首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 969 毫秒
1.
Coaly source rocks are sufficiently different from marine and lacustrine source rocks in their organic matter characteristics to warrant separate guidelines for their assessment using Rock-Eval pyrolysis. The rank threshold for oil generation is indicated by the increase in BI (S1/TOC) at Rank(Sr)9–10 (Tmax 420–430 °C, Ro 0.55–0.6%), and the threshold for oil expulsion is indicated by the peak in QI ([S1+S2]/TOC) at Rank(Sr)11–12.5 (Tmax 430–440 °C, Ro 0.65–0.85%). The pronounced rank-related increase in HI (S2/TOC) prior to oil expulsion renders the use of immature samples inappropriate for source rock characterisation. A more realistic indication of the petroleum generative potential and oil expulsion efficiency of coaly source rocks can be gained from samples near the onset of expulsion. Alternatively, effective HI′ values (i.e. HIs near the onset of expulsion) can be estimated by translating the measured HIs of immature samples along the maturation pathway defined by the New Zealand (or other defined) Coal Band. Coaly source rocks comprise a continuum of coaly lithologies, including coals, shaly coals and coaly mudstones. Determination of the total genetic potential of coaly source rock sequences is best made using lithology-based samples near the onset of expulsion.  相似文献   

2.
Numerical modelling, incorporating coupling between surface processes and induced flow in the lower continental crust, is used to address the Quaternary evolution of the Gulf of Corinth region in central Greece. The post-Early Pleistocene marine depocentre beneath this Gulf overlies the northern margin of an older (Early Pleistocene and earlier) lacustrine basin, the Proto Gulf of Corinth Basin or PGCB. In the late Early Pleistocene, relief in this region was minimal but, subsequently, dramatic relief has developed, involving the creation of  900 m of bathymetry within the Gulf and the uplift by many hundreds of metres of the part of the PGCB, south of the modern Gulf, which forms the Gulf's main sediment supply. It is assumed that, as a result of climate change around 0.9 Ma, erosion of this sediment source region and re-deposition of this material within the Gulf began, both processes occurring at spatial average rates of  0.2 mm a− 1. Modelling of the resulting isostatic response indicates that the local effective viscosity of the lower crust is  4 × 1019 Pa s, indicating a Moho temperature of  560 °C. It predicts that the  10 mm a− 1 of extension across this  70 km wide model region, at an extensional strain rate of  0.15 Ma− 1, is partitioned with  3 mm a− 1 across the sediment source,  2 mm a− 1 across the depocentre, and  5 mm a− 1 across the ‘hinge zone’ in between, the latter value being an estimate of the extension rate on normal faults forming the major topographic escarpment at the southern margin of the Gulf. This modelling confirms the view, suggested previously, that coupling between this depocentre and sediment source by lower-crustal flow can explain the dramatic development in local relief since the late Early Pleistocene. The effective viscosity of the lower crust in this region is not particularly low; the strong coupling interpreted between the sediment source and depocentre results instead from their close proximity. In detail, the effective viscosity of the lower crust is expected to decrease northward across this model region, due to the northward increase in exposure of the base of the continental lithosphere to the asthenosphere; in the south the two are separated by the subducting Hellenic slab. The isostatic consequences of such a lateral variation in viscosity provide a natural explanation for why, since  0.9 Ma, the modern Gulf has developed asymmetrically over the northern part of the PGCB, leaving the rest of the PGCB to act as its sediment source.  相似文献   

