首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The results of experimental studies of ion exchange properties of Co-bearing ferromanganese crusts in the Magellan Seamounts (Pacific Ocean) are discussed. Maximum reactivity in reactions with the participation of manganese minerals (Fe-vernadite, vernadite) is typical of Na+, K+, and Ca2+ cations, whereas minimum activity is recorded for cations Pb2+ and Co2+. The exchange complex of ore minerals in crusts is composed of Na+, K+, Ca2+, Mg2+, and Mn2+ cations. The exchange capacity of manganese minerals increases from the alkali metal cations to rare and heavy metal cations. Peculiarities of the affiliation of Co2+, Mn2+, and Mg2+ cations in manganese minerals of crusts are discussed. In manganese minerals, Co occurs as Co2+ and Co3+ cations. Metal cations in manganese minerals occur in different chemical forms: sorbed (Na+, K+, Ca2+, Mn2+, Co2+, Cu2+, Zn2+, Cd2+, and Pb2+); sorbed and chemically bound (Mg2+, Ni2+, Y3+, La3+, and Mo6+); and only chemically bound (Co3+). It is shown that the age of crust, its preservation time in the air-dry state, and type of host substrate do not affect the ion exchange indicators of manganese minerals. It has been established that alkali metal cations are characterized by completely reversible equivalent sorption, whereas heavy metal cations are sorbed by a complex mechanism: equivalent ion exchange for all metal cations; superequivalent, partly reversible sorption for Ba2+, Pb2+, Co2+, and Cu2+ cations, relative to exchange cations of manganese minerals. The obtained results refine the role of ion exchange processes during the hydrogenic formation of Co-bearing ferromanganese crusts.  相似文献   

2.
U-Pb systems were examined in samples (ranging from 4 to 10 cm3 in volume) of ore material taken from along a 3.5-m profile across a zone of U mineralization exposed in an underground mine at the Strel’tsovskoe U deposit in eastern Transbaikalia. The behaviors of two isotopic U-Pb systems (238U-206Pb and 235U-207Pb) are principally different in all samples from our profile. While the individual samples are characterized by a vast scatter of their T(206Pb/238U) age values (from 112 to 717 Ma), the corresponding T(207Pb/235U) values vary much less significantly (from 127 to 142 Ma) and are generally close to the true age of the U mineralization. The main reason for the distortion of the U-Pb system is the long-lasting (for tens of million years) migration of intermediate decay products in the 238U-206Pb(RD238U) in the samples. This process resulted in the loss of RD238U from domains with high U concentrations and the subsequent accommodation of RD238U at sites with low U concentrations. The long-term effect of these opposite processes resulted in a deficit or excess of 206Pb as the final product of 238U decay. The loss or migration of RD238U are explained by the occurrence of pitchblende in association with U oxides that have higher Si and OH concentrations than those in the pitchblende and a higher +6U/+4U ratio. The finely dispersed character of the mineralization and the loose or metamict texture of the material are the principal prerequisites for RD238U loss and an excess of 206Pb in adjacent domains with low U concentrations. Domains with low U contents in the zone with U mineralization serve as geochemical barriers (because of sulfides contained in them) at which long-lived RD238U(226Ra, 210Po, 210Bi, and 210Pb) were accommodated and subsequently caused an excess of 206Pb. The 235U-207Pb system remained closed because of the much briefer lifetime of the 235U decay products. This may account for the significant discrepancies between the T(206Pb/238U) and T(207Pb/235U) age values. RD238U was most probably lost via the migration of radioisotopes at the middle part and end of the 238U family (starting with 226Ra). The heavy Th, Pa, and U radioisotopes (234Th, 234Pa, 234U, and 230Th) that occur closer to the beginning of 238U decay, before 226Ra, only relatively insignificantly participated in the process. Our results show that the loss and migration of RD238U are, under certain conditions, the main (or even the only) process responsible for the distortion of the U-Pb system.  相似文献   

