首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To enhance the overall efficiency of oil and grease removal in wastewater coated N-doped TiO2 photocatalytic polyscales were fabricated through sol–gel technique. The materials fabricated were characterized using powder X-ray diffraction, Fourier transmission infrared spectroscopy, scanning electron microscopy, and UV–Vis spectroscopy. In order to enhance degradation efficiency of organic pollutant under natural sun light, shifting of absorption range of TiO2 to visible spectrum, various modifications such as surface modification and size optimization were carried out by doping of nitrogen under sol–gel processes. To ease recovery of suspended catalysts from aqueous media, the coated N-doped TiO2 were prepared by decorating photocatalytic particles onto suitable substrates. N-doped TiO2 polyscales with desired functionalities were coated onto the spherical supporting substrates using a binding agent. The photocatalytic treatment studies clearly indicated the considerable level of the oil and grease and other organic pollutants removal from wastewater (up to 85–90 % ± 2) using coated N-doped TiO2 under natural sunlight as an alternative driving energy source. Removal of oil and grease along with other organic pollutants in wastewater using coated N-doped TiO2 polyscales is a versatile, economical, and environmental friendly technique due to the ease of handling and recovery, utilization of natural sunlight which is renewable energy source.  相似文献   

2.
In this study, AERMOD dispersion model has been applied for predicting the values of ambient concentrations of NO2 emissions due to the stacks of fourth gas refinery located in South Pars Gas Complex in Asaluyeh, Iran. First, the values of NO2 emissions from the stacks and the amounts of ambient concentrations of NO2 in nine monitoring stations have been measured in four seasons in 2013. Then, dispersion of NO2 emissions has been predicted by using AERMOD model in the region with the domain area of 10 × 10 km2, in average times of 1 h. Finally, the simulated and observed values of ambient NO2 concentrations in the nine receptors have been compared. Comparison of 1-h concentrations of the observed and predicted results with the international ambient standard levels shows that NO2 concentrations are higher than the standard value. The results show that AERMOD model can be used effectively for predicting the amounts of pollutants’ concentrations in the study area.  相似文献   

3.
The Kangan Aquifer (KA) is located below a gas reservoir in the crest of the Kangan Anticline, southwest of Iran. This aquifer is composed of Permo-Triassic limestone, dolomite, sandstone, anhydrite and shale. It is characterized by a total dissolved solid of about 332,000 mg/L and Na–Ca–Cl-type water. A previous study showed that the source of the KA waters is evaporated seawater. Chemical evolution of the KA is the main objective of this study. The major, minor and trace element concentrations of the KA waters were measured. The chemical evolution of KA waters occurred by three different processes: evaporation of seawater, water–rock and water–gas interactions. Due to the seawater evaporation process, the concentration of all ions in the KA waters increased up to saturation levels. In comparison to the evaporated seawater, the higher concentrations of Ca, Li, Sr, I, Mn and B and lower concentrations of Mg, SO4 and Na and no changes in concentrations of Cl and K ions are observed in the KA waters. Based on the chemical evolution after seawater evaporation, the KA waters are classified into four groups: (1) no evolution (Cl, K ions), (2) water–rock interaction (Na, Ca, Mg, Li and Sr ions), (3) water–gas interaction (SO4 and I ions) and (4) both water–rock and water–gas interactions (Mn and B ions). The chemical evolution processes of the KA waters include dolomitization, precipitation, ion exchange and recrystallization in water–rock interaction. Bacterial reduction and diagenesis of organic material in water–gas interaction also occur. A new type of chart, Caexcess versus Mgdeficit, is proposed to evaluate the dolomitization process.  相似文献   

