首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
2.
Low-cordierites from volcanic rocks of Tuscany (Italy), Lipari (Italy), and of the Cerberean Cauldron (Australia) were investigated. Both single crystal structure refinements and optical data indicate that the Italian samples contain only low concentrations of volatiles (<0.3 wt.%), whereas in the crystals from the Cerberean Cauldron more than 50% of the structural channels are occupied, preferentially by H2O (1.6–1.9 wt.%). This high volatile concentration is in qualitative agreement with the estimated p,T-conditions (4–4.5 kbar at 750–780° C) of the magma prior to eruption. In contrast, the Italian cordierites have formed at temperatures above 950° C and pressures below 2 kbars. Low-cordierites of volcanic origin reveal the same high degree of Si, Al-ordering as observed for low-cordierites from metamorphic rocks and pegmatites. The crystals studied possess F(mol)=(Fe+Mn)/(Fe+Mn+Mg)>0.4 and provide additional information about the crystal structure of Fe-rich cordierites. With increasing FeMg substitution the mean T11(Al)-O distance decreases slightly, which is probably not caused by substitution of smaller cations on t11 but by angular distortion of the tetrahedron.  相似文献   

3.
Crystallographically oriented sections of natural gemstone quality cordierite single-crystals have been irradiated with swift heavy ions of GeV energy and various fluences. Irradiation effects on the crystal lattice were investigated by means of Raman spectroscopy. Raman line scans along the trajectory of the ions reveal a close correlation of beam parameters (such as fluence and energy loss dE/dx along the ion path) to strain due to associated changes in lattice dimensions and defect concentration. The luminescence background also scales with the ion fluence and suggests the formation of point defects, which could also account for the macroscopically observable colouration of the irradiated samples. In addition, changes in the amount and nature of volatile species inside the structural channels are observed. They also scale with dE/dx and confirm the previously postulated irradiation-induced conversion of CO2 to CO. Irradiations along the crystallographic a-, b- and c-axis reveal no significant anisotropy effect with respect to lattice alterations. The polarisation characteristics of the Raman-active modes confirm the preferred molecular alignment of CO and CO2 along the a-axis direction.  相似文献   

4.
Powder infrared spectroscopy and X-ray diffraction techniques on single crystals were used to study the thermal behaviour of malayaite, CaSnSiO5. Infrared spectra show a discontinuity in the temperature evolution of phonon frequencies and absorbance near 500 K. However, crystal structure data collected at 300, 450, 550, 670, and 750 K show no evidence of a symmetry-breaking phase transition and no split positions. The most obvious change with heating is a tumbling motion of the SnO6 octahedra and an increase of the anisotropic displacement factors of Ca. The thermal evolution of the mean-square vibrational amplitude of the Ca atom shows a pronounced change in slope near 500 K. The evidence suggests that the 500 K anomaly in malayaite is more similar in character to the 825 K (β-γ) transition as opposed to the 496 K (α-β) transition in synthetic titanite. Received: 26 March 1998 / Revised, accepted: 23 December 1998  相似文献   

5.
6.
The crystal structures of natural jadeite, NaAlSi2O6, and synthetic kosmochlor, NaCrSi2O6, were studied at room temperature, under hydrostatic conditions, up to pressures of 30.4 (1) and 40.2 (1) GPa, respectively, using single-crystal synchrotron X-ray diffraction. Pressure–volume data have been fit to a third-order Birch–Murnaghan equation of state yielding V 0 = 402.5 (4) Å3, K 0 = 136 (3) GPa, and K 0  = 3.3 (2) for jadeite and V 0 = 420.0 (3) Å3, K 0 = 123 (2) GPa and K 0  = 3.61 (9) for kosmochlor. Both phases exhibit anisotropic compression with unit-strain axial ratios of 1.00:1.95:2.09 for jadeite at 30.4 (1) GPa and 1:00:2.15:2.43 for kosmochlor at 40.2 (1) GPa. Analysis of procrystal electron density distribution shows that the coordination of Na changes from 6 to 8 between 9.28 (Origlieri et al. in Am Mineral 88:1025–1032, 2003) and 18.5 (1) GPa in kosmochlor, which is also marked by a decrease in unit-strain anisotropy. Na in jadeite remains six-coordinated at 21.5 (1) GPa. Structure refinements indicate a change in the compression mechanism of kosmochlor at about 31 GPa in both the kinking of SiO4 tetrahedral chains and rate of tetrahedral compression. Below 31 GPa, the O3–O3–O3 chain extension angle and Si tetrahedral volume in kosmochlor decrease linearly with pressure, whereas above 31 GPa the kinking ceases and the rate of Si tetrahedral compression increases by greater than a factor of two. No evidence of phase transitions was observed over the studied pressure ranges.  相似文献   

