首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
现阶段北斗卫星导航系统(BeiDou navigation satellite system,BDS)的同步地球轨道(geostationary orbits,GEO)卫星、中倾斜地球同步轨道(inclined geo-synchronous orbits,IGSO)卫星和中圆地球轨道(medium earth orbit,MEO)卫星均存在伪距偏差,该伪距偏差的存在对精密定位的研究及其应用产生了较大的影响。根据北斗IGSO和MEO卫星的伪距偏差与高度角和频率相关的误差特性,本文分析了测站数目及分布,以及观测时长对建模的影响,选择18个测站2015年全年的数据作为MEO卫星的建模数据,其中可以连续观测到全弧段IGSO卫星的4个测站用于IGSO卫星的建模,采用加权分段线性拟合联合抗差估计的方法建立了北斗卫星伪距偏差改正模型。模型改正后,北斗IGSO和MEO卫星的伪距偏差得到明显的削弱,相比于传统的伪距偏差改正模型,精密单点定位(precise point positioning,PPP)的定位精度和收敛时间均得到提升。  相似文献   

2.
受限于区域监测站及地球静止轨道(geosynchronous earth orbit,GEO)卫星的静地特性,北斗卫星导航系统(BeiDou satellite navigation system,BDS)定轨精度较差,加入低轨卫星(low earth orbit,LEO)星载数据可显著提升定轨精度.使用一种由24颗L...  相似文献   

3.
利用北斗精密星历作为伪观测值拟合了伯尔尼(BERN)光压模型和球光压模型的光压参数,并利用所求参数分别进行了轨道外推。通过分析轨道拟合和外推精度得到如下结论:在1 d的弧段上,BERN模型对于3类卫星GEO,IGSO和MEO的拟合精度相当且精度优于10 cm;球模型对于GEO和IGSO的轨道拟合精度相当且精度优于50 cm,明显低于其对MEO的拟合精度;对于GEO和MEO以及IGSO卫星6号星,利用BERN模型得到的外推轨道比利用球模型得到的外推轨道精度高;但对于8号,9号及10号IGSO卫星而言,利用球模型得到的外推轨道比利用BERN模型得到的外推轨道精度高。  相似文献   

4.
仿造GPS超快速轨道的解算模式,轨道服务器生成3 h间隔的BDS的超快速轨道作为实时精密轨道。钟差服务器接收实时观测数据,并固定实时精密轨道和参考站精密坐标实时解算精密轨道和钟差改正数,然后利用NTRIP播发给用户,用户利用这些改正数还原精密轨道和钟差进行实时PPP动态定位。以GBM的事后精密轨道和钟差作参考,GEO卫星实时轨道SISRE(orb)在0. 3~0. 9 m,IGSO/MEO卫星实时轨道SISRE(orb)在0. 08~0. 19 m; GEO实时精密钟差二次差STD在0. 6~1. 1 ns,IGSO/MEO实时精密钟差二次差STD在0. 2~0. 6 ns; GEO卫星SISRE在20 cm左右,IGSO/MEO卫星SISRE在4~11 cm。用户利用精密轨道和钟差改正数进行动态PPP定位,排除由于BDS星座不完善和GEO卫星相对地球静止的因素,单BDS能够收敛的测试组平均收敛时间在62. 5 min,收敛后NEU 3方向的RMS分别是7. 53、13. 84和15. 93 cm。  相似文献   

5.
针对北斗卫星导航系统的卫星姿态模型、天线相位中心改正及卫星定轨数据处理策略未统一的现状,该文对比分析了武汉大学和德国地学研究中心提供的北斗事后精密轨道和钟差产品的差异及精度,结合实测数据,通过分析精密单点定位的定位精度来比较两中心精密轨道和钟差的差异。实验结果表明:北斗卫星的精密轨道精度与轨道类型有关,地球静止轨道(GEO)卫星的轨道精度为米级,倾斜地球同步轨道(IGSO)卫星的轨道精度为分米级,中地球轨道(MEO)卫星切向、法向和径向的精度分别为10.81、5.41和3.37cm;GEO卫星钟差精度优于0.38ns,IGSO卫星钟差优于0.25ns,MEO卫星钟差优于0.15ns;两家分析中心产品的北斗静态精密单点定位的平面精度相当;北斗静态精密单点定位的RMS统计值平面精度优于3cm,三维精度优于7cm。  相似文献   