4.
Toxic organic compounds in wastewater are serious threats for both human and environment healthy states. This study investigates the potential sources of surface water, sediment and groundwater pollution by polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyl (PCBs) as discharged by wastewater into the River of Oued El bey in northeastern Tunisia. Analysis indicates that the concentration of PAHs and PCBs are high in wastewater and vary from 0.37 to 0.83 mg/L and from 0.28 and 1.18 mg/L, respectively. The spatial distribution of PAHs and PCB in surface water showed a variation between 0.37 to 9.91 mg/L and between 0.1 to 0.47 mg/L, respectively. However, the quality of surface water is changed after wastewater evacuation at Oued Tahouna. The determination of PAH and PCB pollutants in groundwater shows a great interest in the development of water resources. The Concentration of these pollutants varying from 0.0204 to 1.93 mg/L and from 0.0052 to 0.196 mg/L, respectively. For PAH, analysis reveals also that naphtelene, fluorene, anthracene and chrysene are the most detected PAHs compounds in water and sediment samples while benzo[b]fluoranthene and benzo[a]pyrene are less present and in trace level. Higher concentrations of PAHs and PCBs are found in samples taken close to industrial areas of Bouargoub and Soliman, and wastewater discharge locations in Soliman. Analysis of the spatial distribution of PAHs and PCBs clearly link their higher concentration in water and sediments to wastewater and manufacturing discharges in the study area. In surface sediment, the organic pollutants are present. The cluster analysis for organic pollutants in different state and different matrix highlight a relationship between the wastewater evacuation and the water qualities which confirmed the direct response of the pollution sources on the surface water and groundwater organic pollution quality.  相似文献   

5.
Black carbon (BC) in soils plays a key role of carrying hydrophobic pollutants like polycyclic aromatic hydrocarbons (PAHs). However, little is known about the spatial distribution, sources of BC and its relationship with PAHs in urban soils. We studied BC, total organic carbon (TOC) and PAHs concurrently in 77 soils collected from downtown area, suburban and rural area and industrial area of Shanghai, China. BC was determined by both chemical oxidation (dichromate oxidation, BCCr) and chemo-thermal oxidation (CTO-375, BCCTO). BC sources were identified qualitatively by BC/TOC concentration ratios and BC-cogenerated high molecular weight (HMW) PAH isomer ratios and quantitatively by principal component analysis followed by multiple linear regression (PCA-MLR). Results showed that BCCr concentration (4.65 g/kg on average) was significantly higher than BCCTO (1.91 g/kg on average) in Shanghai soils. BCCr concentrations in industrial area were significantly higher than those in other two. Stronger correlation was found between PAHs and TOC, BCCr than that between PAHs and BCCTO, which indicates the possibility of PAHs being carried by charcoal and other organic matters thus negating its exclusive dependence on soot. Charcoal was therefore suggested to be taken into account in studies of BC and its sorption of PAHs. BC/TOC ratios showed a mixed source of biomass burning and fossil fuel combustion. PCA scores of BC-cogenerated HMW PAHs isomer ratios in potential sources and soil samples clearly demonstrated that sources of BC in urban soils may fall into two categories: coal and biomass combustion, and traffic (oil combustion and tire wear). PCA-MLR of HMW PAHs concentrations in soil samples indicated that coal and oil combustion had the largest contribution to BC in urban soils while tire wear and biomass combustion were important in downtown and rural area, respectively, which indicated they were main sources of HMW PAHs and presumably of BC.  相似文献   

6.
The Isthmus of Tehuantepec corresponds to the shortest distance (~200?km) between the Gulf of Mexico and the Pacific Ocean in Southern Mexico, and the main economical activity of this region is oil extraction and refining. Polycyclic aromatic hydrocarbons (PAHs) and total petroleum hydrocarbons (TPHs) were determined in a 210Pb dated sediment core collected from the continental shelf of Tehuantepec Gulf, in the vicinity of the oil refinery of Salina Cruz, Oaxaca, the main oil refining facility of the country. The sediments were mostly of coarse nature and hence PAHs and TPHs concentrations throughout the core (61?C404???g?g?1 and 29?C154?mg?kg?1, respectively) were below international quality benchmarks. Depth profiles of both PAHs and TPHs concentrations showed increasing trends since the early 1900s but the higher values were found from the 1950s to present. PAH congener ratios showed that these contaminants had both petrogenic and pyrolitic sources, although the former has been predominant since the 1970s. The Salina Cruz refinery started operations in 1978 but the oil industry activities in the Tehuantepec Isthmus go back to the beginning of the twentieth century with the operation of Minatitlan refinery in the Gulf of Mexico, and the Gulf of Tehuantepec being the main conduit for oil distribution in the Pacific coast. The observed changes in contaminant distributions described well the oil industry development in the area.  相似文献   

