首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
The stellar mass-to-light ratio(M_*/L) of galaxies in a given wave band shows tight correlations with optical colors, which have been widely applied as cheap estimators of galaxy stellar masses. These estimators are usually calibrated using either broadband spectral energy distributions(SEDs) or spectroscopy at galactic centers. However, it is unclear whether the same estimators provide unbiased M_*/L for different regions within a galaxy. In this work we employ integral field spectroscopy from the Mapping Nearby Galaxies at Apache Point Observatory(Ma NGA) survey. We also examine the correlations of spatially resolved M_*/L obtained from full spectral fitting, with different color indices, as well as galaxy morphology types, distances to the galactic center, and stellar population parameters such as stellar age and metallicity.We find that the(g-r) color is better than any other color indices, and it provides almost unbiased M_*/L for all the SDSS five bands and for all types of galaxies or regions, with only slight biases depending on stellar age and metallicity. Our analysis indicates that combining multiple colors and/or including other properties to reduce the systematics and scatters of the estimator does not work better than a single color index defined by two bands. Therefore, we have obtained a best estimator with the(g-r) color and applied it to the Ma NGA galaxies. Both the two-dimensional map and radial profile of M_*/L are reproduced well in most cases. Our estimator may be applied to obtain surface mass density maps for large samples of galaxies from imaging surveys at both low and high redshifts.  相似文献   

3.
We analyse the evolutionary history of galaxies formed in a hierarchical scenario consistent with the concordance Lambda cold dark matter (ΛCDM) model focusing on the study of the relation between their chemical and dynamical properties. Our simulations consistently describe the formation of the structure and its chemical enrichment within a cosmological context. Our results indicate that the luminosity–metallicity and the stellar mass–metallicity (LZR and MZR) relations are naturally generated in a hierarchical scenario. Both relations are found to evolve with redshift. In the case of the MZR, the estimated evolution is weaker than that deduced from observational works by approximately 0.10 dex. We also determine a characteristic stellar mass, M c≈ 3 × 1010 M, which segregates the simulated galaxy population into two distinctive groups and which remains unchanged since z ∼ 3, with a very weak evolution of its metallicity content. The value and role played by M c is consistent with the characteristic mass estimated from the SDSS galaxy survey by Kauffmann et al. Our findings suggest that systems with stellar masses smaller than M c are responsible for the evolution of this relation at least from z ≈ 3. Larger systems are stellar dominated and have formed more than 50 per cent of their stars at   z ≥ 2  , showing very weak evolution since this epoch. We also found bimodal metallicity and age distributions from z ∼ 3, which reflects the existence of two different galaxy populations. Although SN feedback may affect the properties of galaxies and help to shape the MZR, it is unlikely that it will significantly modify M c since, from   z = 3  this stellar mass is found in systems with circular velocities larger than 100 km s−1.  相似文献   

4.
We report on the strengths of three spectral indicators-Mg(2), Hbeta, and Hn/Fe-in the integrated light of a sample of 100 field and cluster E/S0 galaxies. The measured indices are sensitive to age and/or metallicity variations within the galaxy sample. Using linear regression analysis for data with nonuniform errors, we determine the intrinsic scatter present among the spectral indices of our galaxy sample as a function of internal velocity dispersion. Our analysis demonstrates that there is significantly more intrinsic scatter in the two Balmer line indices than in the Mg(2) index, indicating that the Balmer indices provide more dynamic range in determining the age of a stellar population than does the Mg(2) index. Furthermore, the scatter is much larger for the low velocity dispersion galaxies, indicating that star formation has occurred more recently in the lower mass galaxies.  相似文献   

