough to describe a convective boundary. To get a sophisticated picture of the overshooting we use four points to compute the transition overshooting functions. Analyzing the transition gradient profiles we found that the overshooting convective flux may be either positive or negative. A negative overshooting flux appears in nonlocal convective theories and causes a steep temperature gradient profile. But we propose an evenly smoothed gradient which corresponds to a convective flux positive everywhere. To outline the effect of the temperature gradient on the solar oscillations the squared Brunt–Väisälä frequency N 2 is calculated. In local convective theories the N 2 profile shows the discontinuity of the first derivative at the convective boundary, while all smoothed profiles eliminate the break.  相似文献   

10.
The origin of relativistic solar protons during large flare/CME events has not been uniquely identified so far. We perform a detailed comparative analysis of the time profiles of relativistic protons detected by the worldwide network of neutron monitors at Earth with electromagnetic signatures of particle acceleration in the solar corona during the large particle event of 20 January 2005. The intensity – time profile of the relativistic protons derived from the neutron monitor data indicates two successive peaks. We show that microwave, hard X-ray, and γ-ray emissions display several episodes of particle acceleration within the impulsive flare phase. The first relativistic protons detected at Earth are accelerated together with relativistic electrons and with protons that produce pion-decay γ rays during the second episode. The second peak in the relativistic proton profile at Earth is accompanied by new signatures of particle acceleration in the corona within ≈1R above the photosphere, revealed by hard X-ray and microwave emissions of low intensity and by the renewed radio emission of electron beams and of a coronal shock wave. We discuss the observations in terms of different scenarios of particle acceleration in the corona.  相似文献   

11.
The direct propagation of acoustic waves, driven harmonically at the solar photosphere, into the three-dimensional solar atmosphere is examined numerically in the framework of ideal magnetohydrodynamics. It is of particular interest to study the leakage of 5-minute global solar acoustic oscillations into the upper, gravitationally stratified and magnetised atmosphere, where the modelled solar atmosphere possesses realistic temperature and density stratification. This work aims to complement and bring further into the 3D domain our previous efforts (by Erdélyi et al., 2007, Astron. Astrophys. 467, 1299) on the leakage of photospheric motions and running magnetic-field-aligned waves excited by these global oscillations. The constructed model atmosphere, most suitable perhaps for quiet Sun regions, is a VAL IIIC derivative in which a uniform magnetic field is embedded. The response of the atmosphere to a range of periodic velocity drivers is numerically investigated in the hydrodynamic and magnetohydrodynamic approximations. Among others the following results are discussed in detail: i) High-frequency waves are shown to propagate from the lower atmosphere across the transition region, experiencing relatively low reflection, and transmitting most of their energy into the corona; ii) the thin transition region becomes a wave guide for horizontally propagating surface waves for a wide range of driver periods, and particularly at those periods that support chromospheric standing waves; iii) the magnetic field acts as a waveguide for both high- and low-frequency waves originating from the photosphere and propagating through the transition region into the solar corona. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

12.
D. Oberoi  L. Benkevitch 《Solar physics》2010,265(1-2):293-307
The Murchison Widefield Array (MWA) is one of the new technology low frequency radio interferometers currently under construction at an extremely radio-quiet location in Western Australia. The MWA design brings to bear the recent availability of powerful high-speed computational and digital signal processing capabilities on the problem of low frequency high-fidelity imaging with a rapid cadence and high spectral resolution. Solar and heliosphere science are among the key science objectives of the MWA and have guided the array design from its very conception. We present here a brief overview of the design and capabilities of the MWA with emphasis on its suitability for solar physics and remote-sensing of the heliosphere. We discuss the solar imaging and interplanetary scintillation (IPS) science capabilities of the MWA and also describe a new software framework. This software, referred to as Haystack InterPlanetary Software System (HIPSS), aims to provide a common data repository, interface, and analysis tools for IPS data from all observatories across the world.  相似文献   

13.
This paper investigates the nonlinear stability of the triangular equilibrium points under the influence of small perturbations in the Coriolis and centrifugal forces together with the effect of oblateness and radiation pressures of the primaries. It is found that the triangular points are stable for all mass ratios in the range of linear stability except for three mass ratios depending upon above perturbations, oblateness coefficients and mass reduction factors.  相似文献   

14.
In this paper we explore the consequences of the recent determination of the mass m=(8.7±0.8)M of Cygnus X-1, obtained from the Quasi-Periodic Oscillation (QPO)-photon index correlation scaling, on the orbital and physical properties of the binary system HDE 226868/Cygnus X-1. By using such a result and the latest spectroscopic optical data of the HDE 226868 supergiant star we get M=(24±5)M for its mass. It turns out that deviations from the third Kepler law significant at more than 1-sigma level would occur if the inclination i of the system’s orbital plane to the plane of the sky falls outside the range ≈41–56 deg: such deviations cannot be due to the first post-Newtonian (1PN) correction to the orbital period because of its smallness; interpreted in the framework of the Newtonian theory of gravitation as due to the stellar quadrupole mass moment Q, they are unphysical because Q would take unreasonably large values. By conservatively assuming that the third Kepler law is an adequate model for the orbital period we obtain i=(48±7) deg which yields for the relative semimajor axis a=(42±9)R (≈0.2 AU).  相似文献   