7.
 Two MgAl2O4 stoichiometric spinel crystals, one natural and one synthetic, were heated from 25 to 950 °C and studied in situ by single-crystal X-ray diffraction. The natural crystal, quenched from 850 °C, was further heated and cooled. Thermal expansion was characterized, and cation partitioning at the various temperatures was determined according to a model purposely constructed for high-temperature bond lengths. It was found that the structural evolution of the samples with temperature depended on order–disorder at room temperature. At the temperatures lower than the beginning of cation exchange, thermal expansion was completely reversible and the oxygen coordinate remained stable in spite of varying temperatures. At the temperature at which cation exchange starts, the disordered samples first tend to order and then to disorder at higher temperatures, at variance with the ordered sample, which tends to disorder steadily. In general, the evolution of the spinel structural state on cooling and heating over the same temperature range and the same time intervals does not follow the same path. In particular, in the 600–950 °C range, only partially reversible order–disorder processes occurred in the time span used for the experiments. Received: 16 July 2001 / Accepted: 8 January 2002  相似文献   

8.
We report a FTIR (Fourier transform infrared) study of a set of cordierite samples from different occurrence and with different H2O/CO2 content. The specimens were fully characterized by a combination of techniques including optical microscopy, single-crystal X-ray diffraction, EMPA (electron microprobe analysis), SIMS (secondary ion mass spectrometry), and FTIR spectroscopy. All cordierites are orthorhombic Ccmm. According to the EMPA data, the Si/Al ratio is always close to 5:4; X Mg ranges from 76.31 to 96.63, and additional octahedral constituents occur in very small amounts. Extraframework K and Ca are negligible, while Na reaches the values up to 0.84 apfu. SIMS shows H2O up to 1.52 and CO2 up to 1.11 wt%. Optically transparent single crystals were oriented using the spindle stage and examined by FTIR micro-spectroscopy under polarized light. On the basis of the polarizing behaviour, the observed bands were assigned to water molecules in two different orientations and to CO2 molecules in the structural channels. The IR spectra also show the presence of small amounts of CO in the samples. Refined integrated molar absorption coefficients were calibrated for the quantitative microanalysis of both H2O and CO2 in cordierite based on single-crystal polarized-light FTIR spectroscopy. For H2O the integrated molar coefficients for type I and type II water molecules (ν3 modes) were calculated separately and are [I]ε?=?5,200?±?700?l?mol?1?cm?2 and [II]ε?=?13,000?±?3,000?l?mol?1?cm?2, respectively. For CO2 the integrated coefficient is $ \varepsilon_{{{\text{CO}}_{ 2} }} $ ?=?19,000?±?2,000?l?mol?1?cm?2.  相似文献   

9.
10.
The most CO2-rich cordierite thus far encountered in nature with about 2.2 wt.% CO2 and 0.3 wt.% H2O occurs as large poikiloblasts in a strange non-foliated reaction rock that dissects well-foliated granulites being part of the classical Lapland granulite area described by Eskola. The cordierite is optically positive with the highest optic angle 2V x (106°) and birefringence ( = 0.017) ever measured on natural cordierites, but it is also optically very heterogeneous due to secondary loss of CO2 along fractures and zones paralleling the fluid-bearing channels. Based on the optical properties of the degassed Lapland cordierite and on literature data a ternary diagram is given, which shows the variations of this cordierite in 2V x and birefringence as a function of channel-filling with both CO2 and H2O.Following Losert (1971) the cordierite coexists with calcite, a thus far unique mineral assemblage that is probably only stable at very high CO2 pressures. In the present case, the of the cordierite (0.75) indicates, on the basis of literature data, a coexisting fluid with >0.95.The carbon isotope composition 13C of CO2 in cordierite lies near –7, that of the calcite is slightly lighter than about –9. Thus, at least for the CO2 in cordierite, a deep-seated origin may be possible.Based on the geologic occurrence it is speculated that the cordierite-bearing reaction rock could perhaps represent an annealed channel of late degassing in the granulitic lower crust.  相似文献   

11.
12.
The compressibility of antigorite has been determined up to 8.826(8) GPa, for the first time by single crystal X-ray diffraction in a diamond anvil cell, on a specimen from Cerro del Almirez. Fifteen pressure–volume data, up to 5.910(6) GPa, have been fit by a third-order Birch–Murnaghan equation of state, yielding V 0 = 2,914.07(23) Å3, K T0 = 62.9(4) GPa, with K′ = 6.1(2). The compression of antigorite is very anisotropic with axial compressibilities in the ratio 1.11:1.00:3.22 along a, b and c, respectively. The new equation of state leads to an estimation of the upper stability limit of antigorite that is intermediate with respect to existing values, and in better agreement with experiments. At pressures in excess of 6 GPa antigorite displays a significant volume softening that may be relevant for very cold subducting slabs.  相似文献   