3.
High velocity (1 m/s) friction experiments on bituminous coal gouge display several earthquake-related phenomena, including devolatilization by frictional heating, gas pressurization, and slip weakening. Stage I is characterized by sample shortening and reduction in the coefficient of friction (μ) from  1 to 0.6. Stage II is characterized by high frequency ( 5 Hz) oscillations in stress and strain records and by gas emissions. Stage III is marked by rapid weakening (μ  0.1 to 0.35) and sample shortening, together with continued gas emissions. Stage IV produces stable stress records and continued weakness (μ  0.2), but without gas emission. Stage I shortening is due to compaction of the gouge and the weakening is attributed to mechanical or thermal effects. Stage II behavior is interpreted as due to coal gasification and fluctuations in fluid pressure, resulting in high frequency stick-slip type behavior. Dramatic reduction in shear stress in stage III is attributed to gas pressurization by pore collapse and corresponds to a frictional instability, analogous to nucleation of an earthquake. Microstructural observations indicate the deformation was brittle during stages I and II but ductile during stages III and IV. Time dependent finite element frictional heat models indicate the center of the samples became hot ( 900 °C) during stage II, whereas the edge of samples remained relatively cold (< 300 °C). Vitrinite reflectance of coal samples shows an increase in reflectance from  0.5 to  0.8% over the displacement interval 20–40 m (20–40 s), indicating that the reflectance responds to frictional heating on a short time scale. The energy expended per unit area in these low stress, large displacement experiments is similar to that of higher stress ( 50 MPa), short displacement ( 1 m) earthquakes ( 107 J/m2).  相似文献   

4.
The Jurassic Shah-Kuh granite pluton was emplaced in the northeastern part of the Lut Block (Eastern Iran) while this block was a part of the active margin under which the Tethys ocean, that separated Arabia from Central Iran, was subducting. Since this time, the Lut Block has rotated and migrated northward up to its present position. This structural study of the Shah-Kuh aims at strengthening the evidence of its original geodynamical location. Thanks to a systematic collection of oriented samples in the field, well-defined fabric and microstructural patterns were deduced from magnetic fabric measurements and optical microscopy observations. The overall magnetic fabric of the pluton yields vertical, north–south striking foliations and shallow lineations plunging to the north. The corresponding microstructures attest to their formation in the magmatic stage, i.e. during emplacement. Subsequent deformation, characterized by (sub)mylonitic microstructures, has modified the original fabric into a northwest and locally a west–northwest trend inside a two kilometre-wide corridor. This corridor reflects the trace of a sinistral shear zone that offsets the previous north–south magmatic pattern of the pluton. The latter magmatic pattern is proposed to result from the shear component of strain that was parallel to the ancient active margin during pluton emplacement, as a result of strain partitioning, a situation frequently documented at convergent margins. Sinistral shear along an  E–W directed south-facing active margin, assuming a northeastward slip vector for the Tethys ocean during the Jurassic, and accepting a  150° counterclockwise rotation of the Lut Block after emplacement of the Shah-Kuh pluton, best explains both the magmatic and the solid-state lineation patterns.  相似文献   

5.
The Yidun Arc is a Triassic volcanic arc located between the Songpan Garzê Fold Belt and the Qiangtang Block, southwest China. To constrain the age of a number of the major granitic plutons from the Yidun Arc, laser ablation ICP-MS U/Pb analysis of zircon was conducted. Hafnium isotope data was also acquired through laser-ablation multicollector ICPMS analysis of zircon, with the aim of gaining insight into the age and nature of the source region of the plutons. Three age groups have been identified from seven granite samples: Early–Middle Triassic ( 245 to 229 Ma), Late Triassic ( 219 to 216 Ma) and Cretaceous ( 105 to 95 Ma). Hafnium analysis shows the Triassic granites to have negative and variable εHf values and Mesoproterozoic ( 1.6 Ga) depleted-mantle model ages, which is interpreted to reflect derivation from an isotopically heterogeneous, largely crustal source. The Cretaceous granite shows higher and less variable εHf values and slightly younger model ages ( 1.3 Ga), and is interpreted to be derived from melting of a more homogeneous crustal source. A depleted-mantle model age of  1.5 Ga is calculated from the pooled Triassic and Cretaceous samples. The source region for these magmas may be tentatively correlated with Mesoproterozoic material of the Yangtze Craton, which has been suggested to underlie the Yidun Arc; however, further work is necessary to demonstrate this suggestion.  相似文献   