7.
The Kangan Permo-Triassic brine aquifer and the overlying gas reservoir in the southern Iran are located in Kangan and Dalan Formations, consisting dominantly of limestone, dolomite, and to a lesser extent, shale and anhydrite. The gasfield, 2,900 m in depth and is exploited by 36 wells, some of which produce high salinity water. The produced water gradually changed from fresh to saline, causing severe corrosion in the pipelines and well head facilities. The present research aims to identify the origin of this saline water (brine), as a vital step to manage saline water issues. The major and minor ions, as well as δ2H, δ18O and δ37Cl isotopes were measured in the Kangan aquifer water and/or the saline produced waters. The potential processes causing salinity can be halite dissolution, membrane filtration, and evaporation of water. The potential sources of water may be meteoric, present or paleo-seawater. The Na/Cl and I/Cl ratios versus Cl? concentration preclude halite dissolution. Concentrations of Cl, Na, and total dissolved solid were compared with Br concentration, indicating that the evaporated ancient seawater trapped in the structure is the cause of salinization. δ18O isotope enrichment in the Kangan aquifer water is due to both seawater evaporation and interaction with carbonate rocks. The δ37Cl isotope content also supports the idea of evaporated ancient seawater as the origin of salinity. Membrane filtration is rejected as a possible source of salinity based on the hydrochemistry data, the δ18O value, and incapability of this process to dramatically enhance salinity up to the observed value of 330,000 mg/L. The overlaying impermeable formations, high pressure in the gas reservoir, and the presence of a cap rock above the Kangan gasfield, all prevent the downward flow of meteoric and Persian Gulf waters into the Kangan aquifer. The evaporated ancient seawater is autochthonous, because the Kangan brine aquifer was formed by entrapment of brine seawater during the deposition of carbonates, gypsum, and minor clastic rocks in a lagoon and sabkha environment. The reliability of determining the source of salinity in a deep complicated inaccessible high-pressure aquifer can be improved by combining various methods of hydrochemistry, isotope, hydrodynamics, hydrogeology and geological settings.  相似文献   

8.
This research has identified areas located in the northern coastline of the Persian Gulf in the south of Iran, as strategic and ecological sites, based on tourism potential assessing criteria. To this end coastal limits were identified by satellite imagery in terms of shorelines and the maximum extent of water approach into the land and taking into consideration the characteristics of the nearby coastal villages. The studied region was then compared to similar international criteria and experiences. The original criteria were then divided into three main and four sub criteria. The Kangan region was found to have a potential for tourism industry according to the mentioned criteria. Naiband Gulf with a score of 20 was ranked first followed by Asalouyeh with a score of 18 and finally Taheri and Kangan Ports with scores of 16 and 15, respectively. With a high tourism industry potential in the studied region the necessity of ecotourism quality enhancement and environmental management planning for the northern shoreline of the Persian Gulf becomes of vital importance.  相似文献   

9.
Geomechanics is a science dealing with the study of the behaviour of rocks affected by stress. It has various applications in utilisation from oil and gas reservoirs including of the wellbore stability analysis and determination of safe mud window. The main aim of this paper is geomechanical study of Kangan–Dalan reservoir in South Pars gas field in Persian Gulf in south Iran. Seismic waves are affected by physical properties of rocks when passing underground formations; thus, the velocity of these waves is a desired parameter for estimation of geomechanical properties. The velocity of compressional and shear waves has been determined with processing seismic data resulting from vertical seismic profile. In this paper, after calculation of elastic modules of reservoir rock, the imposed stress field was determined and these concepts were used for engineering calculations such as safe mud window, wellbore stability analysis and sand production potential. For well drilling in Kangan-Dalan reservoir, the minimum and maximum mud weights were proposed in average as 1.093 and 2.011 gr/cc and average critical mud weight as 2.48 gr/cc such that if the weight of mud increases, the tensile fractures will be created on the formation and complete loss of mud will happen.  相似文献   