3.
The chemical composition of pyrite in coal can be used to investigate its geological and mineralogical origin. In this paper, high-resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS) was used to study the chemical composition of various pyrite forms in the No. 9 coal seam (St,d=3.46%) from the Wuda Coalfield, Inner Mongolia, northern China. These include bacteriogenic, framboidal, massive, cell-filling, fracture-filling, and nodular pyrites. In addition to Fe+ (54Fe+, 56Fe+, 57Fe+), other fragment ions were detected in bacteriogenic pyrites, such as 27Al+, Si+ (28Si+, 29Si+, 30Si+), 40Ca+, Cu+ (63Cu+, 65Cu+), Zn+ (64Zn+, 66Zn+, 67Zn+, 68Zn+), Ni+ (58Ni+, 60Ni+, 62Ni+), and C3H7+. TOF-SIMS images show bacteriogenic pyrites are relatively rich in Cu, Zn, and Ni, suggesting that bacteria probably play an important role in the enrichment of Cu, Zn, and Ni during their formation. Intense positive secondary ion fragments from framboidal aggregates, such as 27Al+, 28Si+, 29Si+, AlO+, CH2+, C3H3+, C3H5+, and C4H7+, indicate that formation of the framboidal aggregates may have occurred together with clay mineral and organic matter, which probably serve as the binding substance. The intense ions of 28Si+ and 27Al+ from massive pyrites also suggest that their pores incorporated clay minerals during crystallization. Together with the lowest 28Si+/23Na+ value, the intense organic positive secondary ion peaks from cell-filling pyrites, such as C3H3+, C3H5+, C3H7+, and C4H7+, indicate that pyrite formation may have accompanied dissolution or disintegration of the cell. The intense P+ peak was observed only in the fracture-filling pyrite and the highest 28Si+/23Na+ value of fracture-filling pyrite reflects its epigenetic origin. Together with XRD and REEs data, the stronger 40Ca+ in nodular pyrite than other pyrite forms shows seawater influence during its formation.  相似文献   

4.
The use of radionuclides as clocks for groundwater dating and as probes to investigate the geometry and spatial extent of the contact area between rocks and water is reviewed. Subsurface production rates for222Rn37Ar,85Kr,39Ar,36CI,3He,4He and40Ar in various rock types are listed. Measured Rn fluxes from the surface of sandstone grains and from pieces of granite point to scale-dependent diffusion coefficients. The temporal evolution of subsurface-produced222Rn-,37Ar-,85Kr- and39Ar-activities in groundwaters yields radionuclide escape factors between 0.1 % and 9% for the Stripa granite (Sweden) and between 1% and 4% for the Milk River sandstone (Canada). The combination of3H,85Kr,39Ar,14C,36CI,4He in the UK Triassic sandstone aquifer allows groundwater dating up to 40 000 a. Very old groundwaters can be studied using Cl,36Cl and4He evolution as demonstrated in the Milk River aquifer in Canada.  相似文献   

5.
We present data for U and its decay series nuclides 230Th, 226Ra, 231Pa, and 210Po for 14 lavas from Kick’em Jenny (KEJ) submarine volcano to constrain the time-scales and processes of magmatism in the Southern Lesser Antilles, the arc having the globally lowest plate convergence rate. Although these samples are thought to have been erupted in the last century, most have (226Ra)/(210Po) within ±15% of unity. Ten out of 14 samples have significant 226Ra excesses over 230Th, with (226Ra)/(230Th) up to 2.97, while four samples are in 226Ra-230Th equilibrium within error. All KEJ samples have high (231Pa)/(235U), ranging from 1.56 to 2.64 and high 238U excesses (up to 43%), providing a global end-member of high 238U and high 231Pa excesses. Negative correlations between Sr, sensitive to plagioclase fractionation, and Ho/Sm, sensitive to amphibole fractionation, or K/Rb, sensitive to open system behavior, indicate that differentiation at KEJ lavas was dominated by amphibole fractionation and open-system assimilation. While (231Pa)/(235U) does not correlate with differentiation indices such as Ho/Sm, (230Th)/(238U) shows a slight negative correlation, likely due to assimilation of materials with slightly higher (230Th)/(238U). Samples with 226Ra excess have higher Sr/Th and Ba/Th than those in 226Ra-230Th equilibrium, forming rough positive correlations of (226Ra)/(230Th) with Sr/Th and Ba/Th similar to those observed in many arc settings. We interpret these correlations to reflect a time-dependent magma differentiation process at shallow crustal levels and not the process of recent fluid addition at the slab-wedge interface.The high 231Pa excesses require an in-growth melting process operating at low melting rates and small residual porosity; such a model will also produce significant 238U-230Th and 226Ra-230Th disequilibrium in erupted lavas, meaning that signatures of recent fluid addition from the slab are unlikely to be preserved in KEJ lavas. We instead propose that most of the 238U-230Th, 226Ra-230Th, and 235U-231Pa disequilibria in erupted KEJ lavas reflect the in-growth melting process in the mantle wedge (reflecting variations in U/Th, daughter-parent ratios, fO2, and thermal structure), followed by modification by magma differentiation at crustal depths. Such a conclusion reconciles the different temporal implications from different U-series parent-daughter pairs and relaxes the time constraint on mass transfer from slab to eruption occurring in less than a few thousand years imposed by models whereby 226Ra excess is derived from the slab.  相似文献   

