首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This experimental study determined the effect of ionic strength (IS) on the uptake of Mg into calcites that grew by the classical step propagation process. Using flow-through AFM and defined solution chemistry, calcite was grown in NaCl and KCl solutions of known supersaturation state while measuring the corresponding growth kinetics. Analysis of the resulting calcite compositions by SIMS shows that Mg content is inversely correlated with IS for both electrolytes. A sixfold increase in IS decreases the Mg-content by up to 40%. Overgrowths that developed in NaCl solutions contain more Mg than samples that grew in KCl solutions. The corresponding kinetic measurements reveal that step propagation rates are independent of IS within experimental error but are electrolyte-specific. In NaCl solutions, steps with the obtuse geometry move significantly faster than acute steps, but in KCl solutions, the acute and obtuse steps move at similar rates.Analysis of the data suggests that the decrease in Mg content with increasing IS arises from the interplay of ion-kink interactions between the background cations (Na+ or K+), the primary solute cation (Ca2+), and the impurity (Mg2+). A simple physical model proposes that increasing levels of electrolytes block the attachment of the strongly hydrated Mg2+ ion relative to Ca2+ but the effects are step-specific for each type of electrolyte. Whereas K+ interacts weakly with kink sites along both step directions, Na+ interacts preferentially with acute steps and, consequently, slows their rate of step propagation relative to obtuse steps. Because Na+ increases the fraction of the surface that develops from acute steps and because Mg is preferentially incorporated into the kink sites of acute steps, calcite overgrowths developed in NaCl solutions contain more Mg than those in grown in KCl. Thus, the salt-specific Mg contents measured in this study can be explained by shifts in the distribution of step types and the ability of each step type to incorporate Mg. The findings reconcile apparent discrepancies regarding the effect of IS on calcite kinetics and Mg incorporation observed in laboratory-based studies.  相似文献   

2.
Groundwater in Palnad sub-basin is alkaline in nature and Na+-Cl-HCO3 type around Macherla-Karempudi area in Guntur district, Andhra Pradesh. Total dissolved solids (TDS) show strong positive correlation with Cl, Na+, Ca2+ and Mg2+, and positive correlation with SO42−, K+ and HCO3. Calcareous Narji Formation is the dominant aquifer lithology, and water-rock interaction controls the groundwater chemistry of the area. Chloro-alkaline indices (CAI) are positive at Miriyala, Adigopula, Mutukuru, Macherla and Durgi suggesting replacement of Na+ and K+ ions from water by Mg++ and Ca++ ions from country rock through base exchange reactions. Negative CAI values are recorded at Terala, Rayavaram and Nehrunagar, which indicate exchange of Na+ and K+ from the rock as cation-anion exchange reaction (chloro-alkaline disequilibrium). TDS range from 91 to 7100 ppm (Avg. 835 ppm) and exceed the prescribed limit of drinking water around Mutukuru, Durgi, Rayavaram, Khambampadu and Ammanizamalmadaka areas. Scanty rainfall and insufficient groundwater recharge are the prime factors responsible for high salinity in the area. Fluoride content ranges from <1 to 3.8 ppm and contaminated areas were identified around Macherla (1 sq km; 3.8ppm), Mandadi (1 sq km, 2.1ppm) and Adigopula (2 sq km, <1 to 3.7 ppm). The % Na+ content varies from 17 to 85 with the mean value of 57, and eighty (80) samples showed higher %Na+ in comparison to the prescribed limit of 60 for irrigation water. Sodium Adsorption Ratio (SAR) and % Na+ in relation to total salt concentration indicate that groundwater (51%) mostly falls under doubtful to poor quality for irrigation purpose. Groundwater of Adigopula village is fluoride contaminated and remedial measures are suggested to improve the water quality.  相似文献   