10.
El Bey river, which drains 60% of the pollutant load of several urban cities in the northeast of Tunisia, provides a good example of the transfer of organic and metallic pollutants that result from industrial and urban activity, and can be used to show how these charges are transported and discharged into the Gulf of Tunis. Persistent organic pollutants (PAH and PCB) in dissolved, particulate matter, bed sediments, and three wastewater effluents in El Bey watershed were analyzed. PAH (∑14PAHs) concentration ranged from 0.248 to 9.955 mg L?1 and from 0.836 to 28.539 mg L?1 in dissolved and particulate fraction respectively. The particulate/dissolved partition coefficient value (Kd) was less than one which confirmed the affinity of PAH to be adsorbed. In sediment, the high-molecular weight PAHs were found principally with percentage between 50 and 100% witch present 239.99 to 5362.19 μg kg?1, which is relatively higher in comparison with other estuaries river. Contrary to PAH patterns, PCB were bound to dissolve fraction. Kd (PCB) value (Kd?>?1) reflected this affinity which is related to environment energy. The spatial distribution and profile of analyzed organic pollutants confirmed the direct impact of wastewater effluent on the organic pollution level in three compartment of El Bey watershed and his profiles suggested different transport patterns.  相似文献   

11.
浅析某油田地下水石油类污染途径   总被引:1,自引:0,他引:1  
研究区处于东北某油田区,该油田已有近50年的开发历史。随着对石油需求的不断增加,大量的石油被开采了出来。但是在开采过程中由于对落地原油及开采过程中油田废水的处置不当,致使地下水遭受了污染。因此保护地下水免受进一步污染对当地居民的身体健康和人身安全都是非常必要的。笔者基于研究区水样测试的结果石油类污染物浓度等值线图,发现地下水中石油类污染小范围内呈面状分布外,主要呈点状分布于研究区。通过结合对研究区地质环境、构造背景、地表水流和污染源的大量调查研究,分析得出石油类污染物主要是通过由过量开采地下水引起的地裂缝和新构造断裂引发的地裂缝以及事故性污染到达地下水的。研究区的ZK6号井附近由于长期的超量开采地下水从而改变了地下水流向,在地表则形成了地面沉降并引发了此处的地裂缝,致使此地下水油类的污染非常严重。另外,新构造断裂在北西向、北北东向及东西向3组壳断裂带的基础上继承性运动,致使下伏含油层油气沿裂缝上窜污染上覆含水层,同时在油田地表发育大量的地沟、地裂缝,地表洒落的原油及其他污染物通过这些地裂缝污染含水层。  相似文献   

12.
Presence of polycyclic aromatic hydrocarbons (PAHs) in the soil and water is of serious environmental concern as they are carcinogenic in nature. The present study was carried out with an aim to identify the presence of PAHs in groundwater of Chennai, Tamil Nadu, India. This is an industrialised area where petrochemical storage tanks are located. Groundwater sampling was carried out in the years 2001, 2011 and 2012 to understand the variation in PAHs content in this area. Concentration of major ions, pH and EC were measured during the year 2001. Of the 24 groundwater samples collected in the year 2001, most of them were alkaline and 62.5 % were not permissible for drinking based on pH and EC, respectively. Influence of seawater was the major reason for the Na–Cl dominant nature of groundwater. TPH and PAHs analysis of groundwater carried out in 2001 and 2011, and physical examination of groundwater in 2012 indicate the increased level of contamination in the eastern part of the study area. The contamination in the eastern part persists because of the fact that groundwater is flowing towards the east and also due to the presence of petrochemical storage tanks near the coast. Thus this area is affected by PAHs pollution which has endured over the past 50 years. An underground storage tank that was functioning in this area was closed about 50 years ago and leakage of PAHs from this tank was reported in the year 1993. However, the present study indicates the decrease in the area of zone of pollution, possibly due to natural flushing of groundwater zone.  相似文献   

13.
This study assesses the landslide susceptibility of the South Pars Special Zone (SPSZ) region that is located in southwest Iran. For this purpose, a combinatorial method containing multi-criteria decision-making, likelihood ratio and fuzzy logic was applied in two levels (regional and local) at three critical zones (northwest, middle and southeast of the project area). The analysis parameters were categorised in seven main triggering factors such as climatology, geomorphology, geology, geo-structure, seismic activity, landslide prone areas and man-made activities which have different classes with multi-agent partnership correlations. Landslide susceptibility maps were prepared for these levels and zones after purified and enriched fuzzy trending runs were performed. According to the results of the risk-ability assessment of the landslide occurrences for SPSZ, the north part of the study area which includes the south edge of the Assalouyeh anticline and the southern part of the Kangan anticline were estimated as high-risk potential areas that were used in landslide hazard mitigation assessment and in land-use planning.  相似文献   

