首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 481 毫秒
1.
A coronal magnetic arcade can be thought of as consisting of an assembly of coronal loops. By solving equations of isobaric thermal equilibrium along each loop and assuming a base temperature of 2 × 104 K, the thermal structure of the arcade can be found. The possible thermal equilibria can be shown to depend on two parameters L * p * and h */p * representing the ratios of cooling (radiation) to condu and heating to cooling, respectively. Arcades can contain four types of loops: hot loops with summits hotter than 400000 K; cool loops at temperatures less than 80000 K along their lengths; hot-cool loops with cool summits and cool footpoints but hotter intermediate portions; and warm loops, cooler than 80000 K along most of their lengths but with summits as hot as 400000 K. Two possibilities for coronal heating are considered, namely a heating that is independent of magnetic field and a heating that is proportional to the square of the local magnetic field. When the arcade is sheared the thermal structure of the arcade may change, leading in some cases to non-equilibrium or in other cases to the formation of a cool core.  相似文献   

2.
A coronal magnetic arcade can be thought of as consisting of an assembly of coronal loops. By solving equations of thermal equilibrium along each loop and assuming a base temperature of 2 × 104 K, the thermal structure of the arcade can be found. By assuming a form for the plasma pressure in the arcade, the possible thermal structures can be shown to depend on three parameters. Arcades can contain hot loops with summits hotter than 400 000 K, cool loops at temperatures less than 80 000 K along their lengths, hot-cool loops with cool summits and cool footpoints but hotter intermediate portions, and warm loops, cooler than 80 000 K along most of their lengths but with summits as hot as 400 000 K. For certain arcades, there exist regions where more than one kind of loop is possible. If the parameters describing the arcade are varied, it is possible for non-equilibrium to occur when a type of solution ceases to exist. For example, hot or warm loops can cease to exist so that only cool solutions are possible when the arcade size or pressure is decreased, while warm or cool loops may give way to hot-cool loops when the heating is reduced or the pressure is increased.  相似文献   

3.
Equations of thermal equilibrium along coronal loops with footpoint temperatures of 2 × 104 K are solved. Three fundamentally different categories of solution are found, namely hot loops with summit temperatures above about 4 × 105 K, cool loops which are cooler than 8 × 104 K along their whole length and hot-cool loops which have summit temperatures around 2 × 104 K but much hotter parts at intermediate points between the summit and the footpoints. Hot loops correspond to the hot corona of the Sun. The cool loops are of relevance for fibrils, for the cool cores observed by Foukal and also for active-region prominences where the magnetic field is directed mainly along the prominence. Quiescent prominences consist of many cool threads inclined to the prominence axis, and each thread may be modelled as a hot-cool loop. In addition, it is possible for warm loops at intermediate summit temperatures (8 × 104K to 4 × 105 K) to exist, but the observed differential emission measure suggests that most of the plasma in the solar atmosphere is in either the hot phase or the cool phase. Thermal catastrophe may occur when the length or pressure of a loop is so small that the hot solution ceases to exist and there are only cool loop solutions. Many loops can be superimposed to form a coronal arcade which contains loops of several different types.  相似文献   

4.
Watari  Shinichi  Detman  T.  Joselyn  J. A. 《Solar physics》1996,169(1):167-179
A large arcade associated with a long-duration soft X-ray emission was observed on May 19, 1992 by the Yohkoh soft X-ray telescope. This large arcade was formed along the inversion line and a filament eruption was observed as part of this event. Also associated with this event were solar energetic particles and an interplanetary shock observed near Earth. This event supports the idea that coronal mass ejections are large-scale eruptions along an inversion line, or a heliospheric current sheet. However, this event implies that present models on eruptions are not sufficient.  相似文献   

5.
A model of filament formation based on the condensation of coronal arches is described. The condensation results from initiating the radiative instability within an arch by superimposing a transient energy supply upon the steady state heating mechanism. The transient energy supply increases the density within the arch so that when it is removed the radiative losses are sufficient to lead to cooling below the minimum in the power loss curve.Times from the initial formation of the condensation to its temperature stabilization as a cool filament have been calculated for various initial conditions. They lie in the range 104 to 105 s with the majority of the time spent above a temperature of 1 × 106 K.Under the assumption that the condensation of a single arch forms an element of the filament, a complete filament requires the condensation of an arcade of loops. Using experimentally derived parameters, filament densities of 1011 to 1012 cm–3 can be obtained.  相似文献   