6.
现代沉积的210Pb计年   总被引:74,自引:10,他引:74       下载免费PDF全文
万国江 《第四纪研究》1997,17(3):230-239
210Pb具有百年时间尺度沉积计年的重要价值。210Pbex计年假设:沉积物是封闭系统;进入水体的210Pb能有效地转移到沉积物中并不发生沉积后迁移;非过剩210Pb与其母体226Ra保持平衡。210Pbex计年可用稳定输入通量-稳定沉积物堆积速率模式、常量初始浓度模式或恒定补给速率模式。沉积物柱芯必须保持原态并以0.5~1cm间隔分截;用相应层节226Ra校正。沉积物表层混合作用及222Rn的丢失可能导致顶部210Pbex异常。季节性缺氧湖泊沉积物顶部可能存在210Pb及210Po的再迁移。210Pb与137Cs两种计年方法原理上具有根本差别。210Pb,137Cs与沉积纹理方法对比是准确计年的重要保证。  相似文献   

7.
The age-accumulation effect of 40Ar in hydrocarbon source rocks was discussed in accordance with the decay law of radioactive elements. In terms of the mean values of 40Ar/36Ar, the old Sinian gas reservoirs (mean values of 40Ar/36Ar: 7009) were definitely distinguished from the Permian gas reservoirs (mean values of 40Ar/36Ar: 1017) in Weiyuan, Sichuan Province, and the gas source of the Permian gas reservoir (mean values of 40Ar/36Ar: 5222) in well Wei-7 with the Weiyuan structure is defined as the Sinian system. Based on the values of 40Ar/36Ar, the coal-type gases (The source rocks are of the C-P system; mean values of 40Ar/36Ar: 1125) are definitely distinguished from the oil-type gases (The source rocks are of the Tertiary system; mean values of 40Ar/36Ar: 590) in the Tertiary reservoirs of the Zhongyuan Oilfield. Besides, 40Ar/36Ar values also have a positive effect on the oil-source correlation of oil reservoirs in ancient hidden mountains. According to the crust-mantle interchange information reflected by 3He/4He values, petroliferous provinces in China can be divided into three major tectonic regions. (1) The eastern active region: The crust-mantle volatile matter exchanges actively, and the 3He/4He values are mainly around 10-6, partly around 10-7. (2) The central stable region: The 3He/4He values are all around 10-8. (3) The western sub-stable region: The 3He/4He values are mainly around 10-8, and around 10-7 on the edges of the basins. Helium contents of some gas wells in China’s eastern petroliferous region reach the industrial abundance (He≈0.05%–0.1%), the 3He/4He values reach 10-6, and the equivalent values for the mantle-source components in helium gas can reach 30%–50%. As viewed from this, a new type of crust-mantle composite helium resources has been proposed. Geneses of some CO2 gas reservoirs in the east of China and some issues concerning mantle-source methane were discussed in the light of the helium and carbon isotopes of CO2 and CH4 in natural gases. In the discussion on helium isotopic characteristics of inclusions in the reservoirs, it was discovered that the 3He/4He values are close to those in natural gases. That is to say, this phenomenon is related to regional tectonism. The 3He/4He, CO2/3He and CH4/3He data were used to discuss the tectonic activities of fault zones in a certain number of regions in China.  相似文献   

8.
In this study, a series of interaction coefficients of the Brønsted-Guggenheim-Scatchard specific interaction theory (SIT) have been estimated up to 200°C and 400 bars. The interaction coefficients involving Cl- estimated include ε(H+, Cl-), ε(Na+, Cl-), ε(Ag+, Cl-), ε(Na+, AgCl2 -), ε(Mg2+, Cl-), ε(Ca2+, Cl-), ε(Sr2+, Cl-), ε(Ba2+, Cl-), ε(Sm3+, Cl-), ε(Eu3+, Cl-), ε(Gd3+, Cl-), and ε(GdAc2+, Cl-). The interaction coefficients involving OH- estimated include ε(Li+, OH-), ε(K+, OH-), ε(Na+, OH-), ε(Cs+, OH-), ε(Sr2+, OH-), and ε(Ba2+, OH-). In addition, the interaction coefficients of ε(Na+, Ac-) and ε(Ca2+, Ac-) have also been estimated. The bulk of interaction coefficients presented in this study has been evaluated from the mean activity coefficients. A few of them have been estimated from the potentiometric and solubility studies. The above interaction coefficients are tested against both experimental mean activity coefficients and equilibrium quotients. Predicted mean activity coefficients are in satisfactory agreement with experimental data. Predicted equilibrium quotients are in very good agreement with experimental values. Based upon its relatively rapid attainment of equilibrium and the ease of determining magnesium concentrations, this study also proposes that the solubility of brucite can be used as a pH (pcH) buffer/sensor for experimental systems in NaCl solutions up to 200°C by employing the predicted solubility quotients of brucite in conjunction with the dissociation quotients of water and the first hydrolysis quotients of Mg2+, all in NaCl solutions.  相似文献   