5.
We compile multi-wavelength data from ultraviolet to infrared(IR) bands as well as redshift and source-type information, for a large sample of 178 341 sources in the Hawaii-Hubble Deep Field-North field. A total of 145 635 sources among the full sample are classified/treated as galaxies and have redshift information available. We derive physical properties for these sources utilizing the spectral energy distribution fitting code CIGALE that is based on Bayesian analysis. Through various consistency and robustness checks, we find that our stellar-mass and star-formation rate(SFR) estimates are reliable, which is mainly due to two facts. Firstly, we adopt the most up-to-date and accurate redshifts and point spread functionmatched photometry; and secondly, we make sensible parameter choices with the CIGALE code and take into account the influences of mid-IR/far-IR data, star-formation history models, and AGN contribution. We release our catalog of galaxy properties publicly(including, e.g., redshift, stellar mass, SFR, age, metallicity, dust attenuation). It is the largest of its kind in this field and should facilitate future relevant studies on the formation and evolution of galaxies.  相似文献   

6.
We have performed deep imaging of a diverse sample of 26 low surface brightness galaxies (LSBGs) in the optical and the near-infrared. Using stellar population synthesis models, we find that it is possible to place constraints on the ratio of young to old stars (which we parametrize in terms of the average age of the galaxy), as well as the metallicity of the galaxy, using optical and near-infrared colours. LSBGs have a wide range of morphologies and stellar populations, ranging from older, high-metallicity earlier types to much younger and lower-metallicity late-type galaxies. Despite this wide range of star formation histories, we find that colour gradients are common in LSBGs. These are most naturally interpreted as gradients in mean stellar age, with the outer regions of LSBGs having lower ages than their inner regions. In an attempt to understand what drives the differences in LSBG stellar populations, we compare LSBG average ages and metallicities with their physical parameters. Strong correlations are seen between an LSBG's star formation history and its K -band surface brightness, K -band absolute magnitude and gas fraction. These correlations are consistent with a scenario in which the star formation history of an LSBG primarily correlates with its surface density and its metallicity correlates with both its mass and its surface density.  相似文献   

7.
In this work, I examine the environmental dependence of galaxy age, stellar velocity dispersion and stellar mass in the LOWZ sample of the Sloan Digital Sky Survey Data Release 10 (SDSS DR10). I measure the projected local density Σ5, divide the LOWZ sample into subsamples with a redshift binning size of Δz = 0.02 and analyze the environmental dependence of galaxy age, stellar velocity dispersion and stellar mass in each redshift bin. It is found that galaxy age, stellar velocity dispersion and stellar mass in the LOWZ galaxy sample are very weakly correlatedwith the local environment, like the one in theCMASS galaxy sample does.  相似文献   

8.
The distribution of galaxy properties in groups and clusters holds important information on galaxy evolution and growth of structure in the Universe. While clusters have received appreciable attention in this regard, the role of groups as fundamental to formation of the present-day galaxy population has remained relatively unaddressed. Here, we present stellar ages, metallicities and α-element abundances derived using Lick indices for 67 spectroscopically confirmed members of the NGC 5044 galaxy group with the aim of shedding light on galaxy evolution in the context of the group environment.
We find that galaxies in the NGC 5044 group show evidence for a strong relationship between stellar mass and metallicity, consistent with their counterparts in both higher and lower mass groups and clusters. Galaxies show no clear trend of age or α-element abundance with mass, but these data form a tight sequence when fitted simultaneously in age, metallicity and stellar mass. In the context of the group environment, our data support the tidal disruption of low-mass galaxies at small group-centric radii, as evident from an apparent lack of galaxies below  ∼109 M  within ∼100 kpc of the brightest group galaxy. Using a joint analysis of absorption- and emission-line metallicities, we are able to show that the star-forming galaxy population in the NGC 5044 group appears to require gas removal to explain the ∼1.5 dex offset between absorption- and emission-line metallicities observed in some cases. A comparison with other stellar population properties suggests that this gas removal is dominated by galaxy interactions with the hot intragroup medium.  相似文献   