6.
By means of Hα, EUV, soft X-ray, hard X-ray, and photospheric magnetic field observations, we report the surge-like eruption of a small-scale filament, called “blowout surge” according to recent observations, occurring on a plage region around AR 10876 on 1 May 2006. Along magnetic polarity reversal boundaries with obvious magnetic cancelations, the filament was located underneath a compact coronal arcade and close to one end of large coronal loops around the AR’s periphery. The filament started to erupt about 8 min before the main impulsive phase of a small two-ribbon flare, which had two Hα blue-wing kernels connected by hard X-ray loop-top sources on the both sides of the filament. After the flare end, the filament further underwent a distant eruption following a path nearly along the preexisting large loops, and thus looked like an Hα surge and an EUV jet. During the eruption, a small coronal dimming was formed near the flare, while weak brightenings appeared around the remote end of the large loops. We interpret these joint observations as the filament eruption being confined and guided by the large loops. The filament eruption, initially embedded in one footpoint region of the large loops, can break away from the magnetic restraint of the overlying compact arcade, but might be still limited inside the large loops. As a result, the eruption took a surge form that can only expand laterally along the large loops rather than erupt radially.  相似文献   

7.
It is not clear how trans-equatorial loop systems (TLSs) are formed, although they have been observed often with Yohkoh/SXT. We focus here on a TLS that appeared on 27 May 1998. Yokoyama and Masuda (Solar Phys. 254, 285, 2009) proposed a new scenario for the formation mechanism of the TLS. In this scenario, they pointed out the importance of magnetic interaction between an active region and a coronal hole to make “strong-seed magnetic fields” before a transient (bright and short-lived) trans-equatorial loop was created. The main aims of this study are to verify the scenario and to make the TLS formation mechanism clear, based on observational data. Yohkoh/SXT images, SOHO/MDI magnetograph data, and Kitt Peak coronal-hole maps were mainly used for our analyses. We investigated the TLS in detail from the time that there were no signatures of the TLS to its clear appearance. The following results are obtained: i) an active region emerged in the vicinity of a coronal-hole boundary, ii) the coronal-hole boundary retreated during the period when the active region was developing, iii) temporal variations of soft X-ray intensities were roughly synchronized between the coronal-hole boundary and a trans-equatorial region, and iv) new closed loops were observed in soft X-rays clearly at the coronal-hole boundary. Since i), ii), iii), and iv) are just what we expect in the scenario of YM2009, the scenario found support. We conclude that the TLS was originating with large-scale magnetic fields of the coronal-hole boundary through magnetic reconnection between the active region and a coronal hole.  相似文献   

8.
9.
We discuss simultaneous visible-light and radio observations of a coronal transient that occurred on 9 April, 1980. Visible-light observations of the transient and the associated erupting prominence were available from the Coronagraph/Polarimeter carried aboard SMM, the P78-1 coronagraph, and from the Haleakala Observatory. Radio observations of the related type III-II-IV bursts were available from the Clark Lake and Culgoora Observatories. The transient was extremely complex; we suggest that an entire coronal arcade rather than just a single loop participated in the event. Type III burst sources observed at the beginning of the event were located along a nearby streamer, which was not disrupted, but was displaced by the outmoving loops. The type II burst showed large tangential motion, but unlike such sources usually do, it had no related herringbone structure. A moving type IV burst source can be associated with the most dense feature of the white-light transient.  相似文献   

10.
The temperature and density are obtained for coronal plasma in thermal and hydrostatic equilibrium and located in a force-free magnetic arcade. The isotherms are found to be inclined to the magnetic field lines and so care should be taken in inferring the magnetic structure from observed emission.When the coronal pressure becomes too great, the equilibrium ceases to exist and the material cools to form a quiescent prominence. The same process can be initiated at low heating rates when the width or shear of the arcade exceeds a critical value.We suggest that the prominence should be modelled as a dynamic structure with plasma always draining downwards. Material is continually sucked up along field lines of the ambient arcade and into the region lacking a hot equilibrium, where it cools to form new prominence material.  相似文献   

