首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We analyze the conditions for the formation and time evolution of peripheral comet structures of solar-type planetary systems. In the Solar system, these include the Kuiper belt, the Oort cloud, the comet spear, and the Galactic comet ring that marks the Galactic orbit of the Sun. We consider the role of the viscosity of a protoplanetary gas–dust disk, major planets, field stars, globular clusters, giant molecular clouds, and the Galactic gravitational field in the formation of these peripheral structures marked by comets and asteroids. We give a list of the closest past and future passages of neighboring stars through the solar Oort cloud that perturb the motion of its comets and, thus, contribute to the enhancement of its cometary activity, on the one hand, and to the replenishment of the solar comet spear with new members, on the other hand.  相似文献   

2.
Many nearby main sequence stars are surrounded by cool dust radiating strongly in the far-IR. The characteristics of some of the prototype systems will be discussed. The dust is understood to represent debris related to planet formation, and the known disk systems may be dense analogs of the Kuiper Belt structure in our outer solar system. ISO observing programs plan to address questions regarding how common planetary material is around normal stars and how its amount and location depend on system age. These questions are central to an understanding of the place of the "Vega/β Pic" disks in stellar evolution. Preliminary results from the first year of ISO operation will be reported. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
恒星尘埃的实验室研究--实验天体物理学   总被引:1,自引:0,他引:1  
原始球粒陨石含有来自恒星的微小固体颗粒(微米级),这些尘埃的同位素组成与太阳系物质截然不同,它们是目前唯一能直接获得的恒星固体样品.已发现的恒星尘埃有金刚石、石墨、碳化硅、刚玉、尖晶石、氮化物、和硅酸盐等,它们的母体恒星包括红巨星,AGB恒星、新星和超新星.对恒星尘埃的研究,使得更深入地了解星系的化学演化历史、恒星内部的核反应和湍流机制、恒星大气中尘埃的形成、星际介质物理现象等.恒星尘埃把天体物理领域延伸到了微观世界,它有机地结合了地球化学实验技术和天体物理理论,开辟了一门崭新的天文学分支实验天体物理学.  相似文献   

4.
Su-Shu Huang 《Icarus》1973,18(3):339-376
The article deals with the occurrence of planetary systems in the Universe. In Section I, the terms “planet” and “planet-like objects” are defined. Two definitions proposed for the term “planetary system” are examined from the point of view (1) of the relation between planetary systems and binary and multiple star systems and (2) of planetary systems as abodes of intelligent beings. In Section II, the observational search for extrasolar planetary systems is described, as performable by earthbound optical telescopes, by space probes, by long baseline radio interferometry, and finally by inference from the reception of signals sent by intelligent beings in other worlds.In Section III we show that any planetary system must be preceded by a rotating disk of gas and dust around a central mass. Both observational evidence and theoretical reasons indicate the ease of formation of such disk structures in the cosmos. The time scale of collapse of a gaseous medium into a disk and that of the latter's dissipation are examined. This provides us with a new empirical approach and leads us to consider the problem of the frequency of occurrence of planetary systems to be ripe for scientific study. In Section IV, a brief review of theories of the formation of the solar system is given along with a proposed scheme for classification of these theories. In Section V, the evidence for magnetic activity in the early stages of stellar evolution is presented, as developed from six independent clues: the nuclear abundance of light elements, the behavior of flare stars, the intensities of H and K emission in stars, the nonthermal radiation of premain sequence stars, the properties of meteorites, and finally the existence of contact binaries. The magnetic braking theories of solar and stellar rotation are discussed in Section VI, thereby introducing the idea of formation of a rotating disk of gas and dust around stars in Section VII. From this disk a planetary system emerges.Section VIII gives an estimate for the frequency of occurrence of planetary systems in the Universe. It is based on the rotational behavior of main-sequence stars, and concludes that planetary systems have a far greater chance to appear around single main-sequence stars of spectral types later than F5 than around any other kind of star. The combined probability distribution of sizes and masses could be obtained. From physical considerations, it appears that sizes of planetary systems around stars of any given spectral type may not vary greatly from one to another.  相似文献   