3.
Growing recognition of triple-chain silicates in nature has prompted experimental research into the conditions under which they can form and the extent of solid solution that is feasible for some key chemical substitutions. Experiments were done primarily in the range of 0.1–0.5 GPa and 200–850 °C for durations of 18–1,034 h. A wide range of bulk compositions were explored in this study that can be classified broadly into two groups: those that are Na free and involve various possible chemical substitutions into jimthompsonite (Mg10Si12O32(OH)4), and those that are Na bearing and involve chemical substitutions into the ideal end-member Na4Mg8Si12O32(OH)4. Numerous attempts to synthesize jimthompsonite or clinojimthompsonite were unsuccessful despite the type of starting material used (reagent oxides, magnesite + SiO2, talc + enstatite, or anthophyllite). Similarly, the chemical substitutions of F for OH, Mn2+, Ca2+, or Fe2+ for Mg2+, and 2Li+ for Mg2+ and a vacancy were unsuccessful at nucleating triple-chain silicates. Conversely, nearly pure yields of monoclinic triple-chain silicate could be made at temperatures of 440–630 °C and 0.2 GPa from the composition Na4Mg8Si12O32(OH)4, as found in previous studies, though its composition is most likely depleted in Na as evidenced by electron microprobe and FTIR analysis. Pure yields of triple-chain silicate were also obtained for the F-analog composition Na4Mg8Si12O32F4 at 550–750 °C and 0.2–0.5 GPa if a flux consisting of Na-halide salt and water in a 2:1 ratio by weight was used. In addition, limited chemical substitution could be documented for the substitutions of 2 Na+ for Na+ + H+ and of Mg2+ + vacancy for 2Na+. For the former, the Na content appears to be limited to 2.5 cations giving the ideal composition of Na2.5Mg8Si12O30.5(OH)5.5, while for the latter substitution the Na content may go as low as 1.1 cations giving the composition Na1.1Mg9.4Si12O31.9(OH)4.1 based on a fixed number of Si cations. Further investigation involving Mg for Na cation exchange may provide a pathway for the synthesis of Na-free clinojimthompsonite. Fairly extensive solid solution was also observed for triple-chain silicates made along the compositional join Na4Mg8Si12O32(OH)4–Ca2Mg8Si12O32(OH)4 where the limit of Ca substitution at 450 °C and 0.2 GPa corresponds to Na0.7Ca1.8Mg7.8Si12O31.9(OH)4.1 (with the OH content adjusted to achieve charge balance). Aside from the Na content, this composition is similar to that observed as wide-chain lamellae in host actinolite. The relative ease with which Na-rich triple chains can be made experimentally suggests that these phases might exist in nature; this study provides additional insights into the range of compositions and formation conditions at which they might occur.  相似文献   

4.
Two chemical processes can remove Mg2+ from suspensions containing amorphous silica (am-SiO2) at low temperatures: adsorption and precipitation of a Mg-hydroxysilicate resembling sepiolite. Mg2+ removal from am-SiO2 suspensions was investigated, and the relative role of the two removal processes evaluated, as a function of: pH, ionic strength, Mg2+ concentration, and temperature.The extent of Mg2+ adsorption onto am-SiO2 decreases with increasing NaCl concentration due to displacement of Mg2+ by Na+. At NaCl concentrations of 0.05 M and above, adsorption occurs only at pH values above 8.5, where rapid dissolution of am-SiO2 gives rise to high concentrations of dissolved silica, resulting in supersaturation with respect to sepiolite. Removal of Mg2+, at concentrations of 40 to 650 μM, from am-SiO2 suspensions in 0.70 M NaCl at 25 °C occurs at pH 9.0 and above. Experiments show that under these conditions adsorption and Mg-hydroxysilicate precipitation remove Mg2+ at similar rates. For 0.05 M Mg2+, at 0.70 M ionic strength and 25 °C, measurable Mg2+ removal occurs down to ca. pH 7.5 but is primarily due to Mg-hydroxysilicate precipitation. For the same solution conditions at 5°C, Mg2+ removal occurs above pH 8.0 and is primarily due to adsorption.Assuming that increasing pressure does not greatly enhance adsorption, Mg2+ adsorption onto am-SiO2 is an insignificant process in sea water. The surface charge of pristine am-SiO2 in sea water is primarily controlled by interactions with Na+. The principal reaction between Mg2+ and am-SiO2 in marine sediments is sepiolite precipitation.The age distribution of sepiolite in siliceous pelagic sediments is influenced by temperatures of bottom waters and by geothermal gradients.  相似文献   