11.
T. Takakura 《Solar physics》1991,136(2):303-316
Numerical simulation is made of the transient heat conduction during local heating in a model coronal magnetic loop with an axial electric current. It is assumed that a segment near the top of the normal coronal loop is heated to above 107 K by a sufficiently small heat input as compared with the total flare energy. A hump appears in the velocity distribution of electrons moving down the temperature gradient with speeds slightly below the thermal one. Consequently, electron plasma waves are excited. The high intensity of the waves persists in the upper region of the loop for more than a second until the termination of the simulation. The energy density of the plasma waves normalized with respect to thermal density is 10–3.5 at maximum. A theoretical estimate gives an anomalous resistivity 5 orders of magnitude greater than an initial value. Based on the above result, we propose a model for impulsive loop flares.  相似文献   

12.
A. G. Hearn 《Solar physics》1977,51(1):159-168
The main differences between a coronal hole and quiet coronal regions are explained by a reduction of the thermal conduction coefficient by transverse components of the magnetic field in the transition region of quiet coronal regions.Calculations of minimum flux coronae show that if the flux of energy heating the corona is maintained constant while the thermal conductivity in the transition region is reduced, the coronal temperature, the pressure in the transition region and the corona, and the temperature gradient in the transition region all increase. At the same time the intensities of lines emitted from the transition region are almost unchanged. Thus all the main spectroscopically observed differences between coronal holes and quiet coronal regions are explained.The flux of energy heating the corona in both coronal holes and quiet coronal regions is 3.0 × 105 erg cm-2 s-1.The energy lost from coronal holes by the high speed streams in the solar wind is not sufficient to explain the difference in the coronal temperature in coronal holes and quiet coronal regions. The most likely explanation of the high velocity streams in the solar wind associated with coronal holes is that of Durney and Hundhausen.  相似文献   

13.
We analyze the complex pattern of anticorrelation between the degree of polarization p in the green λ530.3-nm line and its intensity I λ, which was revealed by coronal observations during the total solar eclipse of July 11, 1991. For coronal points located at approximately the same distance from the disk center, the anticorrelation diagram breaks up into two branches with a zone of avoidance between them. High-latitude streamers form the upper branch, while the lower branch belongs to active equatorial regions. The arrangement of large-scale coronal structures in the p-logI λ diagram is considered for a distance of 1.2R . The change in anticorrelation diagram with distance is analyzed in detail for the giant high-latitude coronal streamers observed on July 11, 1991. Our results contain important information about the scattering of photospheric radiation at line frequencies in the presence of a coronal magnetic field.  相似文献   

14.
The flash spectrograms obtained at the June 30, 1973 eclipse contain the monochromatic images of a coronal condensation in three coronal lines of Fexiv 5303, Fex 6374 and Fexi 7892 and Hα line. The assumption of the axially-symmetric distribution of the emissivity in the coronal lines allows us to find the density and temperature structure of the coronal condensation. While the electron density in the central axis of the condensation is about ten times as high as that of the normal corona at each height, the temperature is not so high (T?2.3×106K). This seems to be a representative nature of a coronal active region in the post maximum phase of activity. It is found that there exists a cool and dense core (T = 106K, N e =6 × 109 cm-3 at 17000 km) at the lower part of the coronal condensation, which is in a close geometrical coincidence with the small active prominence protruding from the underlying plage region.  相似文献   

15.
TRACE observations from 15 April 2001 of transverse oscillations in coronal loops of a post-flare loop arcade are investigated. They are considered to be standing fast kink oscillations. Oscillation signatures such as displacement amplitude, period, phase and damping time are deduced from 9 loops as a function of distance along the loop length. Multiple oscillation modes are found with different amplitude profile along the loop length, suggesting the presence of a second harmonic. The damping times are consistent with the hypothesis of phase mixing and resonant absorption, although there is a clear bias towards longer damping times compared with previous studies. The coronal magnetic field strength and coronal shear viscosity in the loop arcade are derived.  相似文献   