6.
卫星帆板及本体受照情况变化复杂,导致卫星光压摄动力的变化难以准确模制,既是动力学定轨的最大误差源,也是定轨预报精度降低的主要原因。针对此问题,采用北斗地面系统的区域监测网数据,详细比较了3种主要的经验模型(T20模型、ECOM5参数模型、ECOM9参数模型)对不同卫星的适用性情况。结果显示,在春秋分前后,地球同步轨道(geosynchronous earth orbit,GEO)卫星使用ECOM9参数模型最好,其解算的卫星钟差与星地双向钟差的互差标准差优于2 ns;对于倾斜地球同步轨道(inclined geosynchronous satellite orbit,IGSO)卫星和中地球轨道(medium earth orbit,MEO)卫星,无论是在动偏期间还是姿态模式转换期间,T20模型表现出更好的适用性。不同于此前国内外学者的相关研究,试验表明,对BDS混合星座的不同类型卫星、同一卫星的不同时段,应采用不同的经验太阳光压模型,以获得更高的定轨和预报精度。  相似文献   

7.
BDS不同轨道卫星精密单点定位性能分析   总被引:1,自引:0,他引:1  
为了分析北斗不同轨道卫星对定位结果的影响,从而更好地利用我国自主研发的北斗卫星导航系统。该文采用亚太地区7个MGEX测站12d观测数据,进行静态、后处理动态和模拟实时动态3种模式的精密单点定位实验。实验结果表明,在北斗3类轨道卫星等权的情况下,倾斜地球同步轨道(IGSO)卫星对定位结果贡献最大;北斗两类轨道卫星组合中,IGSO+MEO组合定位精度最高,其静态精密单点定位(PPP)在E、N、U方向的RMS分别为0.62、0.39、3.71cm,后处理动态和模拟实时动态PPP的RMS为分米级;北斗各类轨道卫星与GPS组合定位中,GPS+IGSO+MEO组合定位结果收敛速度最快,收敛时间为26.30min。  相似文献   

8.
北斗倾斜地球同步轨道(inclined geosynchronous orbit,IGSO)卫星和中轨(medium earth orbit,MEO)卫星的伪距码观测值存在系统性偏差,针对该偏差的现有建模方法(两步法)包含模糊度消除策略的误差,提出了一种基于历元间差分的一步建模方法,建立了同类型卫星整体的伪距码偏差三次多项式改正模型,并与现有的离散点改正模型进行对比。同时,针对每颗IGSO/MEO卫星的独特性,利用一步法逐卫星建模并评估其改正效果。结果表明,相对于现有的离散点改正模型,精化模型将IGSO/MEO卫星的Melbourne-Wübbena(MW)值的稳定性平均提高了23.88%,C08卫星的提高幅度最大,约为32.26%。  相似文献   

9.
我国正在组建的北斗卫星导航系统采用了一定数量的GEO和IGSO卫星,为了验证对MEO(如GPS)卫星适用的轨道数值积分方法对GEO和IGSO卫星是否同样适用,本文在二体意义下分别对GEO和IGSO卫星进行了轨道数值积分,先使用变步长的RKF7(8)阶积分法积分10步后,再使用定步长的10阶Adams预测-校正系统进行积分48小时,然后与其理论值进行了分析比较,结果表明原来适用于MEO卫星的轨道积分方法仍然适用于GEO/IGSO卫星。  相似文献   