5.
Primitive meteorites contain microscopic pre-solar stardust grains that originated from stellar outflows and supernova ejecta. Identified phases include nano-diamond, graphite, silicon carbide, corundum, spinel, hibonite, nitride, and silicates. Their stellar origin was manifested by their enormous isotopic ratio variations compared to solar system materials. They are solid samples from various stellar sources, including red giant stars, AGB stars, novae, and supernovae. Laboratory isotopic analyses of these grains provide unique insights into stellar evolution, nucleosynthesis and mixing processes, dust formation in stellar envelopes, and galactic chemical evolution. Pre-solar grains open a new observational window for astrophysical researches.  相似文献   

6.
We report on SWS and LWS observations of the circumstellar disks of young stars of a few solar masses. The ISO spectra of these objects present a diversity of emission features of carbon-rich and oxygen-rich grains. The similarity of the forsterite spectra observed for Comet Hale-Bopp and the Haebe star HD100546 is particularly striking and provides a new argument that huge comet swarms are formed in the disks surrounding young stars. While the data suggest that the formation of crystalline silicates in the dust disks essentially occurs when a Haebe star has already reached the main sequence, no clear correlation with stellar age only is apparent. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
We have constructed a model of the solar nebula that allows for the temperature and pressure distributions at various stages of its evolution to be calculated. The mass flux from the accretion envelope to the disk and from the disk to the Sun, the turbulent viscosity parameter α, the opacity of the disk material, and the initial angular momentum of the protosun are the input model parameters that are varied. We also take into account the changes in the luminosity and radius of the young Sun. The input model parameters are based mostly on data obtained from observations of young solar-type stars with disks. To correct the input parameters, we use the mass and chemical composition of Jupiter, as well as models of its internal structure and formation that allow constraints to be imposed on the temperature and surface density of the protoplanetary disk in Jupiter’s formation zone. Given the derived constraints on the input parameters, we have calculated models of the solar nebula at successive stages of its evolution: the formation inside the accretion envelope, the evolution around the young Sun going through the T Tauri stage, and the formation and compaction of a thin dust layer (subdisk) in the disk midplane. We have found the following evolutionary trend: an increase in the temperature of the disk at the stage of its formation, cooling at the T Tauri stage, and the subsequent internal heating of the dust subdisk by turbulence dissipation that causes a temperature rise in the formation zone of the terrestrial planets at the high subdisk density and the opacity in this zone. We have obtained the probable ranges of temperatures in the disk midplane, i.e., the temperatures of the protoplanetary material in the formation region of the terrestrial planets at the initial stage of their formation.  相似文献   

8.
We examine the structure of cool magnetic spots in the photospheres of evolved stars, specifically asymptotic giant branch (AGB) stars and R Coronae Borealis (RCB) stars. We find that the photosphere of a cool magnetic spot will be above the surrounding photosphere of AGB stars, which is the opposite of the situation in the Sun . This results from the behaviour of the opacity, which increases with decreasing temperature, which again is the opposite of the behaviour of the opacity near the effective temperature of the Sun . We analyse the formation of dust above the cool magnetic spots, and suggest that the dust formation is facilitated by strong shocks, driven by stellar pulsations, which run through and around the spots. The presence of both the magnetic field and cooler temperatures makes dust formation easier as the shock passes above the spot. We review some observations supporting the proposed mechanism, and suggest further observations to check the model.  相似文献   

9.
10.
The evolution of the trajectories of small objects not entirely ejected from the solar system and subject to significant perturbations owing to the regular galactic field is studied. These objects may be individual dust particles, comets, or, in the case of other stars, large dust clouds and stellar satellites. The possibility of averaging their motion over the period of the galactic rotation is examined. The averaged equations are solved in terms of elliptic functions. The eccentricity of the orbit also evolves, but returns periodically to its original value, ~1, corresponding to ejection if the interaction with individual stars is neglected. The slope of the line of apsides with respect to the galactic plane evolves in two ways: with time it either passes through 90° or through 0°.  相似文献   