16.
TRACE observations from 15 April 2001 of transverse oscillations in coronal loops of a post-flare loop arcade are investigated. They are considered to be standing fast kink oscillations. Oscillation signatures such as displacement amplitude, period, phase and damping time are deduced from 9 loops as a function of distance along the loop length. Multiple oscillation modes are found with different amplitude profile along the loop length, suggesting the presence of a second harmonic. The damping times are consistent with the hypothesis of phase mixing and resonant absorption, although there is a clear bias towards longer damping times compared with previous studies. The coronal magnetic field strength and coronal shear viscosity in the loop arcade are derived.  相似文献   

17.
Soft X-ray data from the XRP experiment on SMM are used to generate the temperature and density in the flaring region of the 1980, June 29 (18∶21 UT) solar flare. The temporal data (T max ~- 20 × 106 K and n max ~- 4 × 1011 cm?3), together with an assumed velocity, are used to simulate mass injection as the input pulse for the MHD model of Wu et al. (1982a, 1983a). The spatial and temporal coronal response is compared with the ground-based, Mark III K-coronameter observations of the subsequent coronal transient. The simulation produces a spatially-wide, large amplitude, temporarily-steepened MHD wave for either of the two ‘canonical’ magnetic topologies (closed and open), but no shock wave. This result appears to be confirmed by the fact that a type II radio event was observed late in the event for only a few minutes, thereby indicating that a steepening wave with temporary, marginal shock formation, was indeed present. The density enhancements produced by the simulation move away from the Sun at the same velocity observed by the K-coronameter. However, the observation of the coronal transient included a rarefaction that does not appear in the simulation. A probable explanation for this discrepancy is the likelihood that the magnitude and temporal profile of the density of the soft X-ray emitting plasma should not have been used as part of the mass injection pulse. We believe that the temperature profile alone, as suggested by earlier simulations, might have been a necessary and sufficient condition to produce both the compression and rarefaction of the ambient corona as indicated by the K-coronameter data. Hence, the dense plasma observed by XRP was probably confined, for the most part, close to the Sun during the ~ 17 min duration of the observations.  相似文献   

18.
The properties of coronal arches located on the peripheries of active regions, observed during a sounding rocket flight on March 8, 1973, are discussed. The arches are found to overlie filament channels and their footpoints are traced to locations on the perimeters of supergranulation cells. The arches have a wide range of lengths although their widths are well approximated by the value 2.2 × 109 cm. Comparison of the size of the chromospheric footprint with the arch width indicates that arches do not always expand as they ascend into the corona. The electron temperatures and densities of the plasma contained in the arches were measured and the pressure calculated; typical values are 2 × 106 K, 1 × 109 cm–3, and 2 × 10–1 dyne cm–2, respectively. The variation of these parameters with position along the length of the arch indicates that the arches are not in hydrostatic equilibrium.  相似文献   

19.
M. Velli  A. W. Hood 《Solar physics》1986,106(2):353-364
The stability of coronal arcades to localized resistive interchange modes in the ballooning ordering, including photospheric line tying, is investigated. It is found that the anchoring of magnetic footpoints in the photosphere is not sufficient to stabilise ballooning modes, once resistivity is taken into account. All configurations with a pressure profile decreasing from the arcade axis at some point are unstable, a purely growing mode being excited. The dependence of the growth rate on the parameter Rm –1 k 2 , where is the resistivity and k the wavenumber in a direction perpendicular to the equilibrium field, can be described by a power law with varying index: for small values of k 2 and an ideally stable field one finds Rm –1. As k 2 is increased or marginal stability is approached one finds Rm–1/3. T implications of these localised instabilities to the temporal evolution and overall energy balance of arcade structures in the solar corona is discussed.  相似文献   

20.
A nonlinear process for the resonant generation of low-frequency fast magnetosonic kink waves in coronal loops is discussed. The efficiency of the process is strongly enhanced due to the existence of a nonlinearly selected frequency produced by a constant frequency difference in the dispersion curves in the short wavelength limit. The kink wave with the selected frequency interacts with high-frequency kink and sausage waves. The efficiency of such interaction does not require coherence in the interactive waves. In a loop of width 2 × 103 km, field strength 50 G and number density 5 × 1015 m–3, the nonlinearly selected frequency is of order 46 mHz (period 21.8 s), but this may range through 11 mHz to 184 mHz (periods 86.5 s to 5.4 s) for typical coronal conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号