共查询到20条相似文献,搜索用时 15 毫秒
1.
对摩擦摆基础隔震结构进行了单向、双向和三向地震反应对比分析,表明考虑双向水平地震动时摩擦摆基础隔震结构的支座位移增大,而结构的加速度和楼层剪力减小,其中对支座位移和结构加速度影响较大;考虑竖向地震动时摩擦摆基础隔震结构的支座位移略有减小,而结构的加速度和楼层剪力增大,其中对结构加速度影响较大.因而,在进行摩擦摆基础隔震结构地震反应分析时,应考虑多维地震动的影响. 相似文献
2.
This paper presents a new way of selecting real input ground motions for seismic design and analysis of structures based on a comprehensive method for estimating the damage potential of ground motions, which takes into consideration of various ground motion parameters and structural seismic damage criteria in terms of strength, deformation, hysteretic energy and dual damage of Park & Ang damage index. The proposed comprehensive method fully involves the effects of the intensity, frequency content and duration of ground motions and the dynamic characteristics of structures. Then, the concept of the most unfavourable real seismic design ground motion is introduced. Based on the concept, the most unfavourable real seismic design ground motions for rock, stiff soil, medium soil and soft soil site conditions are selected in terms of three typical period ranges of structures. The selected real strong motion records are suitable for seismic analysis of important structures whose failure or collapse will be avoided at a higher level of confidence during the strong earthquake, as they can cause the greatest damage to structures and thereby result in the highest damage potential from an extended real ground motion database for a given site. In addition, this paper also presents the real input design ground motions with medium damage potential, which can be used for the seismic analysis of structures located at the area with low and moderate seismicity. The most unfavourable real seismic design ground motions are verified by analysing the seismic response of structures. It is concluded that the most unfavourable real seismic design ground motion approach can select the real ground motions that can result in the highest damage potential for a given structure and site condition, and the real ground motions can be mainly used for structures whose failure or collapse will be avoided at a higher level of confidence during the strong earthquake. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
3.
采用Bouc-Wen模型模拟铅芯橡胶支座(LRB)非线性力学性能,建立LRB基础隔震储罐地震反应的数值模型.利用叠加原理得到人工合成近断层脉冲型地震动,从实际典型近断层地震动和人工近断层脉冲地震动输入两个角度出发,以远场地震反应为参照,系统探讨了近断层地震动作用下LRB隔震储罐地震反应特点以及近断层地震动运动特征的影响规律.研究发现,近断层地震动作用下LRB隔震储罐地震反应明显大于远场地震反应值,显著的近断层脉冲效应是隔震储罐设计不容忽视的问题.近断层地震动的PGV/PGA值是决定隔震储罐地震反应的综合指标,PGV/PGA值较大时,隔震储罐地震反应脉冲效应突出.另外,脉冲周期、脉冲参与系数以及脉冲类型也是影响LRB隔震储罐地震反应的重要因素.在脉冲参与系数越大、含有脉冲数量越多的近断层地震动作用下,隔震储罐地震反应越强烈.当脉冲周期接近储罐晃动周期时,晃动波高会出现峰值. 相似文献
4.
A shaking table testing program was undertaken with the main objective of providing basic information for the calibration of analytical models, and procedures for determining seismic response of typical stone masonry temples of the 16–18th centuries stone masonry construction in Mexico. A typical colonial temple was chosen as a prototype. A model at a 1:8 geometric scale was built with the same materials and techniques as the prototype, and was subjected to horizontal and vertical motions of increasing intensities. The maximum applied intensity corresponded to a base shear force of about 58 of the total building weight. Vertical component of the base motion significantly affected the response and increased the damage of the model. Damage patterns were similar to those observed in actual temples. Damping coefficients of the response ranged from 7 for undamaged state, reached about 14 for severe damage. The main features of the measured response were compared with those computed using a nonlinear, finite element model; for the latter, a constitutive law developed for plain concrete was adopted for reproducing cracking and crushing of the irregular stone masonry. Observed damage patterns as well as measured response could be reproduced with reasonable accuracy by the analytical simulation, except for some local vibrations, as those at the top of the bell towers. It can be concluded that the simple constitutive law adopted for the simulation was able to reproduce the experimental response with reasonable level of accuracy. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
5.