5.
A statistical evaluation of the results of geochemical analyses of geothermal waters during interlaboratory comparison programmes of the International Association of Geochemistry and Cosmochemistry (IAGC) and International Atomic Energy Agency (IAEA) was performed to estimate the uncertainty of measurement of pH, electrical conductivity, Na+, K+, Ca2+, Mg2+, Li+, Cl?, HCO3?, SO42?, SiO2 and B. The uncertainty of measurement was found to increase exponentially with decrease in value (concentration) for all the parameters except for pH, electrical conductivity and SiO2 and was of the same order of magnitude as the concentrations for values of less than 1 μ ml?1. There was an overall uncertainty of ± 2.5% in the measurement of pH and ± 30% in SiO2. For all the other chemical species the uncertainty data were modelled by exponential curves. The sample IAEA14 was prepared by dissolving commercial reagents (i.e., represents a solution of known composition). Thus, the calculated values are considered to be the conventional true values for each chemical parameter. The difference between the measured mean of the data submitted by participating laboratories and the conventional true value for each parameter (i.e., bias of submitted measurements) for the species Na+, K+, Ca2+, Mg2+, Cl? and SO42? was ‐3.5, ‐1.1, ‐13.3, ‐53.6, ‐12.6 and ‐86.6%, respectively. The observed bias was of the same order of magnitude as statistical fluctuations (1s) for Na+ and K+, but significantly higher for Ca2+, Mg2+, Cl? and SO42?. Two methods, uncertainty interval and GUM (“guide to the expression of uncertainty of measurement”) were used to propagate uncertainty in the pH calculation of geothermal reservoir fluid. The application of the methods is illustrated by considering the IAEA10 and IAEA11 samples analysed in the interlaboratory comparisons as separated geothermal waters at atmospheric pressure.  相似文献   

6.
The cation-exchange characteristics of Amazon River suspended sediment have been studied in order to determine the contribution of exchangeable cations to the geochemical fluxes from the river. Sediment samples were obtained throughout most of the Amazon Basin. The range of exchangeable cation compositions is very narrow in the river and in seawater as well. In river water, the exchangeable cation complement (equivalent basis, exclusive of H+) is 80% Ca2+, 17% Mg2+, 3% Na+ plus K+. In seawater Na+ and Mg2+ are about equal (38%) while Ca2+ ~ 15% and K+ ~ 9%.On reaction with seawater, river suspended sediment took up an amount of Na+ equal to nearly one-third of the dissolved river load, as well as amounts corresponding to 15–20% of the dissolved fluvial K+ and Mg2+. These estimates reflect an unusually high suspended-sediment:dissolved-solids ratio of 6.4 at the time of sampling. At a more representative world average ratio of four, the uptake of Na+ would be 20% of the dissolved fluvial load, and that for K+ and Mg2+ about 10%. Over the annual cycle of the Amazon, it is estimated that ion exchange has a still smaller effect, as a consequence of the low average suspended-solids:dissolved-solids ratio of 1.7.Variations in the ratio XCaXMg, the equivalent fraction of exchangeable Ca2+ and Mg2+, throughout the river, can be described by a single isotherm. This same isotherm accurately describes the distribution of exchangeable Ca2+ and Mg2+ on sediment equilibrated with seawater, despite that a high proportion of exchange sites is occupied by Na+ and K+.  相似文献   

7.
In this study, a series of interaction coefficients of the Brønsted-Guggenheim-Scatchard specific interaction theory (SIT) have been estimated up to 200°C and 400 bars. The interaction coefficients involving Cl- estimated include ε(H+, Cl-), ε(Na+, Cl-), ε(Ag+, Cl-), ε(Na+, AgCl2 -), ε(Mg2+, Cl-), ε(Ca2+, Cl-), ε(Sr2+, Cl-), ε(Ba2+, Cl-), ε(Sm3+, Cl-), ε(Eu3+, Cl-), ε(Gd3+, Cl-), and ε(GdAc2+, Cl-). The interaction coefficients involving OH- estimated include ε(Li+, OH-), ε(K+, OH-), ε(Na+, OH-), ε(Cs+, OH-), ε(Sr2+, OH-), and ε(Ba2+, OH-). In addition, the interaction coefficients of ε(Na+, Ac-) and ε(Ca2+, Ac-) have also been estimated. The bulk of interaction coefficients presented in this study has been evaluated from the mean activity coefficients. A few of them have been estimated from the potentiometric and solubility studies. The above interaction coefficients are tested against both experimental mean activity coefficients and equilibrium quotients. Predicted mean activity coefficients are in satisfactory agreement with experimental data. Predicted equilibrium quotients are in very good agreement with experimental values. Based upon its relatively rapid attainment of equilibrium and the ease of determining magnesium concentrations, this study also proposes that the solubility of brucite can be used as a pH (pcH) buffer/sensor for experimental systems in NaCl solutions up to 200°C by employing the predicted solubility quotients of brucite in conjunction with the dissociation quotients of water and the first hydrolysis quotients of Mg2+, all in NaCl solutions.  相似文献   