14.
松辽盆地十屋断陷区油气分布复杂,勘探程度高,油田外排污水规模巨大,常规技术处理污水效果不理想。区内4 km以下部分地层呈负压态,若容储介质参数达到相应地质填埋标准,则可在工程实践中尝试应用。结合该区水文及地质资料,建立地下水流及污水污染物迁移数值模拟模型,模拟研究区低压系统入注污水时地下水流动特征及污染物的迁移规律,同时估算了系统空间污水容储量。在预测过程中,分析了断陷区负压形成机制及分布特点,同时结合虚拟粒子示踪及注水过程,对污水的环境影响度进行了预测。研究结果表明,十屋断陷异常低压区是一个天然污水封闭储藏区,系统地层压力梯度仅为0.005~0.008 MPa/m,容储量高达1.241×108 m3,且污染物逃逸概率极小,非常适合油田污水的处置。  相似文献   

15.
Determination of total petroleum hydrocarbon distribution (TPH) in groundwater of Dezful aquifer was the main purpose of this study. The study area, which is located between latitudes 32°00′ and 32°35′?N and longitudes 48°10′ and 49°35′?E, covers about 1,920 km2 in the north of Khuzestan Province, Iran. Hydrocarbon pollutants in the area were being released into the aquifer, from a variety of sources. An oil pipe crash accident, which occurred on 19 Feb. 2009 in the vicinity of the northern part of the study area, released about 6,000 barrels of crude oil to the Karkhe River. Other possible sources of TPH in the region are asphalt factories, gas stations, and the Sabzab oil pump station. Since the main source of drinking water in the Dezful area is groundwater reservoirs, this study would be very crucial, especially when there is considerable agricultural activity in the area as well. In order to determine the presence of TPH and heavy metals in the groundwater, samples were taken from wells with different usage within two periods, i.e., in Nov. 2008 and May 2009. The second sampling operation was carried out to determine the effect of the accident in the water resources. In situ groundwater parameter measurements including pH, dissolved oxygen, temperature, and electrical conductivity were also carried out in the field. Based on the results, there are four zones in the study area which were contaminated with TPH from different origins: (1) southeast of Dezful City, which was contaminated by Shokati gas station; (2) southeast of Shush City, which was contaminated by an asphalt factory; (3) southwest of Dezful City, which was contaminated by Sabzab oil pump station; and (4) the shores of Karkhe River which were contaminated due to the pipeline crash accident. This could be a serious threat to the environment and human health because TPH concentration was higher than the EPA standard in the study area. Heavy metals were not distributed in a uniform pattern in the aquifer. The concentrations were lower than the contamination level based on the EPA drinking standard, and there was no meaningful relation between concentrations of TPH and the heavy metals. It was recommended that a monitoring network should be designed to monitor oil contaminants in the ground and surface water monthly because of importance of the water resources and presence of potential oil contaminant sources.  相似文献   

16.
In this paper, the contents of polycyclic aromatic hydrocarbons (PAHs) in soil samples around three different oily sludge plants in winter were analyzed by high performance liquid chromatography (HPLC) and the pollution degree with PAHs in soil samples was determined. Soil samples were collected from the agricultural soil around three different oily sludge plants (the Third Wenming Plant, the Third Mazhai Plant, and the Fourth Wener Plant) along with the leeway in Zhongyuan oil field. The distances from collected sample sites to oily sludge plants are 10, 20, 50, 100, 200, and 500 m, respectively. The results show that the contents of PAHs in soil samples decrease dramatically with the increase of the distance from the oily sludge, and that the PAHs with 2–4 rings are major pollutants in the oily sludge and soil samples. The main factors, which influenced the distribution of PAHs are discussed. Based on Nemero Index P, the classification evaluation shows that the soils around the oily sludge are heavily polluted in winter. The health risk assessment and ecological risk assessment of the soils around the oily sludge in Zhongyuan oil field in winter are analyzed.  相似文献   