10.
北斗卫星导航系统单星授时精度分析   总被引:2,自引:1,他引:1  
为研究北斗卫星导航系统单星授时精度,本文基于GPS单星授时原理,结合北斗卫星多种类型星座特点,编写了BDS单星授时软件。利用iGMAS站数据进行了试验,在对原始数据进行监测并将异常信息剔除后,将授时结果与中国测绘科学研究院北斗分析中心(CGS)钟差文件进行比对,分析了BDS不同轨道卫星(GEO/IGSO/MEO)下的BDS单星授时精度。结果表明,GEO卫星的授时精度为27.39 ns,IGSO卫星的授时精度为18.37 ns,MEO卫星的授时精度为18.62 ns。  相似文献   

11.
针对北斗卫星三号(BDS-3)卫星钟的表现情况的问题,该文选取了全球均匀分布的120个国际GNSS服务(IGS)跟踪站的北斗三号卫星观测数据进行北斗卫星钟差估计,利用评价卫星钟差产品的方法分析北斗新一代卫星钟的精度水平。得到结果如下:北斗卫星钟中圆地球轨道(MEO)精度在0.1 ns以内、倾斜地球同步轨道(IGSO)精度在0.15 ns以内,地球静止轨道(GEO)精度在0.2~0.9 ns水平;BDS-3卫星的频率的万秒稳定度已经处于1×10-14水平;GPS与BDS精密单点定位解算结果的均方根误差(RMS)均在厘米级。基于卫星钟差实验结果表明,MEO比IGSO卫星钟差精度高,稳定性强;BDS-3搭载的铷钟(Rb-Ⅱ)和氢钟(PHM)比BDS-2的铷钟(Rb)更稳定,这是因为发射较早的卫星钟普遍受到硬件老化影响,相位与频率的波动较大;BDS在U方向上的精度与收敛速度略有不足,可通过GPS+BDS组合定位提升U方向单点定位性能。北斗卫星钟的精度、稳定性已达到钟差预报及实时精密单点定位应用的需求。  相似文献   

12.
分析了GEO/IGSO/MEO 3种卫星在BDS伪距差分定位中对精度的影响,先只添加4颗GEO卫星参与定位,再在4颗GEO卫星均参加定位的条件下,逐次增加一颗高度角最大的IGSO卫星参与定位,最后在4颗GEO卫星和3颗IGSO卫星均参加定位的条件下,逐次增加一颗高度角最大的MEO卫星参与定位。分析3次实验HDOP、VDOP值和定位精度的变化。实验表明,在北斗卫星星座(5GEO+6IGSO+3MEO)条件下,只有GEO卫星参与定位时精度较差,当加入IGSO卫星和MEO卫星时能显著改善空间结构并提高定位精度。  相似文献   

13.
北斗卫星导航系统(BeiDou satellite navigation system,BDS)目前暂未具有全球导航定位能力,卫星轨道的全程跟踪与测站的几何结构还不完善,影响了卫星轨道的测定精度。针对上述问题,根据动力学定轨的原理与方法,推导了多个全球导航卫星系统(global navigation satellite system,GNSS)联合定轨对参数求解精度的解析贡献量,并利用实测数据分析了BDS/GPS联合定轨对轨道和钟差求解精度的统计贡献量。结果表明,联合定轨对系统间公共参数求解精度的贡献显著,除地球静止轨道(geostationary orbit,GEO)卫星外,其余轨道和钟差求解精度均有显著提高。BDS/GPS联合定轨对BDS卫星轨道、卫星钟差均方根误差(root mean square,RMS)以及接收机钟差RMS的统计贡献量分别为36.21%、26.88%和20.88%,其中对可视卫星数较少的区域接收机钟差求解精度的贡献尤为显著,贡献量为45.95%。  相似文献   