9.
The desorption of 137Cs+ was investigated on sediments from the United States Hanford site. Pristine sediments and ones that were contaminated by the accidental release of alkaline 137Cs+-containing high level nuclear wastes (HLW, 2 × 106 to 6 × 107 pCi 137Cs+/g) were studied. The desorption of 137Cs+ was measured in Na+, K+, Rb+, and NH4+electrolytes of variable concentration and pH, and in presence of a strong Cs+-specific sorbent (self-assembled monolayer on a mesoporous support, SAMMS). 137Cs+ desorption from the HLW-contaminated Hanford sediments exhibited two distinct phases: an initial instantaneous release followed by a slow kinetic process. The extent of 137Cs+ desorption increased with increasing electrolyte concentration and followed a trend of Rb+ ≥ K+ > Na+ at circumneutral pH. This trend followed the respective selectivities of these cations for the sediment. The extent and rate of 137Cs+ desorption was influenced by surface armoring, intraparticle diffusion, and the collapse of edge-interlayer sites in solutions containing K+, Rb+, or NH4+. Scanning electron microscopic analysis revealed HLW-induced precipitation of secondary aluminosilicates on the edges and basal planes of micaceous minerals that were primary Cs+ sorbents. The removal of these precipitates by acidified ammonium oxalate extraction significantly increased the long-term desorption rate and extent. X-ray microprobe analyses of Cs+-sorbed micas showed that the 137Cs+ distributed not only on mica edges, but also within internal channels parallel to the basal plane, implying intraparticle diffusive migration of 137Cs+. Controlled desorption experiments using Cs+-spiked pristine sediment indicated that the 137Cs+ diffusion rate was fast in Na+-electrolyte, but much slower in the presence of K+ or Rb+, suggesting an effect of edge-interlayer collapse. An intraparticle diffusion model coupled with a two-site cation exchange model was used to interpret the experimental results. Model simulations suggested that about 40% of total sorbed 137Cs+ was exchangeable, including equilibrium and kinetic desorbable pools. At pH 3, this ratio increased to 60-80%. The remainder of the sorbed 137Cs+ was fixed or desorbed at much slower rate than our experiments could detect.  相似文献   

10.
Diffusion experiments with HTO, 36Cl, Br, I, 22Na+, 85Sr2+ and 134Cs+ at trace concentrations in a single sample of Opalinus Clay are modeled with PHREEQC’s multicomponent diffusion module. The model is used first in a classical approach to derive accessible porosities, geometrical factors (the ratio of pore tortuosity and constrictivity) and sorption behavior of the individual tracers assuming that the clay is homogeneous. The accessible porosity for neutral species and cations is obtained from HTO, the anion exclusion volume from 36Cl and Br, and the cation exchange capacity from 22Na+. The homogeneous model works well for tritium, the anions and 22Na+. However, the 85Sr2+ and 134Cs+ experiments show an early arrival of the tracer and a front-form that suggest a dual porosity structure. A model with 10% dead-end pores, containing 19% of the total exchange capacity, can satisfactorily calculate all the experimental data. The Cs+ diffusion model builds on a 3-site exchange model, constructed from batch sorption data. The excellent agreement of modeled and measured data contradicts earlier reports that the exchange capacity for Cs+ would be smaller in diffusion than in batch experiments.The geometrical factors for the anions are 1.5 times larger than for HTO, and for the cations 2-4 times smaller than for HTO. The different behavior is explained by a tripartite division of the porespace in free porewater, diffuse double layer (DDL) water, and interlayer water in montmorillonite. Differences between estimated and observed geometrical factors for cations are attributed to increased ion-pairing of the divalent cations in DDL water as a result of the low relative dielectric permittivity. Interlayer and/or surface diffusion contributes significantly to the diffusive flux of Cs+ but is negligible for the other solutes. The geometrical factors for anions are higher than estimated, because pore constrictions with overlapping double layers force the anions to take longer routes than HTO and the cations. Small differences among the anions can also be attributed to different ion-pairing in DDL water.  相似文献   