6.
In order to better understand the long-term speciation and fractionation of Zn in soils, we investigated three soils naturally enriched in Zn (237–864 mg/kg Zn) from the weathering of Zn-rich limestones (40–207 mg/kg Zn) using extended X-ray absorption fine structure (EXAFS) spectroscopy and sequential extractions. The analysis of bulk EXAFS spectra by linear combination fitting (LCF) indicated that Zn in the oolitic limestones was mainly present as Zn-containing calcite (at site Dornach), Zn-containing goethite (Gurnigel) and Zn-containing goethite and sphalerite (Liestal). Correspondingly, extraction of the powdered rocks with 1 M NH4-acetate at pH 6.0 mobilized only minor fractions of Zn from the Gurnigel and Liestal limestones (<30%), but most Zn from the Dornach rock (81%). In the Dornach soil, part of the Zn released from the dissolving limestone was subsequently incorporated into pedogenic hydroxy-interlayered vermiculite (Zn-HIV, 30%) and Zn-containing kaolinite (30%) and adsorbed or complexed by soil organic and inorganic components (40%). The Gurnigel and Liestal soils contained substantial amounts of Zn-containing goethite (50%) stemming from the parent rock, smaller amounts (20%) of Zn-containing kaolinite (and possibly Zn-HIV), as well as adsorbed or complexed Zn-species (30%). In the soil from Liestal, sphalerite was only found in trace amounts, indicating its dissolution during soil formation. In sequential extractions, large percentages of Zn (55–85%) were extracted in recalcitrant extraction steps, confirming that Zn-HIV, Zn-containing kaolinite and Zn-containing goethite are highly resistant to weathering. These Zn-bearing phases thus represent long-term hosts for Zn in soils over thousands of years. The capability of these phases to immobilize Zn in heavily contaminated soils may however be limited by their uptake capacity (especially HIV and kaolinite) or their abundance in soil.  相似文献   

7.
Integration of on-land and offshore geomorphological and structural investigations coupled to extensive radiometric dating of co-seismically uplifted Holocene beaches allows characterization of the geometry, kinematics and seismotectonics of the Scilla Fault, which borders the eastern side of the Messina Strait in Calabria, Southern Italy. This region has been struck by destructive historical earthquakes, but knowledge of geologically-based source parameters for active faults is relatively poor, particularly for those running mostly offshore, as the Scilla Fault does. The  30 km-long normal fault may be divided into three segments of  10 km individual length, with the central and southern segments split in at least two strands. The central and northern segments are submerged, and in this area marine geophysical data indicate a youthful morphology and locally evidence for active faulting. The on-land strand of the western segment displaces marine terraces of the last interglacial (124 to 83 ka), but seismic reflection profiles suggest a full Quaternary activity. Structural data collected on bedrock faults exposed along the on-land segment provide evidence for normal slip and  NW-SE extension, which is consistent with focal mechanisms of large earthquakes and GPS velocity fields in the region. Detailed mapping of raised Holocene marine deposits exposed at the coastline straddling of the northern and central segments supplies evidence for two co-seismic displacements at  1.9 and  3.5 ka, and a possible previous event at  5 ka. Co-seismic displacements show a consistent site value and pattern of along-strike variation, suggestive of characteristic-type behaviour for the fault. The  1.5–2.0 m average co-seismic slips during these events document Me  6.9–7.0 earthquakes with  1.6–1.7 ka recurrence time. Because hanging-wall subsidence cannot be included into slip magnitude computation, these slips reflect footwall uplift, and represent minimum average estimates. The palaeoseismological record based on the palaeo-shorelines suggests that the last rupture on the Scilla Fault during the February 6, 1783 Mw = 5.9–6.3 earthquake was at the expected time but it may have not entirely released the loaded stress since the last great event at  1.9 ka. Comparison of the estimated co-seismic extension rate based on the Holocene shoreline record with available GPS velocities indicates that the Scilla Fault accounts for at least  15–20% of the contemporary geodetic extension across the Messina Strait.  相似文献   

