共查询到19条相似文献,搜索用时 72 毫秒
1.
提出一种建筑物自动化提取架构,基于DeepLabv3+网络模型,使用WHU建筑物数据集,完成数据集增强、模型训练、建筑物提取以及精度评估。实验表明,架构中DeepLabv3+模型分类的总体精度为96.3%、准确度为94.2%、召回率为92.5%、F1得分为93.3%、交并比为87.5%,优于基于像素的分类方法(支持向量机、K均值聚类算法(K-Means))和面向对象的分类方法(最邻近节点算法(KNN)、分析与回归树)以及基于深度学习的分类方法(UNet、SegNet、PSPNet)。文中构建的高分辨率遥感影像建筑物自动化提取模式,可以完成建筑物高精度高效率的提取任务。 相似文献
2.
3.
融合高光谱和高空间分辨率(双高)遥感的优势可以实现地物目标更为全面和精细的属性识别。然而,空间分辨率的显著提升使得双高影像中地物细节特征凸显出来,呈现出极高的空谱异质性,进而导致同物异谱现象大量发生,地物类内方差明显增大。基于此,本文提出一种局部-全局上下文信息自适应聚合的快速双高影像分类框架(adaptive context aggregation network, ACANet),通过编码-解码的全卷积网络架构顾及全局空谱信息,在编码器中构建局部到全局的长距离上下文感知模块缓解双高影像极大的类内方差,在解码器中构建自适应上下文聚合模块进一步实现局部和全局的上下文信息自适应聚合。本文方法在WHU-Hi双高影像分类基准数据集中取得了优异的分类性能,试验表明可以很好缓解双高影像极高空谱异质性对地物精细分类的影响。 相似文献
4.
遥感图像复杂场景道路提取过程受树木和建筑物阴影,以及荒地、空地等因素干扰较多。针对利用DeepLabV3+网络模型进行道路提取时存在的道路信息不完整和细节信息丢失的问题,本文提出了一种改进DeepLabV3+网络的遥感影像道路提取方法。该方法以轻量级的MobileNetV2作为骨干网络进行特征提取,采用空间金字塔池化模块获得多尺度道路信息特征,从而减少道路遥感图像细节的损失,并提高网络模型的道路提取精度。在DeepGlobe数据集上进行道路提取试验的结果表明,该方法在提升准确率的基础上,有效降低了计算的复杂度;像素准确率和交并比分别达79.7%、64.3%,均优于DeepLabV3+网络及其他经典网络模型,表现出更优异的道路提取能力。 相似文献
5.
云和雪的检测是卫星遥感影像处理过程中的一部分,也是对其进行后续分析和解译等应用的关键步骤。本文提出了结合ResNet和DeepLabV3+的全卷积神经网络云雪检测方法。采用ResNet50骨干网络,根据云和雪在天绘一号遥感影像上的特点优化DeepLabV3+网络模型,并采用ELU激活函数、Adam梯度下降法以及Focal Loss损失函数来加快收敛速度、提高分割精度。通过天绘一号卫星云雪影像数据集对网络进行训练并测试,试验结果表明,本文方法与传统Otsu法相比,稳健性更强,在检测精度上优于FCN-8s与DeepLabV3+,速度上优于DeepLabV3+,能推广用于不同来源的遥感影像,具有较好的应用前景。 相似文献
6.
7.
目前基于深度学习的云检测方法,受训练样本限制,算法难以推广及应用。为了快速实现针对多种传感器的高精度的云检测,Sun等(2020)提出统一样本云检测方法。基于AVIRIS高光谱样本库模拟出待检测传感器的云和晴空地表像元,将模拟得到的多光谱样本数据输入到BP神经网络中进行逐像元分类,生成云检测模型,实现Landsat 8 OLI等宽光谱传感器较高精度的云检测。该方法基于统一样本模拟出不同传感器的样本像元库,适用于多种传感器的云检测。由于Landsat 8 OLI波段较多,波谱范围覆盖宽,容易实现云的高精度识别。为了进一步提高其在光谱范围较窄的GF-6 WFV数据上的云检测应用精度,在模拟出的样本库中加入GF-6 WFV数据典型高亮地表像元。通过目视解译对云检测结果进行精度验证,结果表明,该算法利用可见光和近红外通道的遥感数据可以高精度的识别出植被、水体、建筑、裸地等地表类型上空的厚云、碎云和薄云。改进后的云检测算法,云像元平均正确率达到88.40%,在高亮地表上空云像元正确率达到87.40%,在不同地表类型上空的云像元平均正确率为92.60%。结果表明,加入高反射率地物的算法可以利用有限波段实现云和地表的高精度分离。 相似文献
8.