9.
We have used a large sample of low-inclination spiral galaxies with radially resolved optical and near-infrared photometry to investigate trends in star formation history with radius as a function of galaxy structural parameters. A maximum-likelihood method was used to match all the available photometry of our sample to the colours predicted by stellar population synthesis models. The use of simplistic star formation histories, uncertainties in the stellar population models and considering the importance of dust all compromise the absolute ages and metallicities derived in this work; however, our conclusions are robust in a relative sense. We find that most spiral galaxies have stellar population gradients, in the sense that their inner regions are older and more metal rich than their outer regions. Our main conclusion is that the surface density of a galaxy drives its star formation history, perhaps through a local density dependence in the star formation law. The mass of a galaxy is a less important parameter; the age of a galaxy is relatively unaffected by its mass; however, the metallicity of galaxies depends on both surface density and mass. This suggests that galaxy‐mass-dependent feedback is an important process in the chemical evolution of galaxies. In addition, there is significant cosmic scatter suggesting that mass and density may not be the only parameters affecting the star formation history of a galaxy.  相似文献   

10.
We aim to understand the properties at the locations of supernova(SN) explosions in their host galaxies and compare with the global properties of these host galaxies. We use the integral field spectrograph(IFS) of Mapping Nearby Galaxies at Apache Point Observatory(MaNGA) to generate 2 D maps of the parameter properties for 11 SN host galaxies. The sample galaxies are analyzed one by one in detail in terms of their properties of velocity field, star formation rate, oxygen abundance, stellar mass, etc.This sample of SN host galaxies has redshifts around z~0.03, which is higher than those of previous related works. The higher redshift distribution allows us to obtain the properties of more distant SN host galaxies. Metallicity(gas-phase oxygen abundance) estimated from integrated spectra can represent the local metallicity at SN explosion sites with small bias. All the host galaxies in our sample are metal-rich galaxies(12+log(O/H) 8.5) except for NGC 6387, which means SNe may be more inclined to explode in metallicity-rich galaxies. There is a positive relation between global gas-phase oxygen abundance and the stellar mass of host galaxies. We also try to compare the differences of the host galaxies between SNe Ia and SNe II. In our sample, both SNe Ia and SNe II can explode in normal galaxies, but SNe II can also explode in an interacting or a merging system, in which star formation is occurring in the galaxy.  相似文献   

11.
Using high signal-to-noise ratio VLT/FORS2 long-slit spectroscopy, we have studied the properties of the central stellar populations and dynamics of a sample of S0 galaxies in the Fornax cluster. The central absorption-line indices in these galaxies correlate well with the central velocity dispersions (σ0) in accordance with what previous studies found for elliptical galaxies. However, contrary to what it is usually assumed for cluster ellipticals, the observed correlations seem to be driven by systematic age and α-element abundance variations, and not changes in overall metallicity. We also found that the observed scatter in the index–σ0 relations can be partially explained by the rotationally supported nature of these systems. Indeed, even tighter correlations exist between the line indices and the maximum circular velocity of the galaxies. This study suggests that the dynamical mass is the physical property driving these correlations, and for S0 galaxies such masses have to be estimated assuming a large degree of rotational support. The observed trends imply that the most massive S0s have the shortest star formation time-scales and the oldest stellar populations.  相似文献   

12.
We discuss a new method for inferring the stellar mass of a distant galaxy of known redshift based on the combination of a near-IR luminosity and multiband optical photometry. The typical uncertainty for field galaxies with I<22 in the redshift range 0相似文献   

13.
The local face-on disk galaxies are selected as galaxy sample from the main galaxy sample of the Seventh Data Release of Sloan Digital Sky Survey (SDSS DR7). The correlations between the colors and sizes of disk galaxies with equivalent total stellar masses are statistically investigated and their realities are tested. It is found that for the disk galaxies with equivalent masses, the correlation between u-r color and size is very weak. However, there are anticorrelations between g-r, r-i, r-z colors and sizes, i.e., the larger are the sizes of galaxies, the bluer are their colors. This result means that the mass distribution of disk galaxies has a significant influence on their star formation history. The galaxies with more extended mass distributions evolve more slowly.  相似文献   