8.
To investigate possible indicators of critical point behavior prior to rock failure, the statistical properties of pre-failure damage were analyzed based on acoustic emission events (AE) recorded during the catastrophic fracture of typical rock samples under differential compression. AEs were monitored using a high-speed 32-channel waveform recording system. Time-dependent statistics, including the energy release rate, b-value of the magnitude–frequency distribution, fractal dimension and spatial correlation length (SCL) of the AE hypocenters were calculated for each data set. Each parameter is a function of the time-to-failure and thus can be treated as an indicator of the critical point. It is clear that the pre-failure damage evolution prior to catastrophic failures in several common rock-types is generally characterized by: 1) accelerated energy release, 2) a decrease in fractal dimension and SCL with a subsequent precursory increase, and 3) a decrease in b-value from  1.5 to  0.5 for hard rocks, and from  1.1 to  0.8 for soft rocks such S–C cataclasite. However, each parameter also reveals more complicated temporal evolution due to either the heterogeneity of the rock mass or the micro-mechanics of shear fracturing. This confirms the potential importance of integrated analysis of two or more parameters for successfully predicting the critical point. The decreasing b-value and increasing energy release may prove meaningful for intermediate-term prediction, while the precursory increase in fractal dimension and SCL may facilitate short-term prediction.  相似文献   

9.
A laminated sequence (core BAP96-CP 24°38.12′N, 110°33.24′W; 390 m depth) from the Alfonso Basin in Bay of La Paz, southern Gulf of California, contains a record of paleoceanographic and paleoclimatic changes of the past 7900 yr. Radiolarian assemblages and magnetic susceptibility are used as proxies of oceanographic and climatic variability. The records provide a regional scenario of the middle and late Holocene, suggesting two major climatic regimes and several millennial-scale events. Conditions relatively warmer and drier than today occurred from 7700 to 2500 cal yr BP, promoting the intensification of evaporation processes and the prevalence of the Gulf of California water in the Basin. These conditions correlate with strong droughts in the middle Holocene of North America and with minimal incursion of tropical waters into the Gulf of California. Proxies indicate a warm scenario and the dominance of the Equatorial Surface Water in the Alfonso Basin from 2400 to 700 cal yr BP, suggesting the intensification of ENSO cycles. A climatic signal between 1038 and 963 cal yr BP may be correlated with global signal of the “Medieval Warm Period.” Several cooling events are recognized at 5730, 3360, 2700, 1280 and 820 cal yr BP and are associated with intensification of northwest winds leading to upwellings and enhanced productivity in the Basin.  相似文献   

10.
Deformation experiments have been carried out to investigate the effect of dynamic recrystallisation on crystallographic preferred orientation (CPO) development. Cylindrical samples of natural single crystals of quartz were axially deformed together with 1 vol.% of added water and 20 mg of Mn2O3 powder in a Griggs solid medium deformation apparatus in different crystallographic orientations with compression direction: (i) parallel to <c>, (ii) at 45° to <c> and 45° to <a> and (iii) parallel to <a>. The experiments were performed at a temperature of 800 °C, a confining pressure of 1.2 GPa, a strain rate of  10− 6 s− 1, to bulk finite strains of  14–36%. The deformed samples were analysed in detail using optical microscopy, electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Two different microstructural domains were distinguished in the deformed samples: (i) domains with undulatory extinction and deformation lamellae, and (ii) domains with new recrystallised grains. Within the domains of undulatory extinction, crystal-plastic deformation caused gradual rotations of the crystal lattice up to  30° away from the host orientation. New recrystallised grains show a strong CPO with c-axis maxima at  45° to the compression direction. This is the case in all experiments, irrespective of the initial crystallographic orientation. The results show that c-axes are not continuously rotated towards the new maxima. The new grains thus developed through a mechanism different from subgrain rotation recrystallisation. New grains have a subeuhedral shape and numerous microcavities, voids, fluid channels and fluid inclusions at their grain boundaries. No host control is recorded in misorientation axes across their large angle grain boundaries. New grains might have been created by nucleation from solution in the μm-scale voids and microfractures. The CPO most likely developed due to preferred growth of the freshly precipitated grains with orientations suitable for intracrystalline deformation at the imposed experimental conditions.  相似文献   