8.
In many arid and semiarid areas, dry lake beds (saline playa) represent a tremendous source of unconsolidated salt-rich sediments that are available for aeolian transport. Severe salt-dust storms caused by the erosion of such landforms have become very harmful natural phenomena. In this study, sample analysis and field erosion monitoring of Ebinur Lake was conducted to investigate the salt content, chemical composition, and wind erosion intensity of surface salt-rich sediments. The effects of salt-dust rising from the playa on the growth and physiological health of plants were also evaluated in this study through a leaf dustfall test. The results indicate that water-soluble salts assemble densely on the dry lake bed surface. At a depth of 0–2 cm, the highest salt contents can exceed 40%, with sulfate and chloride being the main anions present and Na+, Ca2+, and Mg2+ being the primary cations. The annual wind erosion rate ranged from 0.48 to 5.6 cm in the northwest portion of the lake and from 0.24 to 0.96 cm in the southeast portion. Salt-dust storms caused by wind erosion of saline playa sediments seriously influenced the normal absorption of minerals by plant leaves. Under the influence of salt-dust storms, plant leaves absorb more Na+, but far less K+.  相似文献   

9.
The assemblages phengite-paragonite, phengite-margarite and phengite-paragonitemargarite are very common in metasediments of a N-S profile in the middle sector of the Hohe Tauern. The Si4+-content of phengite shows no regular change with increasing temperature from north to south along the profile. The variations in the d 002 basal spacings of phengite coexisting with paragonite are not only dependent on the Na+ content of phengite but also on the Mg2++Fe2+ content of the micas. Neither the sodium content in phengite nor the potassium content in paragonite shows any dependence on temperature. Chemical analyses of coexisting phengite, paragonite and margarite give the extent of the three-phase-region which is characterized by a small amount of margarite in paragonite (4 Mol%), by a large quantity of Na+ in margarite (28 Mol% paragonite), and limited miscibility between phengite and paragonite.  相似文献   

10.
As one of the most arid regions in the world, the study area, Zhangye Basin is located in the middle reaches of the Heihe River, northwest China. Besides aridity, rapid social and economic development also stimulates greater demand for water, which is gradually fulfilled by groundwater extraction. In this study, the conventional hydrochemical techniques and statistical analyses were applied to examine the major ions chemistry and hydrochemical processes of groundwater in the Zhangye Basin. The results of chemical analysis indicate that no one pair of cations and anions proportions is more than 50% in the groundwater samples of the study area. High-positive correlations were obtained among the following ions: HCO3 ?–Mg2+, SO4 2?–Mg2+, SO4 2?–Na+ and Cl?–Na+. TDS depends mainly on the concentration of major ions such as HCO3 ?, SO4 2?, Cl?, Mg2+ and Na+. The hydrochemical types in the area can be divided into two major groups: the first group includes Mg2+–Na+–HCO3 ?, Mg2+–Na+–Ca2+–HCO3 ?–SO4 2? and Mg2+–Ca2+–Na+–SO4 2?–HCO3 ? types. The second group comprises Mg2+–Ca2+–SO4 2? type, Mg2+–Ca2+–SO4 2?–Cl? type and Mg2+–Na+–SO4 2?–Cl? type. The ionic ratio plot and saturation index calculation suggests that the silicate weathering, to some extent, and evaporation are dominant factors that determine the major ionic composition in the study area.  相似文献   