13.
The chemical composition and the crystal structure of pezzottaite [ideal composition Cs(Be2Li)Al2Si6O18; space group: ${\it{R}} \overline{\text{3}} $ c, a?=?15.9615(6) ?, c?=?27.8568(9) ?] from the type locality in Ambatovita (central Madagascar) were investigated by electron microprobe analysis in wavelength dispersive mode, thermo-gravimetric analysis, Fourier-transform infrared spectroscopy, single-crystal X-ray (at 298?K) and neutron (at 2.3?K) diffraction. The average chemical formula of the sample of pezzottaite resulted Cs1,Cs2(Cs0.565Rb0.027K0.017)Σ0.600 Na1,Na2(Na0.101Ca0.024)Σ0.125Be2.078Li0.922 Al1,Al2(Mg0.002Mn0.002Fe0.003Al1.978)Σ1.985 Si1,Si2,Si3(Al0.056Si5.944)Σ6O18·0.27H2O. The (unpolarized) IR spectrum over the region 3,800–600?cm?1 was collected and a comparison with the absorption bands found in beryl carried out. In particular, two-weak absorption bands ascribable to the fundamental H2O stretching vibrations (i.e. 3,591 and 3,545?cm?1) were observed, despite the mineral being nominally anhydrous. The X-ray and neutron structure refinements showed: (a) a non-significant presence of aluminium, beryllium or lithium at the Si1, Si2 and Si3 sites, (b) the absence (at a significant level) of lithium at the octahedral Al1, Al2 and Al3 sites and (c) a partial lithium/beryllium disordering between tetrahedral Be and Li sites.  相似文献   

14.
Gas adsorption isotherms of Akabira coals were established for pure carbon dioxide (CO2), methane (CH4), and nitrogen (N2). Experimental data fit well into the Langmuir model. The ratio of sorption capacity of CO2, CH4, and N2 is 8.5:3.5:1 at a lower pressure (1.2 MPa) regime and becomes 5.5:2:1 when gas pressure increases to 6.0 MPa. The difference in sorption capacity of these three gases is explained by differences in the density of the three gases with increasing pressure. A coal–methane system partially saturated with CH4 at 2.4 MPa adsorption pressure was experimentally studied. Desorption behavior of CH4 by injecting pure CO2 (at 3.0, 4.0, 5.0, and 6.0 MPa), and by injecting the CO2–N2 mixture and pure N2 (at 3.0 and 6.0 MPa) were evaluated. Results indicate that the preferential sorption property of coal for CO2 is significantly higher than that for CH4 or N2. CO2 injection can displace almost all of the CH4 adsorbed on coal. When modeling the CH4–CO2 binary and CH2–CO2–N2 ternary adsorption system by using the extended Langmuir (EL) equation, the EL model always over-predicted the sorbed CO2 value with a lower error, while under-predicting the sorbed CH4 with a higher error. A part of CO2 may dissolve into the solid organic structure of coal, besides its competitive adsorption with other gases. According to this explanation, the EL coefficients of CO2 in EL equation were revised. The revised EL model proved to be very accurate in predicting sorbed ratio of multi-component gases on coals.  相似文献   

15.
16.
The effects of low-temperature on the crystal structure of a natural epidote [Ca1.925Fe0.745Al2.265Ti0.004Si3.037O12(OH), a = 8.8924(7), b = 5.6214(3), c = 10.1547(6)? and β = 115.396(8)° at room conditions, Sp. Gr. P21 /m] have been investigated with a series of structure refinements down to 100 K on the basis of X-ray single-crystal diffraction data. The reflection conditions confirm that the space group is maintained within the T-range investigated. Structural refinements at all temperatures show the presence of Fe3+ at the octahedral M(3) site only [%Fe(M3) = 70.6(4)% at 295 K]. Only one independent proton site was located and two possible H-bonds occur, with O(10) as donor and O(4) and O(2) as acceptors. The H-bonding scheme is maintained down to 100 K and is supported by single crystal room-T polarised FTIR data. FTIR Spectra over the region 4,000–2,500 cm−1 are dominated by the presence of a strongly pleochroic absorption feature which can be assigned to protonation of O(10)–O(4). Previously unobserved splitting of this absorption features is consistent with a NNN influence due to the presence of Al and Fe3+ on the nearby M(3) site. An additional relatively minor absorption feature in FTIR spectra can be tentatively assigned to protonation of O(10)–O(2). Low-T does not affect significantly the tetrahedral and octahedral bond distances and angles, even when distances are corrected for “rigid body motions”. A more significant effect is observed for the bond distances of the distorted Ca(1)- and Ca(2)-polyhedra, especially when corrected for “non-correlated motion”. The main low-T effect is observed on the vibrational regime of the atomic sites, and in particular for the two Ca-sites. A significant reduction of the magnitude of the thermal displacement ellipsoids, with a variation of U eq (defined as one-third of the trace of the orthogonalised U ij tensor) by ~40% is observed for the Ca-sites between 295 and 100 K. Within the same T-range, the U eq of the octahedral and oxygen sites decrease similarly by ~35%, whereas those of the tetrahedral cations by ~22%.  相似文献   