14.
首次搭载GPS/BDS双模接收机全球导航卫星掩星探测仪(GNOS)的风云三号C星于2013年9月23日的成功发射,为研究低轨卫星对BDS定轨增强提供了便利。本文首先对低轨卫星GNOS搭载的GPS/BDS双模接收机的观测数据进行统计,并分析了伪距测量精度。然后在全球测站、区域测站两种布局情况下,对无GNOS的BDS单系统定轨、无GNOS的GPS/BDS双系统定轨、有GNOS的BDS单系统定轨增强、有GNOS的GPS/BDS双系统定轨增强4种方案进行北斗轨道及钟差比较分析。结果表明,GNOS对北斗卫星轨道增强在全球测站下,GEO卫星切向精度提升最为显著,提升程度达60%,其次是法向和其他类型卫星切向,部分弧段个别GEO卫星径向精度稍有下降。双系统定轨增强中可视弧段钟差重叠精度RMS值有0.1ns量级改善。7个国内测站区域监测网的定轨试验中对轨道进行了预报,结果表明GNOS对北斗GEO卫星轨道预报精度切向提升达85%,其余方向及卫星有较大改善,平均21.7%。可视弧段钟差重叠精度RMS值有0.5ns量级改善。  相似文献   

15.
由于北斗地球静止轨道(geostationary earth orbiting,GEO)卫星轨道精度较低且其观测值受多路径误差和伪距偏差影响严重,目前各分析中心尚未针对北斗GEO卫星提供长期稳定的相位小数偏差(uncalibrated phase delay,UPD)产品,北斗精密单点定位(precise point positioning,PPP)模糊度固定技术研究主要针对倾斜轨道(inclined geosynchronous orbiting,IGSO)和中地球轨道(medium earth orbiting,MEO)卫星。本文采用Wanninger和Beer的高度角模型消除了IGSO/MEO观测值伪距偏差,并通过小波变换提取低频分量修正伪距观测值的方法削弱了GEO卫星多路径和伪距偏差的影响。由于窄巷UPD估值受未模型化误差影响较大,本文改进了窄巷UPD估计的策略,该策略利用上一历元成功估计的窄巷UPD对当前历元的浮点模糊度进行改正,剔除了残差较大的浮点模糊度,修正固定错误的整周模糊度,从而提高了窄巷UPD的精度和稳定性。利用估计得到的UPD产品,本文实现了联合GEO、IGSO和MEO卫星的北斗非差PPP模糊度固定,并对其定位性能进行分析。结果表明:联合GEO、IGSO和MEO卫星的PPP固定解的首次固定时间和收敛时间均可以缩短到30 min以内;6 h后的E、N、U方向的定位误差由(1.35、0.35、2.75)cm减少到(1.07、0.26、2.24)cm,分别减少了20%、27%和18%。  相似文献   

16.
针对北斗第二代导航卫星系统的伪距观测值中存在与卫星相关的系统性伪距偏差的问题,该文提出采用加权分段曲线建模方法建立北斗IGSO/MEO卫星观测数据三频改正模型。试验表明,改正后IGSO与MEO卫星的伪距偏差明显削弱。针对GEO卫星伪距偏差问题,提出了一种基于Tikhonov正则化的建模方法;修正后的GEO卫星MP序列的RMS在B1、B2、B3频率上分别下降了35.9%、29.6%、35.8%。为了验证策略的可行性,设计了3套单频PPP定位方案,结果表明:通过改正IGSO/MEO卫星伪距偏差,N、E方向定位精度平均提高了20.2%和13.4%,U方向定位精度平均提高了62.8%;同时改正GEO/IGSO/MEO卫星的伪距偏差时,U方向的定位精度将进一步提高至70%左右。因此本研究提出的BDS-2卫星伪距观测值的修正模型,能有效减弱这些伪距偏差的影响。  相似文献   