11.
We present a concept for a space mission designed to make a mid-IR survey of potential zodiacal dust disks around nearby stars. We show that a two-aperture (0.6 m diameter), 10-m baseline, nulling interferometer located in a 1 × 4 AU, 4-yr solar orbit would allow for the survey of 400 stars in the solar neighborhood and permit a first-order determination of the disk inclination and radial dependences of density and temperature. The high dynamic range of the instrument may also be used to study additional astrophysical phenomena. Beyond its own scientific merit, such a mission would serve as a technological precursor to a larger interferometer of the type being considered for the detection of earth-like planets.  相似文献   

12.
We analyse the differences in infrared circumstellar dust emission between oxygen-rich Mira and non-Mira stars, and find that they are statistically significant. In particular, we find that these stars segregate in the K–[12] versus [12]–[25] colour–colour diagram, and have distinct properties of the IRAS LRS spectra, including the peak position of the silicate emission feature. We show that the infrared emission from the majority of non-Mira stars cannot be explained within the context of standard steady-state outflow models.
The models can be altered to fit the data for non-Mira stars by postulating non-standard optical properties for silicate grains, or by assuming that the dust temperature at the inner envelope radius is significantly lower (300–400 K) than typical silicate grain condensation temperatures (800–1000 K) . We argue that the latter is more probable and provide detailed model fits to the IRAS LRS spectra for 342 stars. These fits imply that two-thirds of non-Mira stars and one-third of Mira stars do not have hot dust (>500 K) in their envelopes.
The absence of hot dust can be interpreted as a recent (∼100 yr) decrease in the mass-loss rate. The distribution of best-fitting model parameters agrees with this interpretation and strongly suggests that the mass loss resumes on similar time-scales. Such a possibility appears to be supported by a number of spatially resolved observations (e.g. recent Hubble Space Telescope images of the multiple shells in the Egg Nebula) and is consistent with new dynamical models for mass loss on the asymptotic giant branch.  相似文献   

13.
Today the Sun has a regular magnetic cycle driven by a dynamo action. But how did this regular cycle develop? How do basic parameters such as rotation rate, age, and differential rotation affect the generation of magnetic fields? Zeeman Doppler imaging (ZDI) is a technique that uses high‐resolution observations in circularly polarised light to map the surface magnetic topology on stars. Utilising the spectropolarimetric capabilities of future large solar telescopes it will be possible to study the evolution and morphology of the magnetic fields on a range of Sun‐like stars from solar twins through to rapidly‐rotating active young Suns and thus study the solar magnetic dynamo through time. In this article I discuss recent results from ZDI of Sun‐like stars and how we can use night‐time observations from future solar telescopes to solve unanswered questions about the origin and evolution of the Sun's magnetic dynamo (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The large amounts of dust detected in sub-millimeter galaxies and quasars at high redshift pose a challenge to galaxy formation models and theories of cosmic dust formation. At z>6 only stars of relatively high mass (>3 M) are sufficiently short-lived to be potential stellar sources of dust. This review is devoted to identifying and quantifying the most important stellar channels of rapid dust formation. We ascertain the dust production efficiency of stars in the mass range 3–40 M using both observed and theoretical dust yields of evolved massive stars and supernovae (SNe) and provide analytical expressions for the dust production efficiencies in various scenarios. We also address the strong sensitivity of the total dust productivity to the initial mass function. From simple considerations, we find that, in the early Universe, high-mass (>3 M) asymptotic giant branch stars can only be dominant dust producers if SNe generate ≲3×10−3 M of dust whereas SNe prevail if they are more efficient. We address the challenges in inferring dust masses and star-formation rates from observations of high-redshift galaxies. We conclude that significant SN dust production at high redshift is likely required to reproduce current dust mass estimates, possibly coupled with rapid dust grain growth in the interstellar medium.  相似文献   