15.
In the paper by Kliem, Karlický, and Benz (Astron. Astrophys. 360, 715, 2000) it was suggested, that plasmoids formed during the bursty regime of solar flare reconnection can be “visualised” in the radio spectra as drifting pulsating structures via accelerated particles trapped inside the plasmoid. In the present paper we investigate this idea in detail. First, simple statistical analysis supporting this hypothesis is presented. Then, by using the 2.5-D MHD (including gravity) model solar flare reconnection in the inhomogeneous, stratified atmosphere is simulated and the formation and subsequent ejection of the plasmoid is demonstrated. The ejected plasmoid, which is considered to be a trap for accelerated electrons, is traced and its plasma parameters are computed. To estimate the associated plasma radio emission we need to know locations of accelerated electrons and corresponding plasma frequencies. General considerations predict that these electrons should be distributed mainly along the magnetic separatrix surfaces and this was confirmed by using a particle-in-cell simulation. Finally, under some simplifying assumptions the model dynamic radio spectrum is constructed. The relation between the global frequency drift and the plasmoid motion in the inhomogeneous ambient atmosphere is studied. The results are discussed with respect to the observed drifting pulsation structures and their possible utilisation for flare magnetic field diagnostics.  相似文献   

16.
Cyclic variations of the mean semi-annual intensities I of the coronal green line 530.3 nm are compared with the mean semi-annual variations of the Wolf numbers W during the period of 1943–1999 (activity cycles 18–23). The values of I in the equatorial zone proved to correlate much better with the Wolf numbers in a following cycle than in a given one (the correlation coefficient r is 0.86 and 0.755, respectively). Such increase of the correlation coefficient with a shift by one cycle differs in different phases of the cycle, being the largest at the ascending branch. The regularities revealed make it possible to predict the behaviour of W in the following cycle on the basis of intensities of the coronal green line in the preceding cycle. We predict the maximum semi-annual W in cycle 23 to be 110–122 and the epoch of minimum between cycles 23 and 24 to take place at 2006–2007. A slow increase of I in the current cycle 23 permits us to forecast a low-Wolf-number cycle 24 with the maximum W50 at 2010–2011. A scheme is proposed on the permanent transformation of the coronal magnetic fields of different scales explaining the found phenomenon.  相似文献   

17.
The north – south asymmetries (NSA) of three solar activity indices are derived and mutually compared over a period of more than five solar cycles (1945 – 2001). A catalogue of the hemispheric sunspot numbers, the data set of the coronal green line brightness developed by us, and the magnetic flux derived from the NSO/KP data (1975 – 2001) are treated separately within the discrete low- and mid-latitude zones (5° – 30°, 35° – 60°). The calculated autocorrelations, cross-correlations, and regressions between the long-term NSA data sets reveal regularities in the solar activity phenomenon. Namely, the appearance of a distinct quasi-biennial oscillation (QBO) is evident in all selected activity indices. Nevertheless, a smooth behavior of QBO is derived only when sufficient temporal averaging is performed over solar cycles. The variation in the significance and periodicity of QBO allows us to conclude that the QBO is not persistent over the whole solar cycle. A similarity in the photospheric and coronal manifestations of the NSA implies that their mutual relation will also show the QBO. A roughly two-year periodicity is actually obtained, but again only after significant averaging over solar cycles. The derived cross-correlations are in fact variable in degree of correlation as well as in changing periodicity. A clear and significant temporal shift of 1 – 2 months in the coronal manifestation of the magnetic flux asymmetry relative to the photospheric manifestation is revealed as a main property of their mutual correlation. This shift can be explained by the delayed large-scale coronal manifestation in responding to the emergence of the magnetic flux in the photosphere. The reliability of the derived results was confirmed by numerical tests performed by selecting different numerical values of the used parameters.  相似文献   

18.
Using mainly the 1600 Å continuum channel and also the 1216 Å Lyman-α channel (which includes some UV continuum and C iv emission) aboard the TRACE satellite, we observed the complete lifetime of a transient, bright chromospheric loop. Simultaneous observations with the SUMER instrument aboard the SOHO spacecraft revealed interesting material velocities through the Doppler effect existing above the chromospheric loop imaged with TRACE, possibly corresponding to extended nonvisible loops, or the base of an X-ray jet.  相似文献   

19.
The carbon decameter radio recombination line (RRL) shape is described by a Voigt profile, since explicit line broadening is observed in the wings. A Lorentz component line half width is determined by the method of a Lorentz and Gauss line profile fitting of a curve. Since the Lorentz line shape is described by the Stark effect and the interaction with the Galaxy non-thermal background radiation, then by comparing the Lorentz component experimental and theoretical values a medium component electron density can be calculated for an expanding CII region towards Cassiopeia A. So far as the decameter lines are formed due to the transitions between the levels with large principal quantum numbers n>600, the life time, and thus the line width are very large. The collision transition rate is described by the perturbation theory for a low temperature medium. The radius matrix elements for a highly excited atom are defined more exactly with determining the transition rates for radiation interaction and scattering.  相似文献   

20.
Motivated by the recent interest in phantom fields as candidates for the dark energy component, we investigate the consequences of the phantom field when is minimally coupled to gravity. In particular, the necessary (but insufficient) conditions for the acceleration and superacceleration of the universe are obtained when the non-minimal coupling term is taken into account. Furthermore, the necessary condition for the cosmic acceleration is derived when the phantom field is non-minimally coupled to gravity and baryonic matter is included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号