11.
SHRIMP U–Pb zircon age, geochemical and Sm–Nd isotopic data are reported for mid-Neoproterozoic volcanic rocks and mafic intrusions in northern Guangxi (Guibei) and western Hunan (Xiangxi) Provinces along the southern margin of the Yangtze Block. The mafic igneous rocks studied are generally synchronous, dated at  765 Ma. The least-contaminated dolerite samples from Xiangxi are characterized by high εNd(T) value of 3.3 to 5.3 and OIB-type geochemical features, indicating that they were derived from an OIB-like mantle source in a continental rift setting. The spilites and gabbros in Guibei show basaltic compositions transitional between the tholeiitic and calc-alkaline series. Despite depletion in Nb and Ta relative to La and Th, they have Zr/Sm = 27–35 and Ti/V = 30–40, affinitive to intraplate basalts. Their εNd(T) values are variable, ranging from − 1.2 to 3.2 for the spilites and from − 1.7 to 2.9 for the gabbros, suggesting that these spilites and gabbros crystallized from crustal-contaminated mafic magmas derived from a metasomatised subcontinental lithospheric mantle source. We conclude that the  765 Ma mafic magmatic rocks in Guibei and Xiangxi were formed in a single continental rift setting as part of the broadly concurrent  780–750 Ma rift magmatism over much of South China, which may be related to the plume activities during the breakup of Rodinia.  相似文献   

12.
The lack of paleoecological records from the montane Atlantic Rainforest of coastal Brazil, a hotspot of biological diversity, has been a major obstacle to our understanding of the vegetational changes since the last glacial cycle. We present carbon isotope and pollen records to assess the impact of the glaciation on the native vegetation of the Serra do Mar rainforest in São Paulo, Brazil. From ca. 28,000 to  22,000 14C yr BP, a subtropical forest with conifer trees is indicative of cool and humid conditions. In agreement carbon isotopic data on soil organic matter suggest the presence of C3 plants and perhaps C4 plants from  28,000 to  19,000 14C yr BP. The significant increase in the sedimentation rate and algal spores from  19,450 to  19,000 14C yr BP indicates increasing humidity, associated to an erosion process between  19,000 and  15,600 14C yr BP. From  15,600 14C yr BP to present there is a substantial increase in arboreal elements and herbs, indicating more humid and warmer climate. From  19,000 to  1000 14C yr BP, δ13C values indicated the predominance of C3 plants. These results are in agreement with studies in speleothems of caves, which suggest humid conditions during the last glacial maximum.  相似文献   

13.
The late Quaternary paleoclimate of eastern Beringia has primarily been studied by drawing qualitative inferences from vegetation shifts. To quantitatively reconstruct summer temperatures, we analyzed lake sediments for fossil chironomids, and additionally we analyzed the sediments for fossil pollen and organic carbon content. A comparison with the δ18O record from Greenland indicates that the general climatic development of the region throughout the last glaciation–Holocene transition differed from that of the North Atlantic region. Between  17 and 15 ka, mean July air temperature was on average 5°C colder than modern, albeit a period of near-modern temperature at  16.5 ka. Total pollen accumulation rates ranged between  180 and 1200 grains cm− 2 yr− 1. At  15 ka, approximately coeval with the Bølling interstadial, temperatures again reached modern values. At  14 ka, nearly 1000 yr after warming began, Betula pollen percentages increased substantially and mark the transition to shrub-dominated pollen contributors. Chironomid-based inferences suggest no evidence of the Younger Dryas stade and only subtle evidence of an early Holocene thermal maximum, as temperatures from  15 ka to the late Holocene were relatively stable. The most recognizable climatic oscillation of the Holocene occurred from  4.5 to 2 ka.  相似文献   