15.
We present photometric and spectroscopic data on a subset of over 30 oxygen-rich Long Period Variable (LPV) stars which we have been monitoring between 8/95 & 4/97. With these data, we are attempting to ascertain the relationship of dust formation to optical period. Our ultimate goal is to determine what conditions lead to dust formation and destruction in these environments, and whether or not an evolutionary sequence can be inferred for AGB stars also based on their spectra and dust formation. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

16.
A variety of evidence suggests that at least 50% of low-mass stars are surrounded by disks of the gas and dust similar to the nebula that surrounded the Sun before the formation of the planets. The properties of these disks may bear strongly on the way in which planetary systems form and evolve. As a result of major instrumental developments over the last decade, it is now possible to detect and study the circumstellar environments of very young, solar-type stars in some detail, and to compare the results with theoretical models of the early solar system. For example, millimeter-wave aperture synthesis imaging provides a direct means of studying in detail the morphology, temperature and density distributions, velocity field and chemical constituents in the outer disks, while high resolution, near infrared spectroscopy probes the inner, warmer parts; the emergence of gaps in the disks, possibly reflecting the formation of planets, may be reflected in the variation of their dust continuum emission with wavelength. We review progress to date and discuss likely directions for future research.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

17.
The problem of dust formation in the circumstellar envelopes of Asymptotic Giant Branch stars is addressed. We summarize the basic thermodynamic prerequisites necessary to enable the formation and growth of solid particles from the gas phase and draw some conclusions on the evolution of the emergent dust component. In a circumstellar environment the dust grains interact with the stellar radiation field, which leads to a strong coupling among the local thermodynamic conditions and the dust formation process itself. By a consistent treatment of the physics describing the dust forming circumstellar shells of evolved stars we demonstrate, that the non-linear interaction among the dust formation process and the hydrodynamic and thermodynamic conditions of the dust forming system leads to a complex dynamical structure of these shells. Some observable consequences resulting from corresponding model calculations are given. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Popular models for the origin of gamma-ray bursts (GRBs) include short-lived massive stars as the progenitors of the fireballs. Hence the redshift distribution of GRBs should track the cosmic star formation rate of massive stars accurately. A significant proportion of high-mass star formation activity appears to occur in regions that are obscured from view in the optical waveband by interstellar dust. The amount of dust-enshrouded star formation activity taking place has been estimated by observing the thermal radiation from the dust that has been heated by young stars in the far-infrared and submillimetre wavebands. Here we discuss an alternative probe – the redshift distribution of GRBs. GRBs are detectable at the highest redshifts, and because gamma-rays are not absorbed by dust, the redshift distribution of GRBs should therefore be unaffected by dust extinction. At present the redshifts of GRBs can only be determined from the associated optical transient emission; however, useful information about the prevalence of dust-obscured star formation can also be obtained from the ratio of GRBs with and without an associated optical transient. Eight GRBs currently have spectroscopic redshifts. Once about a hundred redshifts are known, the population of GRBs will provide an important test of different models of the star formation history of the Universe.  相似文献   

19.
An unbiased search for debris discs around nearby Sun-like stars is reported. 13 G-dwarfs at 12–15 parsec distance were searched at 850 μm wavelength, and a disc is confirmed around HD 30495. The estimated dust mass is  0.008 M  with a net limit  ≲0.0025 M  for the average disc of the other stars. The results suggest there is not a large missed population of substantial cold discs around Sun-like stars – HD 30495 is a bright rather than unusually cool disc, and may belong to a few hundred Myr old population of greater dust luminosity. The far-infrared and millimetre survey data for Sun-like stars are well fitted by either steady state or stirred models, provided that typical comet belts are comparable in size to that in the Solar system.  相似文献   

20.
The very young star cluster IC 5146 is studied using star counts, with a view to determining the distribution of interstellar matter in a region where star formation recently occurred. IC 5146 is embedded in a dark nebula which is very dense near its centre. The total mass of interstellar dust in the nebula is found to be about 4.5M . Comparison of radio and optical observations of the region indicates that gas and dust are not separated to any great degree by radiation from the embedded stars. A gas/dust ratio of about 150/1 by mass is found. This ratio varies with the dust grain model used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号