11.
The effects of deformation on radiogenic argon (40Ar) retentivity in mica are described from high pressure experiments performed on rock samples of peraluminous granite containing euhedral muscovite and biotite. Cylindrical cores, ∼15 mm in length and 6.25 mm in diameter, were drilled from granite collected from the South Armorican Massif in northwestern France, loaded into gold capsules, and weld-sealed in the presence of excess water. The samples were deformed at a pressure of 10 kb and a temperature of 600 °C over a period 29 of hours within a solid medium assembly in a Griggs-type triaxial hydraulic deformation apparatus. Overall shortening in the experiments was approximately 10%. Transmitted light and secondary and backscattered electron imaging of the deformed granite samples reveals evidence of induced defects and for significant physical grain size reduction by kinking, cracking, and grain segmentation of the micas.Infrared (IR) laser (CO2) heating of individual 1.5-2.5 mm diameter grains of muscovite and biotite separated from the undeformed granite yield well-defined 40Ar/39Ar plateau ages of 311 ± 2 Ma (2σ). Identical experiments on single grains separated from the experimentally deformed granite yield results indicating 40Ar loss of 0-35% in muscovite and 2-3% 40Ar loss in biotite. Intragrain in situ ultraviolet (UV) laser ablation 40Ar/39Ar ages (±4-10%, 1σ) of deformed muscovites range from 309 ± 13 to 264 ± 7 Ma, consistent with 0-16% 40Ar loss relative to the undeformed muscovite. The in situ UV laser ablation 40Ar/39Ar ages of deformed biotite vary from 301 to 217 Ma, consistent with up to 32% 40Ar loss. No spatial correlation is observed between in situ40Ar/39Ar age and position within individual grains. Using available argon diffusion data for muscovite the observed 40Ar loss in the experimentally treated muscovite can be utilized to predict average 40Ar diffusion dimensions. Maximum 40Ar/39Ar ages obtained by UV laser ablation overlap those of the undeformed muscovite, indicating argon loss of <1% and an average effective grain radius for 40Ar diffusion ?700 μm. The UV laser ablation and IR laser incremental 40Ar/39Ar ages indicating 40Ar loss of 16% and 35%, respectively, are consistent with an average diffusion radius ?100 μm. These results support a hypothesis of grain-scale 40Ar diffusion distances in undeformed mica and a heterogeneous mechanical reduction in the intragrain effective diffusion length scale for 40Ar in deformed mica. Reduction in the effective diffusion length scale in naturally deformed samples occurs most probably through production of mesoscopic and submicroscopic defects such as, e.g., stacking faults. A network of interconnected defects, continuously forming and annealing during dynamic deformation likely plays an important role in controlling both 40Ar retention and intragrain distribution in deformed mica. Intragrain 40Ar/39Ar ages, when combined with estimates of diffusion kinetics and distances, may provide a means of establishing thermochronological histories from individual micas.  相似文献   

12.
Brines in Cambrian sandstones and Ordovician dolostones of the St-Lawrence Lowlands at Bécancour, Québec, Canada were sampled for analysis of all stable noble gases in order to trace their origin and migration path, in addition to quantifying their residence time. Major ion chemistry indicates that the brines are of Na-Ca-Cl type, possibly derived from halite dissolution. 87Sr/86Sr ratios and Ca excess indicate prolonged interactions with silicate rocks of the Proterozoic Grenville basement or the Cambrian Potsdam sandstone. The brines constrain a 2-3% contribution of mantle 3He and large amounts of nucleogenic 21Ne and 38Ar and radiogenic 4He and 40Ar. 4He/40Ar and 21Ne/40Ar ratios, corrected for mass fractionation during incomplete brine degassing, are identical to their production ratios in rocks. The source of salinity (halite dissolution), plus the occurrence of large amounts of 40Ar in brines constrain the residence time of Bécancour brines as being older than the Cretaceous. Evaporites in the St-Lawrence Lowlands likely existed only during Devonian-Silurian time. Brines might result from infiltration of Devonian water leaching halite, penetrating into or below the deeper Cambrian-Ordovician aquifers. During the Devonian, the basin reached temperatures higher than 250 °C, allowing for thermal maturation of local gas-prone source rocks (Utica shales) and possibly facilitating the release of radiogenic 40Ar into the brines. The last thermal event that could have facilitated the liberation of 40Ar into fluids and contributed to mantle 3He is the Cretaceous Monteregian Hills magmatic episode. For residence times younger than the Cretaceous, it is difficult to find an appropriate source of salinity and of nucleogenic/radiogenic gases to the Bécancour brines.  相似文献   

