首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
Bone meal amendments are being considered as a remediation method for metal-contaminated wastes. In various forms (biogenic, geogenic or synthetic), apatite, the principal mineral constituent of bone, has shown promise as an amendment to remediate metal-contaminated soils via the formation of insoluble phosphates of Pb and possibly other metals. The efficacy of commercially available bovine bone meal in this role was investigated in a field trial at Nenthead, Cumbria with a mine waste derived soil contaminated with Zn, Pb and Cd. Two 5 m2 plots were set up; the first as a control and the second, a treatment plot where the soil was thoroughly mixed with bone meal to a depth of 50 cm at a soil to amendment ratio of 25:1 by weight. An array of soil solution samplers (Rhizon SMS) were installed in both plots and the soil pore water was collected and analysed for Ca, Cd, Zn and Pb regularly over a period of 2 a. Concurrently with the field trial, a laboratory trial with 800 mm high and 100 mm wide leaching columns was conducted using identical samplers and with soil from the field site.A substantial release of Zn, Pb, Cd and Ca was observed associated with the bone meal treatment. This release was transient in the case of the leaching columns, and showed seasonal variation in the case of the field trial. It is proposed that this effect resulted from metal complexation with organic acids released during breakdown of the bone meal organic fraction and was facilitated by the relatively high soil pH of 7.6–8.0. Even after this transient release effect had subsided or when incinerated bone meal was substituted in order to eliminate the organic fraction, no detectable decrease in dissolved metals was observed and no P was detected in solution, in contrast with an earlier small column laboratory study. It is concluded that due to the relative insolubility of apatite at above-neutral pH, the rate of supply of phosphate to soil solution was insufficient to result in significant precipitation of metal phosphates and that this may limit the effectiveness of the method to more acidic soils.  相似文献   

2.
Zn-contaminated soils obtained from a steel company in the Republic of Korea were stabilized using Portland cement (PC), cement kiln dust (CKD) and Class C fly ash (FA). The effectiveness of the treatment was evaluated by the United States Environmental Protection Agency toxicity characteristic leaching procedure (TCLP) and the Universal Treatment Standard (UTS) of 4.3 mg/L. X-ray powder diffraction (XRPD) analyses were performed to investigate the crystalline phases associated with Zn immobilization. Scanning electron microscopy (SEM)–energy dispersive X-ray (EDX) analyses were utilized to support the XRPD results. The treatment results showed that the TCLP-Zn concentrations obtained from the 10 wt% PC and 15 wt% CKD treated samples were less than the UTS, after 7 days curing. However, the FA treatment (up to 30 wt%) was not effective in meeting the UTS even after 28 days curing. All PC–CKD treatment combinations were effective in reducing the TCLP-Zn concentrations below the UTS criteria. Moreover, a 20 wt% dose of a PC-FA treatment combination (75/25 PC-FA) was successful in reducing the TCLP-Zn concentrations below 4.3 mg/L after 1 day. The XRPD results showed that ettringite and Zn6Al2(OH)16CO3·4H2O were the possible phases associated with Zn immobilization upon PC and CKD treatment. The SEM–EDX results confirmed the presence of ettringite, while Zn6Al2(OH)16CO3·4H2O was not identified.  相似文献   

3.
This paper describes the dependence of the swell percent (%S) on the soil properties, namely, liquid limit (LL) and cation exchange capacity (CEC). This study provides the statistical model that can be used to obtain an indirect estimation of %S due to CEC and LL. According to the coefficient of correlation (R2 = 0.91), VAF (91.5%) and RMSE (0.727) indices, multiple regression model has a high prediction performance. Although CEC values play an important role in the swelling behaviour of clayey soils, there is no universally accepted simple quantitative swelling potential classification at present. In this paper, a new swelling potential classification and graph, having four respective zones indicating the low, moderate, high, very high swelling potential, was also developed and proposed. This classification will serve to the engineers in order to evaluate the expansivity of the soils, in practice.  相似文献   