14.
We present a detailed spatial analysis of stellar populations based on long-slit optical spectra in a sample of eight luminous early-type galaxies selected from nearby sparse groups and pairs, three of them may have interaction with another galaxy of similar mass. We have spatially measured luminosity-weighted averages of age, [M/H], [Fe/H], and [\(\alpha /\mbox{Fe}\)] in the sample galaxies to add empirical data relative to the influence of galaxy mass, environment, interaction, and AGN feedback in their formation and evolution. The stellar population of the individual galaxies were determined through the well-established stellar population synthesis code starlight using semi-empirical simple stellar population models. Radial variations of luminosity- weighted means of age, [M/H], [Fe/H], and [\(\alpha /\mbox{Fe}\)] were quantified up to half of the effective radius of each galaxy. We found trends between representative values of age, [M/H], [\(\alpha /\mbox{Fe}\)], and the nuclear stellar velocity dispersion. There are also relations between the metallicity/age gradients and the velocity dispersion. Contributions of 1–4 Gyr old stellar populations were quantified in IC?5328 and NGC?6758 as well as 4–8 Gyr old ones in NGC?5812. Extended gas is present in IC?5328, NGC?1052, NGC?1209, and NGC?6758, and the presence of a LINER is identified in all these galaxies. The regions up to one effective radius of all galaxies are basically dominated by \(\alpha \)-enhanced metal-rich old stellar populations likely due to rapid star formation episodes that induced efficient chemical enrichment. On average, the age and [\(\alpha /\mbox{Fe}\)] gradients are null and the [M/H] gradients are negative, although discordant cases were found. We found no correlation between the stellar population properties and the LINER presence as well as between the stellar properties and environment or gravitational interaction, suggesting that the influence of progenitor mass cannot be discarded in the formation and evolution of early-type galaxies.  相似文献   

15.
We have assembled a catalogue of relative ages, metallicities and abundance ratios for about 150 local galaxies in field, group and cluster environments. The galaxies span morphological types from cD and ellipticals, to late-type spirals. Ages and metallicities were estimated from high-quality published spectral line indices using Worthey & Ottaviani (1997) single stellar population evolutionary models.
The identification of galaxy age as a fourth parameter in the fundamental plane ( Forbes, Ponman & Brown 1998 ) is confirmed by our larger sample of ages. We investigate trends between age and metallicity, and with other physical parameters of the galaxies, such as ellipticity, luminosity and kinematic anisotropy. We demonstrate the existence of a galaxy age–metallicity relation similar to that seen for local galactic disc stars, whereby young galaxies have high metallicity, while old galaxies span a large range in metallicities.
We also investigate the influence of environment and morphology on the galaxy age and metallicity, especially the predictions made by semi-analytic hierarchical clustering models (HCM). We confirm that non-cluster ellipticals are indeed younger on average than cluster ellipticals as predicted by the HCM models. However we also find a trend for the more luminous galaxies to have a higher [Mg/Fe] ratio than the lower luminosity galaxies, which is opposite to the expectation from HCM models.  相似文献   

16.
A comparison between published field galaxy stellar mass functions (GSMFs) shows that the cosmic stellar mass density is in the range 4–8 per cent of the baryon density (assuming  Ωb= 0.045  ). There remain significant sources of uncertainty for the dust correction and underlying stellar mass-to-light ratio even assuming a reasonable universal stellar initial mass function. We determine the   z < 0.05  GSMF using the New York University Value-Added Galaxy Catalog sample of 49 968 galaxies derived from the Sloan Digital Sky Survey and various estimates of stellar mass. The GSMF shows clear evidence for a low-mass upturn and is fitted with a double Schechter function that has  α2≃−1.6  . At masses below  ∼108.5 M  , the GSMF may be significantly incomplete because of missing low-surface-brightness galaxies. One interpretation of the stellar mass–metallicity relation is that it is primarily caused by a lower fraction of available baryons converted to stars in low-mass galaxies. Using this principle, we determine a simple relationship between baryonic mass and stellar mass and present an 'implied baryonic mass function'. This function has a faint-end slope,  α2≃−1.9  . Thus, we find evidence that the slope of the low-mass end of the galaxy mass function could plausibly be as steep as the halo mass function. We illustrate the relationship between halo baryonic mass function → galaxy baryonic mass function → GSMF. This demonstrates the requirement for peak galaxy formation efficiency at baryonic masses  ∼1011 M  corresponding to a minimum in feedback effects. The baryonic-infall efficiency may have levelled off at lower masses.  相似文献   