13.
《Applied Geochemistry》2003,18(10):1653-1662
The through- and out-diffusion of HTO, 36Cl and 125I in Opalinus Clay, an argillaceous rock from the northern part of Switzerland, was studied under different confining pressures between 4 and 15 MPa. The direction of diffusion and the confining pressure were perpendicular to the bedding. Confining pressure had only a small effect on diffusion. An increase in pressure from 4 to 15 MPa resulted in a decrease of the effective diffusion coefficient of ∼20%. Diffusion accessible porosities were not measurably affected. The values of the effective diffusion coefficients, De, ranged between (5.6±0.4)×10−12 and (6.7±0.4)×10−12 m2 s−1 for HTO, (7.1±0.5)×10−13 and (9.1±0.6)×10−13 m2 s−1 for 36Cl and (4.5±0.3)×10−13 and (6.6±0.4)×10−13 m2 s−1 for 125I. The rock capacity factors, α, measured were circa 0.14 for HTO, 0.040 for 36Cl and 0.080 for 125I. Because of anion exclusion effects, anions diffuse slower and exhibit smaller diffusion accessible porosities than the uncharged HTO. Unlike 36Cl, 125I sorbs weakly on Opalinus Clay resulting in a larger rock capacity factor. The sorption coefficient, Kd, for 125I is of the order of 1–2×10−5 m3 kg−1. The effective diffusion coefficient for HTO is in good agreement with values measured in other sedimentary rocks and can be related to the porosity using Archie's Law with exponent m=2.5.  相似文献   

14.
As one of the most arid regions in the world, the study area, Zhangye Basin is located in the middle reaches of the Heihe River, northwest China. Besides aridity, rapid social and economic development also stimulates greater demand for water, which is gradually fulfilled by groundwater extraction. In this study, the conventional hydrochemical techniques and statistical analyses were applied to examine the major ions chemistry and hydrochemical processes of groundwater in the Zhangye Basin. The results of chemical analysis indicate that no one pair of cations and anions proportions is more than 50% in the groundwater samples of the study area. High-positive correlations were obtained among the following ions: HCO3 ?–Mg2+, SO4 2?–Mg2+, SO4 2?–Na+ and Cl?–Na+. TDS depends mainly on the concentration of major ions such as HCO3 ?, SO4 2?, Cl?, Mg2+ and Na+. The hydrochemical types in the area can be divided into two major groups: the first group includes Mg2+–Na+–HCO3 ?, Mg2+–Na+–Ca2+–HCO3 ?–SO4 2? and Mg2+–Ca2+–Na+–SO4 2?–HCO3 ? types. The second group comprises Mg2+–Ca2+–SO4 2? type, Mg2+–Ca2+–SO4 2?–Cl? type and Mg2+–Na+–SO4 2?–Cl? type. The ionic ratio plot and saturation index calculation suggests that the silicate weathering, to some extent, and evaporation are dominant factors that determine the major ionic composition in the study area.  相似文献   

15.
The stable isotope nitrogen-15 (15N) is a robust indicator of nitrogen (N) source, and the joint use of δ15N and δ18O–NO3 ? values can provide more useful information about nitrate source discrimination and N cycle process. The δ15N and δ18O–NO3 ? values, as well as major ion tracers, from Taihu Lake in east China were investigated to identify the primary nitrate sources and assess nitrate biogeochemical process in the present study. The results show that the nitrate concentration in West Taihu Lake (WTL) was generally higher than those in East Taihu Lake (ETL) and its upstream inflow rivers. The NO3 ?/Cl? value combined with mapping of δ15N–NO3 ? and NO3 ? concentration suggest that the mixing process should play a major effect in WTL, and denitrification was the dominant N transformation process in WTL. A linear relationship of close to ~1: 2 was observed between δ15N–NO3 ? and δ18O–NO3 ? values in WTL, confirming the occurrence of denitrification in WTL. The δ15N–NO3 ? data imply that sewage and manure were the principal nitrate sources in WTL and its feeder rivers, while the nitrate in ETL might derive from soil organic nitrogen and atmospheric deposition. The δ18O–NO3 ? data indicate most of nitrate from microbial nitrification of organic nitrogen matter possibly make a significant contribution to the lake.  相似文献   