4.
5.
The potential to use the alkaline residue products fly ash, green liquor dregs, and lime mud originating from paper mills as dry cover materials to seal tailings has been investigated. Metals concentration in lime mud and fly ash had the lowest and highest contents, respectively. The tailings (<1 % sulfur content, primarily pyrite) were disposed about 50 years ago and originated from the former Rönnskär mine site in Sweden. The results of chemical composition analysis show that the raw unoxidized tailings are active toward oxidation, while the components of the adjacent oxidized tailings are not. To quantify the release of metals from the tailings and to evaluate the effect of a sealing layer on oxidation and weathering of the tailings, batch leaching tests were conducted in which leachate from alkaline residue materials was fed to the tailings. The results show that a higher concentration of most trace elements is leached from the unoxidized tailings than from the oxidized tailings. Except As and Cr, the rest of analyzed metals (Cd, Cu, Ni, Pb) became immobilized in response to the increased pH as a consequence of the amendment. The three tested alkaline amendments show a similar potential for preventing the release of metals (with the exception of As and Cr) from the tailings. Under either aerobic or anaerobic conditions, microbial activity was found to be of minor importance. XRD analysis of the field samples revealed that it was feasible to use alkaline residue products in covering tailings, and that it was advantageous to use ash as a cover material more than dregs.  相似文献   

6.
Toxicity of heavy metals adversely affects environment and human health. Organic materials derived from natural matters or wastes have been applied to soils to reduce the mobility of contaminants such as heavy metals. However, the application of cow bone powder (CB), biochar (BC), and eggshell powder (ES) is rarely investigated for the reduction of Pb bioavailability in soils irrigated with saline water. The objective of this study was to assess the effectiveness of CB, BC, and ES additions as immobilizing substances on Pb bioavailability in shooting range soil irrigated with deionized and saline water. Each additive of CB, BC, and ES at 5 % (w/w) was mixed with soils and then the deionized and saline water were irrigated for 21 days. With deionized water irrigation, the soils treated with CB, BC, and ES exhibited higher pH when compared with saline water irrigation. With saline water irrigation, the electrical conductivity, water-soluble anions, and cations were significantly increased in soils treated with CB, BC, and ES. The water-soluble Pb in soils treated with CB, BC, and ES was significantly decreased with saline water irrigation. On the other hand, the water-soluble Pb in soil treated with CB was increased with deionized water irrigation. Only BC with saline water irrigation decreased the Pb concentration in maize shoots.  相似文献   

7.
The bulk of fly ash (an inorganic waste of coal-fired power generation) produced is deposited in disposal areas where it needs to be revegetated. The effects of addition of three conventional organic amendments (biosolids, poultry manure, green waste compost), or poultry manure-derived biochar, to coal fly ash (at two rates) on some key chemical, physical and microbial properties and on growth of Rhodes grass (Chloris gayana) was studied in a laboratory incubation/greenhouse study. Addition of all amendments, including biochar, increased concentrations of extractable Mg, K, Na and P and CEC(pH 7.0). Additions of poultry manure, and particularly biosolids, also greatly increased levels of extractable NH4 + and NO3 -N. Addition of biosolids, green waste compost and biochar resulted in a decrease in macroporosity, a concomitant increase in mesoporosity and, at the high rate of addition, an increase in available water-holding capacity. Basal respiration was very low in fly ash and was increased by addition of all amendments; metabolic quotient was markedly greater in control than amended treatments. Biosolids, poultry manure and green waste compost additions all increased microbial biomass C. Growth of Rhodes grass was extremely low under unfertilized conditions in control, biochar and, to a lesser extent, green waste compost treatments but addition of poultry manure and the lower rate of biosolids resulted in large increases in yields. Although biochar additions increased extractable Ca, K, P, Cu, Zn and Mn, CEC, mesoporosity and water-holding capacity, they had a little or no stimulatory effect on the size of the soil microbial community, N fertility or plant growth. This was attributable to the lack of metabolisable C and an insignificant N-supplying capacity.  相似文献   

