首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Inverse Problem in Ground Water: Model Development   总被引:1,自引:0,他引:1  
  相似文献   

4.
5.
6.
7.
8.
The term capture, related to the source of water derived from wells, has been used in two distinct yet related contexts by the hydrologic community. The first is a water‐budget context, in which capture refers to decreases in the rates of groundwater outflow and (or) increases in the rates of recharge along head‐dependent boundaries of an aquifer in response to pumping. The second is a transport context, in which capture zone refers to the specific flowpaths that define the three‐dimensional, volumetric portion of a groundwater flow field that discharges to a well. A closely related issue that has become associated with the source of water to wells is streamflow depletion, which refers to the reduction in streamflow caused by pumping, and is a type of capture. Rates of capture and streamflow depletion are calculated by use of water‐budget analyses, most often with groundwater‐flow models. Transport models, particularly particle‐tracking methods, are used to determine capture zones to wells. In general, however, transport methods are not useful for quantifying actual or potential streamflow depletion or other types of capture along aquifer boundaries. To clarify the sometimes subtle differences among these terms, we describe the processes and relations among capture, capture zones, and streamflow depletion, and provide proposed terminology to distinguish among them.  相似文献   

9.
10.
High-resolution, spatially distributed ground water flow models can prove unsuitable for the rapid, interactive analysis that is increasingly demanded to support a participatory decision environment. To address this shortcoming, we extend the idea of multiple cell (Bear 1979) and compartmental (Campana and Simpson 1984) ground water models developed within the context of spatial system dynamics (Ahmad and Simonovic 2004) for rapid scenario analysis. We term this approach compartmental–spatial system dynamics (CSSD). The goal is to balance spatial aggregation necessary to achieve a real-time integrative and interactive decision environment while maintaining sufficient model complexity to yield a meaningful representation of the regional ground water system. As a test case, a 51-compartment CSSD model was built and calibrated from a 100,000+ cell MODFLOW (McDonald and Harbaugh 1988) model of the Albuquerque Basin in central New Mexico (McAda and Barroll 2002). Seventy-seven percent of historical drawdowns predicted by the MODFLOW model were within 1 m of the corresponding CSSD estimates, and in 80% of the historical model run years the CSSD model estimates of river leakage, reservoir leakage, ground water flow to agricultural drains, and riparian evapotranspiration were within 30% of the corresponding estimates from McAda and Barroll (2002), with improved model agreement during the scenario period. Comparisons of model results demonstrate both advantages and limitations of the CCSD model approach.  相似文献   

11.
12.
13.
A standpipe system was developed for testing the reliability of ground water samplers. The unit consists of a stainless steel pipe 5 inches (13 centimeters) in diameter and 100 feet (30.5 meters) in height. It has 14 sampling ports from which control samples can be withdrawn at the same time and position as the samples are collected by a sampler lowered to that position. Test solutions were made in two mixing tanks, totaling 260 gallons (980 liters), by diluting the concentrate of five volatile chlorohydrocarbons in water at two levels of concentration: 10-to-30 and 100-to-200 parts per billion (micrograms per liter).
A gas chromatograph interfaced with a purge-and-trap system was used to perform the analyses. Comparisons of the control samples with the sampler-collected samples have indicated that the three non-pumping samplers had recoveries in the range of 92.4 to 103.5 percent and the three pumping samplers had recoveries ranging from 97.7 to 101.5 percent.  相似文献   

14.
15.
16.
17.
18.
Non-point source pollution of ground water systems has become a national concern in recent years. Researchers and regulatory agencies are investigating the source and processes of the contamination. Agricultural best management practices (BMPs) traditionally developed to reduce non-point source pollution of surface water resources are being investigated for their impact on ground water quality. This study used the CREAMS model to simulate the long-term effects of seven different BMPs on nitrate nitrogen (NO3-N) loadings to a shallow, unconfined ground water system. Two representative watersheds, 5.8 and 8.9 hectares (14.3 and 22 acres) in area, in the Coastal Plain physiographic region of Maryland were selected for study. Soils in these watersheds belong to the Matapeake silt loam series and have moderate infiltration capacity. Results from this study indicated that BMPs used in conjunction with winter cover (barley) reduced NO3-N leaching to the ground water system. It was also found that turfgrass reduced surface losses of water and nitrogen, but increased leaching losses of water and NO3-N significantly. All of the BMPs simulated in this study resulted in leachate NO3-N concentrations exceeding 10 ppm, the U.S. EPA health standard for public drinking water, indicating a need for alternate practices for reducing nitrate leaching.  相似文献   

19.
Borehole television has been successfully utilized to gather in situ information on boreholes and wells in several ground water monitoring programs. Borehole television surveys are proposed as a viable alternative to other downhole instruments in the subsurface investigation stages of a ground water monitoring program.
The borehole television camera used by the authors was originally developed for use in the examination of nuclear reactor cores; the camera has since been modified for use in borehole investigations. The lens attachments are capable of looking sideward or downward and include built-in lighting assemblies. Use of the camera, lenses and various support equipment are discussed.
The in situ characterization of fractures that can provide pathways for contaminant migration poses a significant challenge. Borehole television inspection can provide information on the frequency, size and orientation of these fractures. Vertical correlations of rock cores in areas where voids are present (i.e. deep mining or karst topography) can also be simplified by this technique. In addition, borehole television can also be used to check monitoring well integrity. Casing inspections are especially useful where construction details are not known. Well screens may be inspected in place to determine if rusting has enlarged the screen openings or if screens have been damaged during emplacement or well development operations (i.e. surge block, air jetting, etc.). This information may prove to be very valuable in the decision to decommission a well. Examples of these successful applications in ground water monitoring programs at several Superfund hazardous waste sites are presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号