17.
A specimen of intergrown biotite and muscovite from a pegmatite was subjected to detailed chemical, optical, and X-ray analysis. The crystals are intergrown in such a way that certain structural elements are common to both and that parts of the crystal structure must pass unbroken through the contact between them. Numerous ‘edge dislocations’ must occur at the boundary because of the different basal spacings. Partitioning of elements between the minerals, along with the structural observations, suggest that the crystals are an equilibrium intergrowth.  相似文献   

18.
The high-pressure behaviour of chromous orthosilicate, Cr2SiO4, has been studied by means of single-crystal X-ray diffraction and electronic absorption spectroscopy. X-ray diffraction data show that the structure remains orthorhombic to the highest pressure reached of 9.22?GPa. The compressibility of the unit-cell is strongly anisotropic with the c axis approximately six times more compressible than the a and b axes. A third-order Birch-Murnaghan equation of state fitted to the volume-pressure data yields V 0?=?610.10(3)?Å3, K = 94.7(4)?GPa, K′?=?8.32(14). Cr2SiO4 is therefore more compressible than the isostructural Cd analogue, even though its molar volume is smaller. This unusual behaviour can be attributed to the fact that the Cr atom is too small for the six-coordinated site that it occupies, and the site is therefore strongly distorted. Structure refinements indicate that under high pressures the Cr atom remains strongly displaced from the central position of the octahedron. Polarized and unpolarized electronic absorption spectra include a strong absorption band occuring at 18.300 cm?1 for E//c (which is parallel to the shortest Cr-Cr vector in the structure) which has an unusually large half width (5000?cm?1), indicative of electronic interaction between metal centres. Deconvolution of unpolarized high-pressure spectra show that the relative integrated intensity of this component increases linearly from 40% at 1?bar to 60% at 11.2?GPa. Both the structural changes and the absorption spectra at high pressures suggest that pairs of adjacent Cr atoms in chromous orthosilicate form chromium dimers with a weak metal-metal bond, which is consistent with the diamagnetic response found at ambient pressure.  相似文献   

19.
《Comptes Rendus Geoscience》2019,351(2-3):121-128
We present a synchrotron-based, single-crystal X-ray diffraction and Raman spectroscopy study of natural green dioptase (Cu6Si6O18·6H2O) up to ∼30 GPa at room temperature. The lattice parameters of dioptase exhibit continuous compression behavior up to ∼14.5 GPa, whereupon a structural transition is observed. Pressure–volume data below 14.5 GPa were fitted to a second-order Birch–Murnaghan equation of state with V0 = 1440(2) Å3 and K0 = 107(2) GPa, with K0 = 4(fixed). The low-pressure form of dioptase exhibits anisotropic compression with axial compressibility βa > βc in a ratio of 1.14:1.00. Based on the diffraction data and Raman spectroscopy, the new high-pressure phase could be regarded as a dehydrated form of dioptase in the same symmetry group. Pressure-induced dehydration of dioptase contributes broadly to our understanding of the high-pressure crystal chemistry of hydrous silicates containing molecular water groups.  相似文献   

20.
Analysis of E||X-polarized optical absorption spectra of natural olivines of various origin in the range of electronic spin-allowed dd-transitions of Fe2+ evidences that in some crystals, there is a weak ordering of Fe2+ as in M1, as in M2 structural sites. The samples of three different depth facies seem showing a vague tendency of lowering of k D -values from spinel-pyroxene (Sp-Px) through graphite-pyrope (G-Py) to diamond-pyrope (D-Py) facies, but the statistics are too poor (24 samples only) to be certain of it. Weak relations between Mg, Fe2+-distribution and iron content were found for the samples of Sp-Px- and G-Py-facies, while there is practically no one for those of the deepest D-Py facie.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号