16.
Factors controlling the groundwater transport of U, Th, Ra, and Rn   总被引:1,自引:0,他引:1  
A model for the groundwater transport of naturally occurring U, Th, Ra, and Rn nuclides in the238U and232Th decay series is discussed. The model developed here takes into account transport by advection and the physico-chemical processes of weathering, decay, α-recoil, and sorption at the water-rock interface. It describes the evolution along a flowline of the activities of the238U and232Th decay series nuclides in groundwater. Simple sets of relationships governing the activities of the various species in solution are derived, and these can be used both to calculate effective retardation factors and to interpret groundwater data. For the activities of each nuclide, a general solution to the transport equation has been obtained, which shows that the activities reach a constant value after a distance ϰi, characteristic of each nuclide. Where ϰi is much longer than the aquifer length, (for238U,234U, and232Th), the activities grow linearly with distance. Where gKi is short compared to the aquifer length, (for234Th,230Th,228Th,228Ra, and224Ra), the activities rapidly reach a constant or quasi-constant activity value. For226Ra and222Rn, the limiting activity is reached after 1 km. High δ234U values (proportional to the ratioɛ234Th/W238U) can be obtained through high recoil fraction and/or low weathering rates. The activity ratios230Th/232Th,228Ra/226Ra and224Ra/226Ra have been considered in the cases where either weathering or recoil is the predominant process of input from the mineral grain. Typical values for weathering rates and recoil fractions for a sandy aquifer indicate that recoil is the dominant process for Th isotopic ratios in the water. Measured data for Ra isotope activity ratios indicate that recoil is the process generally controlling the Ra isotopic composition in water. Higher isotopic ratios can be explained by different desorption kinetics of Ra. However, the model does not provide an explanation for228Ra/226Ra and224Ra/226Ra activity ratios less than unity. From the model, the highest222Rn emanation equals 2ɛ. This is in agreement with the hypothesis that222Rn activity can be used as a first approximation for input by recoil (Krishnaswamiet al 1982). However, high222Rn emanation cannot be explained by production from the surface layer as formulated in the model. Other possibilities involve models including surface precipitation, where the surface layer is not in steady-state.  相似文献   

17.
Eighteen picrites (MgO > 13 wt.%) and three related basalts from six Hawaiian volcanoes were analyzed for 187Os/188Os and 186Os/188Os. Variations in these ratios reflect long-term Re/Os and Pt/Os differences in the mantle source regions of these volcanoes. 187Os/188Os ratios vary from ∼0.129 to 0.136, consistent with the range defined by previous studies of Hawaiian picrites and basalts. Samples with lower 187Os/188Os are mainly from Kea trend volcanoes (Mauna Kea and Kilauea), and the more radiogenic samples are mainly from Loa trend volcanoes (Mauna Loa, Hualalai, Koolau and Loihi). As previously suggested, differences in 187Os/188Os between volcanic centers are most consistent with the presence of variable proportions of recycled materials and/or pyroxenitic components in the Hawaiian source.186Os/188Os ratios vary from 0.1198332 ± 26 to 0.1198480 ± 20, with some samples having ratios that are significantly higher than current estimates for the ambient upper mantle. Although the range of 186Os/188Os for the Hawaiian suite is consistent with that reported by previous studies, the new data reveal significant heterogeneities among picrites from individual volcanoes. The linear correlation between 187Os/188Os and 186Os/188Os reported by a previous study is no longer apparent with the larger dataset. The postulated recycled materials and pyroxenites responsible for the dominant variations in 187Os/188Os are likely not responsible for the variations in 186Os/188Os. Such materials are typically characterized by both insufficiently high Os concentrations and Pt/Os to account for the 186Os/188Os heterogeneities. The lack of correspondence between 186Os/188Os variations and the Kea and Loa trends supports this conclusion.The primary cause of 186Os/188Os variations are evaluated within the framework of two mixing scenarios: (1) metasomatic transport of Pt and/or 186Os-rich Os into some portions of the Hawaiian source, and (2) interaction between an isotopically complex plume source with a common, Os- and 186Os-enriched reservoir (COs). Both scenarios require large scale, selective transport of Pt, Re and/or Os. Current estimates of HSE concentrations in the mantle source of these rocks, however, provide little evidence for either process, so the dominant cause of the 186Os/188Os variations remains uncertain.  相似文献   