The vertical component of the seismic noise has been recorded in two different sites near the towns of Mercato S. Severino and Benevento in Southern Italy by a small aperture array, in order to investigate the characteristics of the noise propagation and to study the site response. Three different array techniques have been applied in the two investigated sites: Beam Forming, High Resolution and Spatial Correlation methods. We used two simple array geometry for localising possible noise sources and estimating local shallow structure using ambient noise. The cross shaped array results effective for determining the phase velocity of waves in the case when the noise is from a single localised source; the circular array, on the other hand, is successfully used when the noise sources are distributed. The main results are: the analysis of a coherent component of the noise recorded in the two sites, interpreted as Rayleigh waves, results in reasonable velocity models; the noise recorded in the M.S.S. Plain is a space stationary signal, while the noise at the Benevento site is possibly produced by a stable noise source located close to the array. Due to this evidence, the correlation method does not yield satisfactory results when applied to the Benevento site. The 2–6 Hz spectral peaks of the noise recorded in the M.S.S. Plain can be interpreted as due to a site effect, considering the satisfactory agreement of the noise spectrum at those frequencies with the theoretical transfer function computed on the basis of the velocity model deduced from the Rayleigh waves dispersion analysis. 相似文献
6.
In order to understand the site soil response of the Xiangtang borehole seismic array under real strong ground motion, reveal the site response, verify the technique of borehole exploration, and improve the precision of in-situ test and laboratory test, this paper presents a new approach, which is composed of two methods. One is the layered site seismic response method, whose layer transform matrix is always real. The other is a global-local optimization technique, which uses genetic algorithm (GA)-simplex method. An inversion of multi-component waveforms of P, SV and SH wave is carried out simultaneously. By inverting the records of three moderate and small earthquakes obtained from the Xiangtang borehole array (2# ) site, the soil dynamic characteristic parameters, including P velocity, damping ratio and frequency-dependent coefficient b, which has not been given in previous literatures, are calculated. The results show that the soil S wave velocity of the Xiangtang 2# borehole is generally greater than that obtained from the 1994 in-situ test, and is close to the velocity of the 3# borehole, which is more than 200 m away from the 2# borehole. Meanwhile, perceptible soil nonlinear behavior under peak ground motion of about 60×10-2m/s2 is detected by the inversion analysis. The presented method can be used for studying the soil response of other borehole array sites. 相似文献
7.
In countries with a moderate seismic hazard, the classical methods developed for strong motion prone countries to estimate the seismic behaviour and subsequent vulnerability of existing buildings are often inadequate and not financially realistic. The main goals of this paper are to show how the modal analysis can contribute to the understanding of the seismic building response and the good relevancy of a modal model based on ambient vibrations for estimating the structural deformation under weak earthquakes. We describe the application of an enhanced modal analysis technique (frequency domain decomposition) to process ambient vibration recordings taken at the Grenoble City Hall building (France). The frequencies of ambient vibrations are compared with those of weak earthquakes recorded by the French permanent accelerometric network (RAP) that was installed to monitor the building. The frequency variations of the building under weak earthquakes are shown to be less (∼2%) and therefore ambient vibration frequencies are relevant over the elastic domain of the building. The modal parameters extracted from ambient vibrations are then used to determine the 1D lumped‐mass model in order to reproduce the inter‐storey drift under weak earthquakes and to fix a 3D numerical model that could be used for strong earthquakes. The correlation coefficients between data and synthetic motion are close to 80 and 90% in horizontal directions, for the 1D and 3D modelling, respectively. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
8.
In this paper the efficiency of various dissipative mechanisms to protect structures from pulse‐type and near‐source ground motions is examined. Physically realizable cycloidal pulses are introduced, and their resemblance to recorded near‐source ground motions is illustrated. The study uncovers the coherent component of some near‐source acceleration records, and the shaking potential of these records is examined. It is found that the response of structures with relatively low isolation periods is substantially affected by the high‐frequency fluctuations that override the long duration pulse. Therefore, the concept of seismic isolation is beneficial even for motions that contain a long duration pulse which generates most of the unusually large recorded displacements and velocities. Dissipation forces of the plastic (friction) type are very efficient in reducing displacement demands although occasionally they are responsible for substantial permanent displacements. It is found that the benefits by hysteretic dissipation are nearly indifferent to the level of the yield displacement of the hysteretic mechanism and that they depend primarily on the level of the plastic (friction) force. The study concludes that a combination of relatively low friction and viscous forces is attractive since base displacements are substantially reduced without appreciably increasing base shears and superstructure accelerations. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
9.