云和雪的检测是卫星遥感影像处理过程中的一部分,也是对其进行后续分析和解译等应用的关键步骤。本文提出了结合ResNet和DeepLabV3+的全卷积神经网络云雪检测方法。采用ResNet50骨干网络,根据云和雪在天绘一号遥感影像上的特点优化DeepLabV3+网络模型,并采用ELU激活函数、Adam梯度下降法以及Focal Loss损失函数来加快收敛速度、提高分割精度。通过天绘一号卫星云雪影像数据集对网络进行训练并测试,试验结果表明,本文方法与传统Otsu法相比,稳健性更强,在检测精度上优于FCN-8s与DeepLabV3+,速度上优于DeepLabV3+,能推广用于不同来源的遥感影像,具有较好的应用前景。 相似文献
9.
利用Worldview-2、资源三号、Sentinel-2A、高分一号,以及Landsat-8等5种光学卫星数据和电子海图数据,在研究多光谱遥感水深反演机理以及基本流程的基础上,探究了多源遥感数据去云融合与水深反演。一方面,以不同空间分辨率的影像融合为切入点,用GM融合算法、小波融合探讨不同空间尺度、不同数据源融合影像对水深反演结果的影响,探讨水深反演过程中遥感影像去云融合的可行性。另一方面,以多源遥感水深反演为切入点,基于双波段比值法,反演实验区域20 m以内的水深,并进行精度评价。实验表明,利用小波融合去云可以改善水深遥感反演中有云区域的影响,一定程度上提高反演精度和制图资料的完整性。 相似文献
10.
本文为验证SVM对高维特征的适应性和可靠性,针对不同特征提取方法与特征组合,以国产OMISⅡ传感器获得的北京昌平地区高光谱遥感据为例,对SVM分类器中特征维数对分类准确率的影响进行了试验,通过对主成分分析、最小噪声分离算法、相关系数分组后特征提取、导数光谱等的分析,表明SVM分类器的分类精度随着特征维数波动,其中主成分分析降维后提取的特征具有用于分类能够获得最高的准确率。通过与最大似然法和光谱角制图分类算法的比较,说明在同样的特征输入情况下SVM分类算法分类的准确率高于最大似然法和光谱角制图分类器。 相似文献
11.
为解决利用Sentinel-2卫星影像进行地物信息提取时云层遮挡造成的信息误判问题,提出了一种基于深度学习的遥感影像云区高精度分割方法。该方法通过预处理的遥感样本数据构建出一种深度神经网络模型,自动提取高层次影像特征;再将影像特征输入分类器,实现遥感影像的像素级分类,从而分割出云覆盖矩阵;最后将云覆盖矩阵转化为云二值图,结合感兴趣区矢量准确获取指定区域云检测结果。选取典型区域进行测试,结果表明:该方法检测精度较高,速度较快,且无须辅助信息与人工干预,可用于Sentinel-2卫星影像不规则区域自动云检测。 相似文献
12.
13.
资源三号影像中城市高大地物阴影检测方法 总被引:3,自引:0,他引:3
针对遥感影像处理中阴影检测和信息补偿不准确的问题,该文在研究已有阴影检测算法的基础上,结合资源三号(ZY-3)影像数据的特性,构建了阴影检测方法:首先对原始图像分别做差值运算和主成分变换,并利用多峰阈值自动提取算法检测出阴影区域;其次将差值运算提取的粗阴影区域与主成分变换提取的阴影区域做并运算生成一个新的阴影区域;然后判断影像中是否含有水体,如果含有水体则利用多峰阈值自动提取算法检测出水体并与新合并的阴影区域影像做布尔运算得到完整的阴影区域,反之则新合并的区域即为完整的阴影区域。实验结果表明该方法针对ZY-3具有较好的普适性、较高的提取精度和提取效率。 相似文献
14.
高分辨率遥感影像的目标检测与识别,是高分对地观测系统中影像信息自动提取及分析理解的重要内容。针对传统影像目标检测与识别算法中人工设计特征稳健性与普适性差的问题,本文提出基于高分辨率遥感影像目标尺度特征的卷积神经网络检测与识别方法。首先通过统计遥感影像目标的尺度范围,获得卷积神经网络训练与测试过程中目标感兴趣区域合适的尺度大小。然后根据目标感兴趣区域合适的尺度,提出基于高分辨率遥感影像目标尺度特征的卷积神经网络检测与识别架构。通过WHU-RSone数据集对本文卷积神经网络架构与Faster-RCNN架构对比测试验证。试验结果表明,本文架构ZF模型和本文架构VGG-16模型的mean average precision(mAP)分别比Faster-RCNNZF模型和Faster-RCNNVGG-16模型提高8.17%和8.31%,本文卷积神经网络架构可获得良好的影像目标检测与识别效果。 相似文献
15.
16.
钢结构变形是工程、工业领域常见问题,若变形超过设计允许值,将影响工程的正常实施及工业的正常运转.采用全站仪等传统方式检测钢结构变形,不仅效率低,且难以全面、精确地反映钢结构的空间整体变形情况.本文以一个海上钻井平台钢结构变形为例,介绍采用三维激光扫描仪进行钢结构变形检测分析的方法,通过对外业采集的点云进行滤波、分割处理... 相似文献
17.
18.