18.
In situ measurements of 60Fe-60Ni and 53Mn-53Cr isotopic systems with an ion microprobe have been carried out for sulfide assemblages from unequilibrated enstatite chondrites (UECs). Evidence for the initial presence of 60Fe has been observed in nine sulfide inclusions from three UECs: ALHA77295, MAC88136, and Qingzhen. The inferred initial (60Fe/56Fe) [(60Fe/56Fe)0] ratios show a large variation range, from ∼2 × 10−7 to ∼2 × 10−6. The sulfide inclusions with high Fe/Ni ratios yield (60Fe/56Fe)0 ratios of ∼(2-7) × 10−7, similar to most of the (60Fe/56Fe)0 values of troilite and pyroxene observed in unequilibrated ordinary chondrites (UOCs). Inclusions with high inferred (60Fe/56Fe)0 ratios (∼1-2 × 10−6) have low Fe/Ni ratios and the magnitude of the 60Ni excesses is similar in two MAC88136 assemblages in spite of a difference of a factor of two in their Fe/Ni ratios. The inferred high (60Fe/56Fe)0 ratios were probably the result of Fe-Ni re-distribution in the sulfides during later alteration processes.The 53Mn-53Cr system was measured in five of the sulfide assemblages that were examined for their 60Fe-60Ni systematics. The 53Mn-53Cr isochrons yielded variable initial (53Mn/55Mn) [(53Mn/55Mn)0] ratios from ∼(2-7) × 10−7. There is no obvious correlation between the (60Fe/56Fe)0 and (53Mn/55Mn)0 ratios. The variable 53Mn-53Cr isochrons probably also indicate later disturbance to the isotopic systems in these sulfides. Even though no chronological information can be extracted from the 60Fe-60Ni and 53Mn-53Cr systems in these UEC sulfides, our results indicate that 60Fe was present in the enstatite chondrite formation region of the early Solar System.  相似文献   

19.
The 176Lu–176Hf and 147Sm–143Nd decay systems are routinely used to determine garnet (Grt)–whole-rock (WR) ages; however, the 176Lu–176Hf age of garnet is typically older than the 147Sm–143Nd age determined from the same aliquots. Here we present experimental data for Lu3+ and Hf4+ diffusion in garnet as functions of temperature, pressure and oxygen fugacity and show that the diffusivity of Hf4+ in almandine/spessartine garnet is significantly slower than that of Lu3+. The diffusive closure temperature (T C) of Hf4+ is significantly higher than that of Nd3+, and although this property is partly responsible for the observed 176Lu–176Hf and 147Sm–143Nd Grt–WR age discrepancies, the difference between the T C-s of Lu3+ and Hf4+ could lead to apparent Grt–WR 176Lu–176Hf ages that are skewed from the age of Hf4+ closure in garnet. In addition, the slow diffusivity of Hf4+ indicates that the bulk of metamorphic garnets retain a substantial fraction of prograde radiogenic 176Hf throughout peak metamorphic conditions, a phenomenon that further complicates the interpretation of 176Lu–176Hf garnet ages and invalidates the use of analytical T C expressions. We argue that the diffusion of trivalent rare earth elements in garnet becomes much faster when their concentration level falls below a few hundred ppm, as in the experiments of Tirone et al. (Geochim Cosmochim Acta 69: 2385–2398, 2005), and further argue that this low-concentration mechanism is appropriate for modeling the susceptibility of 147Sm–143Nd garnet ages to diffusive resetting.  相似文献   

20.
Noble gas analyses of the Ni-Fe of 9 L, 5 H and 2 LL chondrites quantitatively support previous suggestions of radiogenic 4He recoil and 3He deficits. Furthermore, noble gases in the Ni-Fe show evidence for in situ produced radiogenic 4He and in some cases for recoil loss of 38Ar and gain of 21Ne.The ratio of spallogenic 21Ne and 38Ar in the metal phase is found to correlate strongly with 3He/21Ne and 22Ne/21Ne in bulk samples of these chondrites. This is proof of the dependence of these ratios on the irradiation hardness experienced by the meteoroid in space. ‘Hardness indices’ n = 1.9–2.2 are found, indicating that on the average the stone meteoroids from which the samples came were smaller in mass than iron meteoroids. The spallogenic 21Ne/38Ar ratio in metallic Ni-Fe can be used with the semi-empirical production model deduced from the Grant iron meteorite to calibrate spallogenic 3He/21Ne and 4Ne/21Ne in bulk samples of L, LL and H chondrites for meteoroid size and sample location allowing the estimation of minimal meteoroid masses. 3He and 21Ne production rates calculated from previously determined 36Ar/38Ar exposure ages for four L chondrites indicate that they are probably not single-valued functions of the 3He/21Ne ratio. The ratio of 3He in bulk samples to 38Ar in metal samples of the same meteorite is constant (= 20 ± 3) whereas the ratio of 21Ne in the bulk to 38Ar in the metal varies by as much as a factor of two in correlation with 3He/21Ne.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号