8.
Numerous studies have been conducted with electrochemical removal of heavy metals from spiked kaolinite. Meanwhile, when moving from kaolinite to real soils, new factors must be taken into account—factors influencing, e.g., the buffering capacity of the soil against acidification and the adsorption/desorption processes of the heavy metals. The present study gives some examples where it is necessary to use an enhancement solution to aid desorption of Cu, Zn and Pb during electrodialytic treatment. Dependent on the composition of the pollution, different choices can be made. In the case of a Cu-polluted calcareous soil, ammonia may be used as enhancement solution, due to the formation of charged complexes between ammonia and Cu. Thus, Cu is mobile at high pH when ammonia is added and Cu can be removed without dissolving the calcareous parts. Zn is also mobilized by ammonia, but to a lesser extent than Cu. In the case of Cu, Zn and Pb at the same time, alkaline ammonium citrate may be a solution. It was shown that this enhancement solution could mobilize these three pollutants, but optimization of concentration and pH of the ammonium citrate is still needed. When choosing a remediation scheme for electrochemical treatment of an actual industrially polluted soil, this scheme must be chosen on basis of characterization of soil and pollution combination.  相似文献   

9.
10.
Gravity and magnetic data of the Kachchh basin and surrounding regions have delineated major E–W and NW–SE oriented lineaments and faults, which are even extending up to plate boundaries in the north Arabian Sea and western boundary of the Indian plate, respectively. The epicentral zone of Bhuj earthquake and its aftershocks is located over the junction of Rann of Kachchh and median uplifts viz. Kachchh mainland and Wagad uplifts, which are separated by thrust faults. Gravity data with constraints from the results of the seismic studies along a profile suggest that the basement is uplifted towards the north along thrust faults dipping 40–60° south. Similarly gravity and magnetic modeling along a profile across Wagad uplift suggest south dipping (50–60°) basement contacts separating rocks of high susceptibility and density towards the north. One of these contacts coincides with the fault plane of the Bhuj earthquake as inferred from seismological studies and its projection on the surface coincides with the E–W oriented north Wagad thrust fault. A circular gravity high in contact with the fault in northern part of the Wagad uplift along with high amplitude magnetic anomaly suggests plug type mafic intrusive in this region. Several such gravity anomalies are observed over the island belt in the Rann of Kachchh indicating their association with mafic intrusions. The contact of these intrusives with the country rock demarcates shallow crustal inhomogeneities, which provides excellent sites for the accumulation of regional stress. A regional gravity anomaly map based on the concept of isostasy presents two centers of gravity lows of −11 to −13 mGal (10−5 m/s2) representing mass deficiency in the epicentral region. Their best-fit model constrained from the receiver function analysis and seismic refraction studies suggest crustal root of 7–8 km (deep crustal inhomogeneity) under them for a standard density contrast of −400 kg/m3. It is, therefore, suggested that significant amount of stress get concentrated in this region due to (a) buoyant crustal root, (b) regional stress due to plate tectonic forces, and (c) mafic intrusives as stress concentrators and the same might be responsible for the frequent and large magnitude earthquakes in this region including the Bhuj earthquake of January 26, 2001.  相似文献   

11.
Özdemir  Ayfer 《Hydrogeology Journal》2023,31(5):1209-1228

Determination of areas vulnerable to water pollution in river basins helps to generate appropriate water management protection plans. This study aims to define areas vulnerable to pollutants in a data-scarce karstic river basin in Turkey by using a holistic approach integrating the Soil and Water Assessment Tool (SWAT), the DRASTIC framework, and selected isotopes within a decision support system based on a geographic information system to delineate vulnerable areas. DRASTIC was used to show groundwater vulnerability to pollutants. The concentrations of isotopes 18O, 2H, and 3H in groundwater were used to define the vulnerable areas of the karst region. SWAT was utilized to show watershed vulnerability to pollutants in shallow aquifers. The recharge rate parameter in DRASTIC was obtained from SWAT. This methodological approach was applied to the Yuvacık Dam Basin in Kocaeli, part of the Marmara River Basin, as it is a good example of a karstic watershed. According to this study, each approach provides different vulnerabilities when applied separately. The final map obtained from the integrated approach shows that drinking water supplies in the northeast and northwest parts of the basin are highly vulnerable to pollution. All the karst spring catchments and areas near the basin outlet are highly vulnerable. Moreover, across all water samples taken across the basin, those exhibiting the highest concentrations in nitrate were all found in the areas mapped as highly vulnerable. The methodology was validated by analyzing nitrate concentration in 22 groundwater and surface-water samples.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号