11.
An exploratory study was carried out at 22 sampling stations along the Langat River, Selangor in order to investigate on the vitality of cation exchange capacity (CEC) in sediment (0–5 cm). Parameters such as pH, Eh, salinity, and electrical conductivity (EC) were determined. The CEC in sediment has been calculated by the determination of Ca2+, Na+, Mg2+, and K+ using the flame atomic absorption spectrophotometer, while the organic matter content in sediment was ascertained using the loss on ignition method. The characteristic of the sediment shows that pH (3.09–7.46), salinity (0.02–10.71 ppt), EC (3.39–517 μS/cm) and Eh (?16.20–253.10 mV) were substantially high in variation. This study also revealed that exchangeable Ca2+ and Mg2+ were controlled by organic matter contents, while exchangeable Na+ and K+ were influenced by salinity. Salinity was observed to play a major part in controlling all the exchangeable cations, as it gives strong significant correlations with Na+, K+, Mg2+, CEC, and organic matter at p?<?0.01. The presence of seawater, clay mineralogy, and organic matter proves that it does play an important role in determining the CEC and soon relates to the pollution magnitude in the sediment.  相似文献   

12.
Groundwater survey has been carried out in the area of Gummanampadu sub-basin located in Guntur District, Andhra Pradesh, India for assessing the factors that are responsible for changing of groundwater chemistry and consequent deterioration of groundwater quality, where the groundwater is a prime source for drinking and irrigation due to non-availability of surface water in time. The area is underlain by the Archaean Gneissic Complex, over which the Proterozoic Cumbhum rocks occur. The results of the plotting of Ca2+ + Mg2+ versus HCO3 ? + CO3 2?, Ca2+ + Mg2+ versus total cations, Na+ + K+ versus total cations, Cl? + SO4 2? versus Na+ + K+, Na+ versus Cl?, Na+ versus HCO3 ? + CO3 2?, Na+ versus Ca2+ and Na+: Cl? versus EC indicate that the rock–water interaction under alkaline condition is the main mechanism in activating mineral dissociation and dissolution, causing the release of Ca2+, Mg2+, Na+, K+, HCO3 ?, CO3 2?, SO4 2? and F? ions into the groundwater. The ionic relations also suggest that the higher concentrations of Na+ and Cl? ions are the results of ion exchange and evaporation. The influences of anthropogenic sources are the other cause for increasing of Mg2+, Na+, Cl?, SO4 2? and NO3 ? ions. Further, the excess alkaline condition in water accelerates more effective dissolution of F?-bearing minerals. Moreover, the chemical data plotted in the Piper’s, Gibbs’s and Langelier–Ludwig’s diagrams, computed for the chloro-alkaline and saturation indices, and analyzed in the principal component analysis, support the above hypothesis. The groundwater quality is, thus, characterized by Na+ > Ca2+ > Mg2+ > K+: HCO3 ? + CO3 2? > Cl? > SO4 2? > NO3 ? > F? facies. On the other hand, majority of groundwater samples are not suitable for drinking with reference to the concentrations of TDS, TH, Mg2+ and F?, while those are not good for irrigation with respect to USSL’s and Wilcox’s diagrams, residual sodium carbonate, and magnesium hazard, but they are safe for irrigation with respect to permeability index. Thus, the study recommends suitable management measures to improve health conditions as well as to increase agricultural output.  相似文献   