17.
In the galaxy parameter fitting by means of stellar population synthesis, it is found that compared with the evolutionary population synthesis (EPS) model without binary interactions, the stellar age and metallicity of a galaxy derived from the EPS model with binary interactions are larger. But, we are still unclear how the binary interactions affect the galaxy evolution. For the early-type galaxies with the UV-excess phenomenon, there are two main-stream explanations: recent star formation (RSF) and binary interactions. In this study, we obtain the mass return rate and chemical yield for the stellar populations with and without binary interactions. In combination with the galaxy chemical evolution and photoionization models, we study the effects of binary interactions on the chemical evolution and metallicity evolution for the early-type galaxies with the UV-excess phenomenon under the two formation mechanisms. We find that the inclusion of binary interactions can raise the ejected mass, metallicity, alpha element, and accelerate the gas cooling. These can reasonably explain the conclusions made by the EPS models. Moreover, we find that the gas cooling is more efficient under the UV-excess formation mechanism by the binary interactions rather than the RSF, and the ratio of element abundance is different for the two mechanisms, which can be further used to distinguish these two mechanisms.  相似文献   

18.
We present an examination of the kinematics and stellar populations of a sample of three brightest group galaxies (BGGs) and three brightest cluster galaxies (BCGs) in X-ray groups and clusters. We have obtained high signal-to-noise ratio Gemini/Gemini South Multi-Object Spectrograph (GMOS) long-slit spectra of these galaxies and use Lick indices to determine ages, metallicities and α-element abundance ratios out to at least their effective radii. We find that the BGGs and BCGs have very uniform masses, central ages and central metallicities. Examining the radial dependence of their stellar populations, we find no significant velocity dispersion, age, or α-enhancement gradients. However, we find a wide range of metallicity gradients, suggesting a variety of formation mechanisms. The range of metallicity gradients observed is surprising, given the homogeneous environment these galaxies probe and their uniform central stellar populations. However, our results are inconsistent with any single model of galaxy formation and emphasize the need for more theoretical understanding of both the origins of metallicity gradients and galaxy formation itself. We postulate two possible physical causes for the different formation mechanisms.  相似文献   

19.
Gamma‐ray bursts (GRBs) are the most powerful explosions since the formation of the Universe, associated with the death of massive stars or mergers of compact stellar objects. Several recent striking results strongly support the idea that host galaxies of GRBs are opening a new view on our understanding of galaxy formation and evolution, back to the very primordial universe at z ∼ 8. They form a unique sample of galaxies which cover a wide range of redshift, they are typically weak with low mass and unlike other methods they are not selected on luminosity. In recent years, thanks to the support of new generation instruments, multi‐band photometry and spectroscopy allow us to better investigate the properties of these host galaxies (e.g., stellar mass, age, SFR, metallicity), to study their possible evolution and to compare them with field galaxies and other classes of galaxies. GRB host spectroscopy is one of the main science drivers behind the X‐shooter spectrograph. In this paper, we present the first results of the program devoted to Italian‐French GTO multiband spectroscopy of GRB host galaxies with X‐shooter (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 10 (SDSS DR10), we investigate the dependence of the clustering properties of galaxies on stellar velocity dispersion by cluster analysis. It is found that in the luminous volume-limited Main galaxy sample, except at r=1.2, richer and larger systems can be more easily formed in the large stellar velocity dispersion subsample, while in the faint volume-limited Main galaxy sample, at r≥0.9, an opposite trend is observed. According to statistical analyses of the multiplicity functions, we conclude in two volume-limited Main galaxy samples: small stellar velocity dispersion galaxies preferentially form isolated galaxies, close pairs and small group, while large stellar velocity dispersion galaxies preferentially inhabit the dense groups and clusters. However, we note the difference between two volume-limited Main galaxy samples: in the faint volume-limited Main galaxy sample, at r≥0.9, the small stellar velocity dispersion subsample has a higher proportion of galaxies in superclusters (n≥200) than the large stellar velocity dispersion subsample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号