14.
The Middle Jurassic Mirdita Ophiolite in northern Albania is part of an ophiolite belt occurring between the Apulian and Pelagonian subcontinents in the Balkan Peninsula. The upper mantle and crustal units of the Mirdita Ophiolite show major changes in thickness, rock types, and chemical compositions from west to east as a result of its complex evolution in a suprasubduction zone (SSZ) environment. The  3–4-km-thick Western Mirdita Ophiolite (WMO) includes lherzolite–harzburgite, plagioclase–lherzolite, plagioclase–dunite in its upper mantle units and a plutonic complex composed of olivine gabbro, troctolite, ferrogabbro, and gabbro. These peridotites and gabbroic rocks are overlain directly by a  600-m-thick extrusive sequence containing basaltic pillow lavas and hyaloclastites. Sheeted dikes are rare in the WMO. The  12-km-thick Eastern Mirdita Ophiolite (EMO) includes tectonized harzburgite and dunite with extensive chromite deposits, as well as ultramafic cumulates including olivine clinopyroxenite, wehrlite, olivine websterite, and dunite forming a transitional Moho with the overlying lower crustal section. The plutonic rocks are made of pyroxenite, gabbronorite, gabbro, amphibole gabbro, diorite, quartz diorite, and plagiogranite. A well-developed sheeted dike complex has mutually intrusive relations with the underlying isotropic gabbros and plagiogranites and feeds into the overlying pillow lavas. Dike compositions change from older basalt to basaltic andesite, andesite, dacite, quartz diorite, to late-stage andesitic and boninitic dikes as constrained by crosscutting relations. The  1.1-km-thick extrusive sequence comprises basaltic and basaltic andesitic pillow lavas in the lower 700 m, and andesitic, dacitic and rhyodacitic massive sheet flows in the upper 400 m. Rare boninitic dikes and lavas occur as the youngest igneous products within the EMO. The basaltic and basaltic andesitic rocks of the WMO extrusive sequence display MORB affinities with Ti and Zr contents decreasing upsection (TiO2 = 3.5–0.5%, Zr = 300–50 ppm), while Nd(T) (+ 8 to + 6.5) varies little. These magmas were derived from partial melting of fertile MORB-type mantle. Fractional crystallization was important in the evolution of WMO magmas. The low Ti and HREE abundances and Cs and Ba enrichments in the uppermost basaltic andesites may indicate an increased subduction influence in the evolution of the late-stage WMO magmas. Basaltic andesites in the lower 700 m of the EMO volcanic sequence have lower TiO2 ( 0.5%) and Zr ( 50 ppm) contents but Nd(T) values (+ 7 to + 6.5) are similar to those of the WMO lavas. These rocks show variable enrichment in subduction-enriched incompatible elements (Cs, Ba, Th, U, LREE). The basaltic andesites through dacites and boninites within the upper 400 meters of EMO lavas show low TiO2 ( 0.8–0.3%) and Nd(T) (+ 6.5 to + 3.0). The mantle source of these rocks was variably enriched in Th by melts derived from subducted sediments as indicated by the large variations in Ba, K, and Pb contents. EMO boninitic dikes and lavas and some gabbroic intrusions with negative Nd (T) values (− 1.4 and − 4.0, respectively) suggest that these magmas were produced from partial melting of previously depleted, ultra-refractory mantle. The MORB to SSZ transition (from west to east and stratigraphically upwards in the Mirdita Ophiolite and the progression of the Nd(T) values from + 8.0 to − 4.0 towards the east resulted from an eastward shift in protoarc–forearc magmatism, keeping pace with slab rollback in this direction. The mantle flow above the retreating slab and in the arc-wedge corner played a major role in the evolution of the melting column, in which melt generation, aggregation/mixing and differentiation occurred at all levels of the sub-arc/forearc mantle. The SSZ Mirdita Ophiolite evolved during the intra-oceanic collapse and closure of the Pindos marginal basin, which had a protracted tectonic history involving seafloor spreading, protoarc rifting, and trench-continent collision.  相似文献   

15.
To investigate the potential for the geologic storage of CO2 in saline sedimentary aquifers, 1600 ton of CO2 were injected at 1500 m depth into a 24-m sandstone section of the Frio Formation — a regional reservoir in the US Gulf Coast. Fluid samples obtained from the injection and observation wells before, during and after CO2 injection show a Na–Ca–Cl type brine with 93,000 mg/L TDS and near saturation of CH4 at reservoir conditions. As injected CO2 gas reached the observation well, results showed sharp drops in pH (6.5 to 5.7), pronounced increases in alkalinity (100 to 3000 mg/L as HCO3) and Fe (30 to 1100 mg/L), and significant shifts in the isotopic compositions of H2O and DIC. Geochemical modeling indicates that brine pH would have dropped lower, but for buffering by dissolution of calcite and Fe oxyhydroxides. Post-injection results show the brine gradually returning to its pre-injection composition.  相似文献   