13.
Water soluble components of PM10 Chongqing, China   总被引:1,自引:0,他引:1  
The concentrations of water soluble ions (Na+, NH4 +, K+, Mg2+, Ca2+, NO3 -, Cl-, and SO 4 2- ) in PM10 samples collected on cellulose filters by a medium-volume cascade impactor were determined, which were obtained from three kinds of areas in Chongqing: industrial area (Jiulongpo district), commercial and residential area (Jiangbei district) and background area (Jinyun Mountain in the Beibei district). The results showed that except for the background site, the annual average values of PM10 are 23% – 61% higher than the national air quality standard (GradeII) (0.1 mg/m3), even that the value of the control site is still 20% higher than American standard (0.05 mg/m3). This implied that serious pollution of fine particles occurred in Chongqing. Nine kinds of soluble ions in water of PM10 were analyzed by ion chromatography (IC) and the annual average concentrations follow the order of [SO 4 2- ] > [NO3 -] > [Cl-] > [F-], and [Ca2+] > [NH4 +] > [K+] > [Na+] > [Mg2+]. Their values were different in these areas: the industrial area > the commercial and living area > the control area. As for NH4 +, K+, Ca2+, NO3 - and SO 4 2- , their seasonal average concentrations show a similar variation trend: the values in spring and fall were higher than those in summer and winter. The seasonal average concentrations of [Cl-], [F-], [Na+] and [Mg2+] are much lower than those of other ions. However, the concentrations of [Na+] changed more greatly in different seasons than those of the other three ions. Correlation coefficients showed that the three areas have been polluted by coal smoke and dust to different extents, while some local resources of pollution should be taken into consideration as well.  相似文献   

14.
Hydrogeochemical controlling factors for high rate of groundwater contamination in stressed aquifer of fractured, consolidated rocks belonging to semi-arid watershed are examined. The groundwater in mid-eastern part of Prakasam district confining to Musi-Gundlakamma sub-basins is heavily contaminated with nitrate and fluoride. Distinct water chemistry is noticed among each group of samples segregated based on concentration of these contaminants. The nitrate is as high as 594 mg/l and 57 % of the samples have it in toxic level as per BIS drinking water standards, so also the fluoride which has reached a maximum of 8.96 mq/l and 43 % of samples are not fit for human consumption. Nitrate contamination is high in shallow aquifers and granitic terrains, whereas fluoride is in excess concentration in deeper zones and meta-sediments among the tested wells, and 25 % of samples suffer from both NO3 ? and F? contamination. Na+ among cations and HCO3 ? among anions are the dominant species followed by Mg2+ and Cl?. The NO3 ?-rich groundwater is of Ca2+–Mg2+–HCO3 ?, Ca2+–Mg2+–Cl? and Na+–HCO3 ? type. The F?-rich groundwater is dominantly of Na+–HCO3 ? type and few are of Na+–SO4 2? type, whereas the safe waters (without any contaminants) are of Ca2+–Mg2+–HCO3 ?– and Na+–HCO3 ? types. High molecular percentage of Na+, Cl?, SO4 2? and K? in NO3 ? rich groundwater indicates simultaneous contribution of many elements through domestic sewerage and agriculture activity. It is further confirmed by analogous ratios of commonly associated ions viz NO3 ?:Cl?:SO4 2? and NO3 ?:K+:Cl? which are 22:56:22 and 42:10:48, respectively. The F? rich groundwater is unique by having higher content of Na+ (183 %) and HCO3 ? (28 %) than safe waters. The K+:F?:Ca2+ ratio of 10:5:85 and K+:F?: SO4 2? of 16:7:77 support lithological origin of F? facilitated by precipitation of CaCO3 which removes Ca2+ from solution. The high concentrations of Na+, CO3 ? and HCO3 ? in these waters act as catalyst allowing more fluorite to dissolve into the groundwater. The indices, ratios and scatter plots indicate that the NO3 ? rich groundwater has evolved through silicate weathering-anthropogenic activity-evapotranspiration processes, whereas F? rich groundwater attained its unique chemistry from mineral dissolution-water–rock interaction-ion exchange. Both the waters are subjected to external infusion of certain elements such as Na+, Cl?, NO3 ? which are further aggravated by evaporation processes leading to heavy accumulation of contaminants by raising the water density. Presence of NO3 ? rich samples within F? rich groundwater Group and vice versa authenticates the proposed evolution processes.  相似文献   