针对斜交桥在破坏性地震中发生破坏和损伤的突出问题,采用铅芯橡胶支座(LRB)进行隔震和滞回耗能。基于OpenSees平台建立了不同斜度的传统非隔震和全桥采用LRB隔震的4跨斜交连续梁桥动力分析模型,沿2个水平方向输入远场地震动和具有向前方向性效应、滑冲效应以及无速度脉冲效应的近断层地震动,并进行非线性时程计算,研究桥墩和挡块的损伤状态、主梁旋转度、碰撞力与斜交桥斜度的关系以及LRB对斜交桥抗震性能的影响。结果表明:向前方向性效应和滑冲效应的脉冲型地震动作用下的斜交桥地震反应和损伤明显大于无速度脉冲近断层和远场地震动作用; 采用LRB隔震后,明显降低了固定墩的地震损伤,桥墩位移减震率可达到50%以上; LRB隔震桥主梁与挡块的间隙宜结合桥梁的地震风险和设计位移进行确定。 相似文献
10.
The Campus Earthquake Program (CEP) of the University of California (UC) started in March 1996, and involved a partnership among seven campuses of the UC—Berkeley, Davis, Los Angeles, Riverside, San Diego, Santa Barbara, Santa Cruz—and the Lawrence Livermore National Laboratory (LLNL). The aim of the CEP was to provide University campuses with site-specific assessments of their earthquake strong motion exposure, to complement estimates they obtain from consultants according to the state-of-the-practice (SOP), i.e. Building Codes (UBC 97, IBC 2000), and Probabilistic Seismic Hazard Analysis (PSHA). The Building Codes are highly simplified tools, while the more sophisticated PSHA is still somewhat generic in its approach because it usually draws from many earthquakes not necessarily related to the faults threatening the site under study.Between 1996 and 2001, the site-specific studies focused on three campuses: Riverside, San Diego, and Santa Barbara. Each campus selected 1–3 sites to demonstrate the methods and procedures used by the CEP: Rivera Library and Parking Lots (PL) 13 and 16 at UCR, Thornton Hospital, the Cancer Center, and PL 601 at UCSD, and Engineering I building at UCSB. The project provided an estimate of strong ground motions at each selected site, for selected earthquake scenarios. These estimates were obtained by using an integrated geological, seismological, geophysical, and geotechnical approach, that brings together the capabilities of campus and laboratory personnel. Most of the site-specific results are also applicable to risk evaluation of other sites on the respective campuses.The CEP studies have provided a critical assessment of whether existing campus seismic design bases are appropriate. Generally speaking, the current assumptions are not acknowledging the severity of the majority of expected motions. Eventually, both the results from the SOP and from the CEP should be analyzed, to arrive at decisions concerning the design-basis for buildings on UC campuses. 相似文献
12.
为了研究复阻尼模型下连续刚构桥的地震响应,文章讨论了利用复阻尼模型求解连续刚构桥地震响应的方法,并按相同的阻尼比,分别采用复阻尼模型和黏性阻尼模型计算了后渚连续刚构桥在不同地震动作用下的响应,将计算结果进行对比,分析了两种不同的阻尼模型对地震响应影响的差别。结果表明,采用不同类型的阻尼对地震响应影响很大,以复阻尼计算出的响应幅值作为设计值,更加偏于安全,对于保证桥梁结构的抗震安全更可靠。 相似文献
13.
深水桥梁地震反应计算时,当采用Morison公式考虑水的作用时,增加了一个附加惯性项和一个附加阻尼项,其中附加阻尼项是非线性的。由于非线性附加阻尼项的存在,给采用反应谱方法求解桥梁的地震反应带来不便。讨论了非线性阻尼项对一般桥梁桩、墩结构地震反应的贡献,得到的结论是阻尼项的贡献很小,可以忽略。从而水中桥梁地震反应的计算就得到了很大的简化。 相似文献
14.