16.
Changes in oil composition in the course of the development depend on numerous factors including both technogenic and natural ones. Physicochemical compositional analysis of 2456 oil samples collected in the Romashkino field in 1982–2000 from two productive strata (Devonian and Carboniferous reservoirs) has indicated statistically significant variations in the i-butane to n-butane content ratio (i-b / n-b). This ratio is characterized not only by a trend of steady growth but also by a significant variation with a period of 4.5 years. The i-b / n-b ratio variations are well correlated (R2 = 0.61) between these two reservoirs (Devonian and Carboniferous) occurring at different depths. However, the average i-b / n-b ratios recorded in these reservoirs are essentially different (0.44 and 0.55, respectively). A possible relationship is discussed between the i-b / n-b ratio variations and those in global seismicity.  相似文献   

17.
The release of irradiation-produced noble gas isotopes (38ArCl, 80KrBr, 128XeI and 39ArK) during in vacuo crushing scapolite has been investigated and is compared to quartz. Three thousand crushing strokes released 98% of fluid inclusion-hosted noble gas from quartz. In comparison, 3000 crushing strokes released only 4% of the lattice-hosted 38ArCl from a scapolite gem. In vacuo crushing released lattice Ar preferentially relative to lattice Kr or Xe and prolonged crushing released 88% of the lattice-hosted noble gas in 96,000 crushing strokes. We suggest fast diffusion pathways generated by crushing are an important noble gas release mechanism and we demonstrate two applications of prolonged in vacuo crushing on irradiated scapolite.Firstly, scapolite molar Br/Cl and I/Cl values are shown to vary over a similar range as crustal fluids. The Cl-rich scapolite gem from Hunza, Pakistan has Br/Cl of 0.5–0.6 × 10−3 and I/Cl values of 0.3–2 × 10−6, that are similar to fluids that have dissolved evaporites. In contrast, three out of four skarn-related scapolites from the Canadian Grenville Province have molar Br/Cl values of 1.5–2.4 × 10−3, and I/Cl values of 11–24 × 10−6, that are broadly consistent with skarn formation by magmatic fluids. The fourth Grenvillian scapolite, with only 0.02 wt% Cl, has an exceptionally elevated molar Br/Cl value of up to 54 × 10−3 and I/Cl of 284 × 10−6. It is unclear if these values reflect the composition of fluids formed during metamorphism or preferential incorporation of Br and I in Cl-poor meionitic scapolite.Secondly, the Grenvillian scapolites give plateau ages of between 830 Ma and 400 Ma. The oldest ages post-date regional skarn formation by 200 Myr, but are similar to feldspar cooling ages in the Province. The age variation in these samples is attributed to a combination of factors including variable thermal history and the presence of mineral sub-grains in some of the samples. These sub-grains control the release of 39ArK, 38ArCl and 40Ar* during in vacuo crushing as well as the samples 40Ar* retentivity in nature. Scapolite is suggested as a possible analogue for K-feldspar in thermochronologic studies.  相似文献   