17.
本文建立了S-916快速溶剂萃取仪(Buchi瑞士)快速萃取-气相色谱-质谱仪(GC-MS)联用测定土壤中15种多环芳烃(PAHs)含量的方法。土壤样品经正己烷、丙酮快速溶剂萃取,除水浓缩后,利用硅酸镁小柱进行净化,直接进GC-MS测定。结果表明,在5.01000.0μg/L浓度范围内,15种PAHs的相关系数均在0.996以上,RF RSD<12%,加标回收率在80%117%之间,15种PAHs的最低检出限均低于0.40μg·kg^-1.该方法灵敏、快速、准确可靠,完全满足实验室对土壤中PAHs的检测要求,可为土壤中多环芳烃(PAHs)的污染情况提供快速检测依据。  相似文献   

18.
The Kangan aquifer (KA) is located beneath the Kangan gas reservoir (KGR), 2,885 m below the ground surface. The gas reservoir formations are classified into nine non-gas reservoir units and eight gas reservoir units based on the porosity, water and gas saturation, lithology, and gas production potential using the logs of 36 production wells. The gas reservoir units are composed of limestone and dolomite, whereas the non-gas reservoir units consist of compacted limestone and dolomite, gypsum and shale. The lithology of KA is the same as KGR with a total dissolved solid of 333,000 mg/l. The source of aquifer water is evaporated seawater. The static pressure on the Gas–Water Contact (GWC) was 244 atm before gas production, but it has continuously decreased during 15 years of gas production, resulting in a 50 m uprising of the GWC and the expansion of KA water and intergranular water inside the gas reservoir. The general flow direction of the KA is toward the northern coast of the Persian Gulf due to the migration of water to the overlying formations via a trust fault. The KA is a gas-capped deep confined aquifer (GCDCA) with special characteristics differing from a shallow confined aquifer. The main characteristics of a GCDCA are unsaturated intergranular water below the confining layers, no direct contact of the water table (GWC) with the confining layers, no vertical flow via the cap rock, permanent uprising of the GWC during gas production, and permanent descend of GWC during water exploitation.  相似文献   

19.
环境中的多环芳烃及其生物恢复技术   总被引:9,自引:0,他引:9  
多环芳烃是一大类广泛存在于环境中的有机污染物。天然燃烧、火山爆发、矿物资料及其它有机物的不完全燃料和热解产生的PAH进入大气中,气态沉降、城市地表径流、城市污水、废水及油的溢涵和渗漏等是PAH进行地表水的主要途径,大气中PAH的干、湿沉降,污水灌溉,地面及地下储油装置的渗漏,地面固体废物堆的淋滤等是土壤中PAH的主要来源,沉积物和土壤是PAH的主要环境归宿。生物恢复是一种处理有机污染的新方法。  相似文献   

20.
The performance of activated sludge process (ASP) is evaluated by the effluent quality which is determined by five different variables of the treated wastewater such as ammonia, total nitrogen, COD, BOD5 and TSS. To keep these five variables within the limits as per environmental regulations, nitrate and nitrite concentration (S NO) in the second anoxic reactor and the dissolved oxygen concentration (S O) in the last aerobic reactor of the ASP should be maintained at prescribed levels. To do that, a closed-loop control configuration is required and proper set-points for these closed-loop control configurations are needed. In this paper, the optimal values of controller set-points are determined for nitrogen removal in the activated sludge process. Effluent quality limits have been considered to evaluate the optimal set-points for the Indian climatic conditions. Once the optimal set-points are determined, PI controllers are used to control S NO in the second anoxic reactor and S O in the last aerobic reactor of the ASP. Further, feed-forward control is incorporated to minimize the effect of disturbances, which enters along with the influent. No case studies of BSM1 model have been reported in the literature for the Indian wastewater. In this work, the dynamic simulation of an activated sludge process is performed using the data collected from the sewage treatment plant, located in India. The results of the simulation showed that feed-forward with PI control strategy, ASP can be efficiently controlled without any effluent violations, when compared to BSM1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号