15.
The major-ion (Mg2+, Ca2+, Na+, K+, , and Cl) chemistry of Cretaceous seawater was determined from analyses of seawater-derived brines preserved as fluid inclusions in marine halites. Fluid inclusions in primary halite from three evaporite deposits were analyzed by the environmental scanning electron microscopy (ESEM) X-ray energy dispersive spectrometry (EDS) technique: the Early Cretaceous (Aptian, 121.0-112.2 Ma) of the Sergipe basin, Brazil and the Congo basin, Republic of the Congo, and the Early to Late Cretaceous (Albian to Cenomanian, 112.2-93.5 Ma) of the Khorat Plateau, Laos, and Thailand. The fluid inclusions in halite indicate that Cretaceous seawater was enriched several fold in Ca2+, depleted in , Na+, and Mg2+, and had lower Na+/Cl, Mg2+/Ca2+, and Mg2+/K+ ratios compared to modern seawater. Elevated Ca2+ concentrations, with Ca2+ >  at the point of gypsum saturation, allowed Cretaceous seawater to evolve into Mg2+-Ca2+-Na+-K+-Cl brines lacking measurable .The major-ion composition of Cretaceous seawater was modeled from fluid inclusion chemistries for the Aptian and the Albian-Cenomanian. Aptian seawater was extreme in its Ca2+ enrichment, more than three times higher than present day seawater, with a Mg2+/Ca2+ ratio of 1.1-1.3. Younger, Albian-Cenomanian seawater had lower Ca2+ concentrations, and a higher Mg2+/Ca2+ ratio of 1.2-1.7. Cretaceous (Aptian) seawater has the lowest Mg2+/Ca2+ ratios so far documented in Phanerozoic seawater from fluid inclusions in halite, and within the range chemically favorable for precipitation of low-Mg calcite ooids and cements. Results from halite fluid inclusions, together with Mg2+/Ca2+ ratios measured from echinoderm and rudist calcite, all indicate that Early Cretaceous seawater (Hauterivian, Barremian, Aptian, and Albian) had lower Mg2+/Ca2+ ratios than Late Cretaceous seawater (Coniacian, Santonian, and Campanian). Low Aptian-Albian Mg2+/Ca2+ seawater ratios coincide with negative excursions of 87Sr/86Sr ratios and δ34SSO4, and peak Cretaceous ocean crust production rates, all of which suggests a link between seawater chemistry and midocean ridge hydrothermal brine flux.  相似文献   

16.
A comprehensive and systematic study to understand various geochemical processes as well as process drivers controlling the water quality and patterns of the hydrochemical composition of river water in Muthirapuzha River Basin, MRB (a major tributary of Periyar, the longest river in Kerala, India), was carried out during various seasons, such as monsoon, post-monsoon and pre-monsoon of 2007–2008, based on the data collected at 15 monitoring stations (i.e., 15 × 3 = 45 samples). Ca2+ and Mg2+ dominate the cations, while Cl? followed by HCO3 ? dominates the anions. In general, major ion chemistry of MRB is jointly controlled by weathering of silicate and carbonate rocks, which is confirmed by relatively larger Ca2+ + Mg2+/Na+ K+ ratios as well as Ca2+/Na+ vs. Mg2+/Na+ and Ca2+/Na+ vs. HCO3 ?/Na+ scatter plots. The relationship between Cl? and Na+ implies stronger contributions of anthropogenic activities modifying the hydrochemical composition, irrespective of seasons. The water types emerged from this study are transitional waters or waters that changed their chemical character by mixing with waters of geochemically different ionic signatures. However, various ionic ratios, hydrochemical plots and graphical diagrams suggest seasonality over the hydrochemical composition, which is solely controlled by the rainfall pattern. Relatively higher pCO2 indicates the disequilibrium existing in natural waterbodies vis-à-vis the atmosphere, which is an outcome of both the contribution of groundwater to stream discharge and anthropogenic activities. Hence, continuous monitoring of hydrochemical composition of mountain rivers is essential in the context of climate change, which has serious implications on tropical mountain fluvial-hydro systems.  相似文献   

17.
Wheat being a glycophyte crop, responds differently to saline-sodic soil environmental conditions. The application of calcium is multidimensional with respect to sodium ion and plant part response. This study was conducted to record the response of shoot and root to sodium and calcium interaction under saline environment. Wheat seed of variety Punjab 85 were raised in quartz sand. Later on the seedlings were transplanted to pots containing Hoagland’s nutrient solution along with NaCl at 0 mM. and 50 mM. Calcium was applied as CaSO2 2H2O at 3 mM. and 6 mM. Under saline conditions shoot showed positive response to sodium ion in the presence of higher calcium. Relative water contents were higher in the root system at 6 mM of CaSO4. 2H2O under saline condition. Growth responses to potassium and Magnesium in the presence of sodium induced salinity with calcium ion interaction remained variable.  相似文献   