18.
Kaiyu Liu   《Cretaceous Research》2009,30(4):980-990
Oxygen and carbon isotope profiles for strata of the Mooreville Chalk (upper Santonian-lower Campanian) of the eastern Gulf Coastal Plain, U.S.A., show correlations with published curves for these isotopes. The δ18O curve exhibits a strong similarity to the Exmouth Plateau δ18O curve from ODP drilling sites offshore northwestern Australia, and the δ13C curve can be correlated with the δ13C curve from the English Chalk Trunch section.A thermal maximum probably occurred in the northeastern Gulf of Mexico during the latest Santonian (83.8 Ma), as evidenced by the minimum δ18O values in the lower Mooreville beds. A δ13C positive excursion occurs at the same stratigraphic level, which has been recognized as the “Santonian/Campanian boundary event” worldwide. After this event, ocean surface water temperature decreased throughout the early Campanian. This carbon isotope excursion is followed by a plateau in δ13C values with a peak value occurring in a condensed section (80 Ma), which has been correlated to a downlap or maximum flooding surface on seismic data from offshore Alabama. The section characterized by increasing δ13C values corresponds to a marine transgression. The interval characterized by decreasing δ13C values corresponds to regression and progradation. The maximum flooding event occurred 0.8 Ma later than the thermal maximum event.The Mooreville chalk/marl cycles are most likely a product of fluctuations in siliciclastic sediment influx into the northeastern Gulf of Mexico modulated by the precession band of the Earth's orbital cycles. Higher carbon isotope values occur in the marl beds indicating that these beds were formed in a more anoxic/dysoxic environment characterized by higher clay, silt input and higher organic carbon accumulation.  相似文献   

19.
Luminescence dating of loess older than 100 ka has long been a challenge. It has been recently reported that, using optically stimulated luminescence (OSL) of fine-grained quartz (4–11 μm) extracted from loess, the range of luminescence dating could be pushed to 0.6 Ma with OSL ages being in agreement with independent ages [Watanuki, T., Murray, A.S., Tsukamoto, S., 2005. Quartz and polymineral luminescence dating of Japanese loess over the last 0.6 Ma: comparison with an independent chronology. Earth and Planetary Science Letters 240, 774–789]. The aim of this study is to provide a luminescence chronology (20 samples) for the standard Luochuan loess section, and to further examine the upper limit of quartz OSL dating for Chinese loess. The growth curve does not saturate at 700 Gy, and should allow reliable equivalent dose (De) determination up to at least 400 Gy. However, when compared with independent chronological control, the De that could be treated as reliable is less than 230 Gy (corresponding to 70 ka in age for Chinese loess), and the De larger than 230 Gy should be underestimated. Ages for samples from the lower part of palaeosol S1 are severely underestimated, with the maximum age of 95 ka for a sample from the bottom of this palaeosol, much younger than the expected age of 128 ka. The maximum De obtained for sample L9/M, collected from loess layer L9 which is below the Matuyama–Brunhes (B/M) boundary whose age is 780 ka, is only 403 Gy which corresponds to an age of 107 ka. The cause of underestimation is not yet clear. The previous results by Watunuki et al. (2005) on the extension of OSL dating of loess to 0.6 Ma is not confirmed. When evaluating the validity of OSL ages in S1, another possibility is to question the already established chronological frame for Luochuan section, which is based on the hypothesis of continuous dust deposition. The assumption of an erosion hiatus between L2 and S1 could make the OSL ages look reasonable. However, if this is the case, then it is difficult to explain why the age of sample L9/M is only 107 ka which could be treated as a saturation age, while the OSL can provide a correct age for loess as old as 94.9 ka for sample LC22 collected from the bottom of S1. Much work is required to clarify these confusions.  相似文献   

20.
This paper documents a continuous  44,000-yr pollen record derived from the Mfabeni Peatland on the Maputaland Coastal Plain. A detailed fossil pollen analysis indicates the existence of extensive Podocarpus-abundant coastal forests before  33,000 cal yr BP. The onset of wetter local conditions after this time is inferred from forest retreat and the development of swampy conditions. Conditions during the last glacial maximum ( 21,000 cal yr BP) are inferred to have been colder and drier than the present, as evidenced by forest retreat and replacement of swampy reed/sedge communities by dry grassland. Forest growth and expansion during the Holocene Altithermal ( 8000–6000 cal yr BP) indicates warm, relatively moist conditions. Previous records from Maputaland have suggested a northward migration of Podocarpus forest during the late Holocene. However, we interpret a mid-Holocene decline in Podocarpus at Mfabeni as evidence of deforestation. Forest clearance during the mid-Holocene is supported by the appearance of Morella serrata, suggesting a shift towards more open grassland/savanna, possibly due to burning. These signals of human impact are coupled with an increase in Acacia, indicative of the development of secondary forest and hence disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号