首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Using the third-order WKB approximation, we evaluate the quasinormal frequencies of massive scalar field perturbation around a black hole with quintessence-like matter and a deficit solid angle. The mass u of the scalar field plays an important role in studying the quasinormal frequencies. We find that as the scalar field mass increases when the other parameters are fixed, so do the real parts and the magnitudes of the imaginary parts of the quasinormal frequencies decrease. The imaginary parts are almost linearly related to the real parts.  相似文献   

2.
The thermal character of inner horizon in a Reissner-Nordstrom black hole is studied via Hamilton-Jacobi method. There is “Hawking absorption” as a quantum effect near the inner horizon, and a negative temperature of the inner horizon was attained by choosing an observer outside the black hole. Using a redefined entropy of the black hole, we give a new expression of Bekenstein-Smarr formula. The redefined entropy satisfies Nernst Theorem, so it can be regarded as Planck absolute entropy of the Reissner-Nordstrom black hole.  相似文献   

3.
We investigate quasinormal modes (QNMs) and Hawking radiation of a Reissner-Nordström black hole surrounded by quintessence. The Wentzel-Kramers-Brillouin (WKB) method is used to evaluate the QNMs and the rate of radiation. The results show that due to the interaction of the quintessence with the background metric, the QNMs of the black hole damp more slowly when increasing the density of quintessence and the black hole radiates at slower rate.  相似文献   

4.
Using Damour-Ruffini method, Hawking radiation from the apparent horizon of a Vaidya black hole is calculated. The thermodynamics can be built successfully on the apparent horizon. In the meantime, when a time-dependent perturbation is given to the apparent horizon, the first law of thermodynamics can also be constructed successfully at a new supersurface near the apparent horizon. The expressions of the characteristic position and temperature are consistent with the previous results. It is concluded that the thermodynamics should be constructed on the apparent horizon exactly while the event horizon thermodynamics is just one of the perturbations near the apparent horizon. These conclusions can be regarded as providing some new evidences for our previous viewpoint.  相似文献   

5.
We present a technique for automatic determination of flare ribbon separation and the energy released during the course of two-ribbon flares. We have used chromospheric Hα filtergrams and photospheric line-of-sight magnetograms to analyse flare ribbon separation and magnetic field structures, respectively. Flare ribbons were first enhanced and then extracted by the technique of “region growing”, i.e., a morphological operator to help resolve the flare ribbons. Separation of flare ribbons was then estimated from the magnetic-polarity reversal line using an automatic technique implemented into an Interactive Data Language (IDLTM) platform. Finally, the rate of flare-energy release was calculated using photospheric magnetic field data and the corresponding separation of the chromospheric Hα flare ribbons. This method could be applied to measure the motion of any feature of interest (e.g., intensity, magnetic, Doppler) from a given point of reference.  相似文献   

6.
We present a quantitative model of the magnetic energy stored and then released through magnetic reconnection for a flare on 26 February 2004. This flare, well observed by RHESSI and TRACE, shows evidence of non-thermal electrons for only a brief, early phase. Throughout the main period of energy release there is a super-hot (T?30 MK) plasma emitting thermal bremsstrahlung atop the flare loops. Our model describes the heating and compression of such a source by localized, transient magnetic reconnection. It is a three-dimensional generalization of the Petschek model, whereby Alfvén-speed retraction following reconnection drives supersonic inflows parallel to the field lines, which form shocks: heating, compressing, and confining a loop-top plasma plug. The confining inflows provide longer life than a freely expanding or conductively cooling plasma of similar size and temperature. Superposition of successive transient episodes of localized reconnection across a current sheet produces an apparently persistent, localized source of high-temperature emission. The temperature of the source decreases smoothly on a time scale consistent with observations, far longer than the cooling time of a single plug. Built from a disordered collection of small plugs, the source need not have the coherent jet-like structure predicted by steady-state reconnection models. This new model predicts temperatures and emission measure consistent with the observations of 26 February 2004. Furthermore, the total energy released by the flare is found to be roughly consistent with that predicted by the model. Only a small fraction of the energy released appears in the super-hot source at any one time, but roughly a quarter of the flare energy is thermalized by the reconnection shocks over the course of the flare. All energy is presumed to ultimately appear in the lower-temperature (T?20 MK) post-flare loops. The number, size, and early appearance of these loops in TRACE’s 171 Å band are consistent with the type of transient reconnection assumed in the model.  相似文献   

7.
The radiative mechanism of black hole X-ray transients(BHXTs) in their quiescent states(defined as the 2–10 ke V X-ray luminosity 10~(34) erg s~(-1)) remains unclear. In this work, we investigate the quasi-simultaneous quiescent state spectrum(including radio, infrared, optical, ultraviolet and X-ray)of two BHXTs, A0620–00 and XTE J1118+480. We find that these two sources can be well described by a coupled accretion – jet model. More specifically, most of the emission(radio up to infrared, and the X-ray waveband) comes from the collimated relativistic jet. Emission from hot accretion flow is totally insignificant, and it can only be observed in mid-infrared(the synchrotron peak). Emission from the outer cold disk is only evident in the UV band. These results are consistent with our previous investigation on the quiescent state of V404 Cyg and confirm that the quiescent state is jet-dominated.  相似文献   

8.
9.
A dominant 16–17 yr cycle was observed in the net exposure times of the Earth to Toward and Away field directions of the interplanetary magnetic field (IMF). A cycle of the same frequency and phase was observed in the polarity of the long-term hemispheric differences in coronal hole distributions. This was determined from north/south differences in average Fexiv green line quiet regions at high- and mid-latitudes. It is argued that the 17-yr cycle is a fundamental oscillation of coronal hole topology, which is transferred to Earth via variations in the neutral sheet. A comparison of the 17-yr cycle to the 22-yr Hale cycle indicated that they are not identical, but rather, can mix to form a 75-yr cycle plus a 9-yr cycle. Evidence for the 75-yr cycle existed in the Earth's net exposure times to fields from the solar North and South, and in the long-term imbalance of solar quiet regions between the northern and southern hemispheres. The 9-yr cycle was manifested in the mid- to low- latitude Fexiv modulations and in solar wind velocity variations in the ecliptic. At Earth, evidence for a similar 17-yr cycle was observed in the horizontal magnetic field observations in a multitude of surface magnetic recording stations. In addition, the detection of a 17-yr cycle in the Huancayo neutron monitor cosmic ray series suggests that the effects of this cycle extend to the heliospheric boundaries. It is concluded that sufficient preliminary evidence exists to consider the hypothesis that the Sun contains a magnetic moment with an oscillatory cycle of 17 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号