17.
卫星精密轨道的确定是北斗卫星导航系统位置与服务的核心技术之一,而国家基准站是影响卫星轨道精度的一个重要因素。本文基于中国测绘科学研究院国际GNSS监测与评估中心自主开发的软件计算国家基准站和MGEX站对北斗卫星精密定轨的影响。得出结果:加上国家基准站后GEO卫星轨道精度平均能达到2.0 m,比没有国家基准站时提高约14%,在GEO切向方向改善最为明显,大约提高30%。IGSO和MEO卫星也有所提高。加上国家基准站后,三类卫星的轨道重复弧段的径向精度优于5 cm。有了国家基准站数据BDS精密轨道会有明显的改善。国家基准站的建立使我国北斗导航卫星的服务能力有很大提高。  相似文献   

18.
GNSS是实时定位导航最重要的方法,精密卫星轨道钟差产品是GNSS高精度服务的前提。国际GNSS服务中心(IGS)及其分析中心长期致力于GNSS数据处理的研究及高精度轨道和钟差产品的提供。GFZ作为分析中心之一,提供GBM多系统快速产品。本文基于2015—2021年GBM提供的精密轨道产品,阐述了数据处理策略,分析了轨道的精度,介绍了非差模糊度固定的原理和对精密定轨的影响。结果表明:GBM快速产品中的GPS轨道精度与IGS后处理精密轨道相比的精度约为11~13 mm,轨道6 h预报精度约为6 cm;GLONASS预报精度约为12 cm,Galileo在该时期的精度均值为10 cm,但是在2016年底以后精度提升到5 cm左右;北斗系统的中轨卫星(medium earth orbit,MEO)在2020年以后预报精度约为10 cm;北斗的静止轨道卫星(geostationary earth orbit,GEO)卫星和QZSS卫星的预报精度在米级;卫星激光测距检核表明,Galileo、GLONASS、BDS-3 MEO卫星轨道精度分别为23、41、47 mm;此外,采用150 d观测值的试验结果表明,采用非差模糊度固定能显著改善MEO卫星轨道精度,对GPS、GLONASS、Galileo、BDS-2和BDS-3的MEO卫星的6 h时预报精度改善率分别为9%~15%、15%~18%、11%~13%、6%~17%和14%~25%。  相似文献   

19.
针对目前多数低轨道地球卫星(LEO)设计处于初步论证阶段,LEO轨道无法精确获取,轨道误差难以准确表述的问题,提出了一种傅里叶级数拟合LEO轨道误差下的BDS/GPS/LEO 精密单点定位(PPP)分析方法. 该方法根据LEO精密定轨后的轨道误差呈现准周期正弦特性,利用傅里叶级数拟合LEO轨道误差,并仿真生成LEO观测数据和星历产品,分析了LEO轨道误差对BDS/GPS/LEO PPP精度与收敛时间影响. 仿真结果表明:BDS/GPS/LEO PPP定位误差随着LEO轨道误差的增加而逐渐增大,但与测站纬度和LEO星座构型无明显关联. 且为保证全球区域BDS/GPS/LEO PPP收敛时间均短于BDS/GPS PPP收敛时间,引入6×10、12×10、18×10 LEO星座后,其LEO轨道误差均方根(RMS)应小于5 cm、11 cm、12 cm.   相似文献   

20.
针对系统地评估我国北斗卫星导航系统广播星历精度与保障实时导航定位服务的需求,对BDS广播星历提供的卫星轨道、钟差以及用户测距误差(URE)的精度性能进行分析,统计了2015年连续4周全部BDS在轨健康卫星的广播星历各项精度指标值。分析结果表明:BDS的MEO和IGSO卫星轨道精度优于GEO卫星结果,且径向精度优于法向和切向精度;BDS搭载的国产星载铷钟卫星钟差序列相对比较稳定,其均方根误差优于4ns;GEO/IGSO卫星的用户距离误差(URE)在6m以内,MEO的URE优于20m。研究结果对北斗系统的建设、后期的发展和用户市场的拓展,都具有重要的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号