18.
Hydrochemistry of groundwater in Chithar Basin, Tamil Nadu, India was used to assess the quality of groundwater for determining its suitability for drinking and agricultural purposes. Physical and chemical parameters of groundwater such as electrical conductivity, pH, total dissolved solids (TDS), Na+, K+, Ca2+, Mg2+, Cl, HCO3, CO32–, SO42–, NO3, F, B and SiO2 were determined. Concentrations of the chemical constituents in groundwater vary spatially and temporarily. Interpretation of analytical data shows that mixed Ca–Mg–Cl, Ca–Cl and Na–Cl are the dominant hydrochemical facies in the study area. Alkali earths (Ca2+, Mg2+) and strong acids (Cl, SO42–) are slightly dominating over alkalis (Na+, K+) and weak acids (HCO3, CO32–). The abundance of the major ions is as follows: Na+ Ca2+ Mg2+ > K+ = Cl > HCO3> SO42– > NO3 > CO32– . Groundwater in the area is generally hard, fresh to brackish, high to very high saline and low alkaline in nature. High total hardness and TDS in a few places identify the unsuitability of groundwater for drinking and irrigation. Such areas require special care to provide adequate drainage and introduce alternative salt tolerance cropping. Fluoride and boron are within the permissible limits for human consumption and crops as per the international standards.  相似文献   

19.
河北汤泉地热流体水文地球化学特征及其成因   总被引:7,自引:5,他引:2       下载免费PDF全文
提要:汤泉位于河北省遵化市西北部,为山前丘陵地貌,地热资源丰富。本文通过对该地区地热流体研究发现:Na+、Ca2+、K+、Mg2+与SO2-4、HCO-3、Cl-、NO-3是该地区地下热水的主要成分,水化学类型主要为SO2-4-Na+型,属于未污染的天然弱碱性水;流体中F-含量平均为9.36 mg/l,远高于国家地下水质量标准ⅴ级;可溶性SiO2的含量可作为地热温标;地热流体总矿化度平均为782.33 mg/l,属于淡水;为中等腐蚀型水,不结碳酸钙垢,无CaSO4?2H2O垢和SiO2垢生成的可能;地热流体属于含岩盐地层溶滤的陆相沉积水;根据氢氧稳定同位素可知,河北汤泉地热流体主要来源于大气降水。  相似文献   

20.
The hydrogeochemical study of surface and subsurface water of Mahi River basin was undertaken to assess the major ion chemistry, solute acquisition processes and water quality in relation to domestic and irrigation uses. The analytical results show the mildly acidic to alkaline nature of water and dominance of Na+ and Ca2+ in cationic and HCO3 and Cl in anionic composition. In general, alkaline-earth elements (Ca2+ + Mg2+) exceed alkalis (Na+ + K+) and weak acids (HCO3 ) dominate over strong acids (SO4 2+ + Cl) in majority of the surface and groundwater samples. Ca2+–Mg2+–HCO3 is the dominant hydrochemical facies both in surface and groundwater of the area. The weathering of rock-forming minerals mainly controlled the solute acquisition process with secondary contribution from marine and anthropogenic sources. The higher concentration of sodium and dissolved silica, high equivalent ratios of (Na+ + K+/TZ+), (Na+ + K+/Cl) and low ratio of (Ca2+ + Mg2+)/(Na+ + K+) suggest that the chemical composition of the water is largely controlled by silicate weathering with limited contribution from carbonate weathering and marine and anthropogenic sources. Kaolinite is the possible mineral that is in equilibrium with the water, implying that the chemistry of river water favors kaolinite formation. Assessment of water samples for drinking purposes suggests that the majority of the water samples are suitable for drinking. At some sites concentrations of TDS, TH, F, NO3 and Fe are exceeding the desirable limit of drinking. However, these parameters are well within the maximum permissible limit except for some cases. To assess the suitability for irrigation, parameters like SAR, RSC and %Na were calculated. In general, both surface and groundwater is of good to suitable category for irrigation uses except at some sites where high values of salinity, %Na and RSC restrict its uses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号