震相识别已经有很多方法,但对于弱震相识别的难题尚未根本解决。本文利用台阵技术能增强地震信号,压低噪声的特点,实现FK扫描技术结合台阵响应进行地震事件扫描,根据其所得的水平视慢度、方位角及其一致性实现震相识别,特别是特殊震相的识别,这些特殊震相的识别为研究地球内部结构提供了可靠的资料和有利的保障。 相似文献
15.
Non-linear response of the soil is investigated by comparing the spectral ratios (uphole/downhole) using weak and strong motions. Data from seven vertical arrays in Japan are analysed in this study. The frequency-dependent transfer function of soil is calculated as a ratio of the spectrum at uphole to the spectrum at downhole, considering the horizontal component of shear wave. In spectral ratio analysis auto- and cross-spectra are employed. The reduction in the predominant frequency of the transfer function with increases in excitation level reflects the non-linear response of the soil. Results of analysis demonstrate a significant non-linear ground response at six sites with surface PGA exceeding 90 gal. However, the results of one site show the linear response up to 130 gal surface PGA. Furthermore, the in situ strain-dependent soil behaviour is examined through the shear modulus – shear strain relationship. When compared, the actual and laboratory results of the shear strain – shear modulus relationship are in agreement. Additionally, a good consistency between the tendency of reduction in shear modulus ratio with shear strain increases, and reduction of predominant frequency with ground motion increases, confirms the significance of non-linearity in site effects study. 相似文献
16.
导致地震动空间变异性的原因主要在于:几何不相关性效应、行波效应、局部场地条件效应。利用时程分析的方法分析了单跨框架结构和美国Las Vegas市区内某24跨立交桥的简化模型,对地震动空间变异性三个主要因素的单独影响、综合影响分别进行了系统分析。结果表明地震动的空间变异性改变了一致激励下结构的动力反应,并且引入了一致激励情况所不存在的拟静力反应,对结构的总反应具有很大的影响。与较激励的情况相比,结构的反应可能增大,也可能减小,这依赖于结构上截面位置、场地条件和所采用的地震动时程样本。 相似文献
17.
隔震结构在远震场地减震效果良好,但是近断层地震动的明显的长周期速度和位移脉冲运动可能对隔震建筑等长周期结构的抗震性能和设计带来不利影响,需要深入探讨。本文首先讨论近断层地震动的长周期脉冲运动特征,然后以台湾集集地震8条典型近震记录和其它4条常用近震记录以及4条远震记录作为地震动输入,对两幢安装铅芯橡胶隔震支座的钢筋混凝土框架隔震结构进行非线性地震反应时程分析,通过比较探讨了算例计算结果,定量说明隔震结构的近震脉冲效应显著,是隔震设计不容忽视的问题。 相似文献
18.
Dynamic damaging potential of ground motions must be evaluated by the response behaviour of structures, and it is necessary to indicate what properties of ground motions are most appropriate for evaluation. For that purpose, the behaviour of energy input process and hysteretic energy dissipation are investigated in this study. It is found that the momentary input energy that is an index for the intensity of input energy is related to the characteristics of earthquakes such as cyclic or impulsive, and to the response displacement of structures immediately. On the basis of these results, a procedure is proposed to predict inelastic response displacement of structures by corresponding earthquake input energy to structural dissipated damping and hysteretic energy. In this procedure the earthquake response of structures is recognized as an input and dissipation process of energy, and therefore structural properties and damaging properties of ground motions can be taken into account more generally. Lastly, the studies of the pseudodynamic loading test of reinforced concrete structure specimens subjected to ground motions with different time duration are shown. The purpose of this test is to estimate the damaging properties of ground motions and the accuracy of the proposed prediction procedure. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
19.
Coherency functions are used to describe the spatial variation of seismic ground motions at multiple supports of long span structures. Many coherency function models have been proposed based on theoretical derivation or measured spatial ground motion time histories at dense seismographic arrays. Most of them are suitable for modelling spatial ground motions on flat‐lying alluvial sites. It has been found that these coherency functions are not appropriate for modelling spatial variations of ground motions at sites with irregular topography ( Struct. Saf. 1991; 10 (1):1–13). This paper investigates the influence of layered irregular sites and random soil properties on coherency functions of spatial ground motions on ground surface. Ground motion time histories at different locations on ground surface of the irregular site are generated based on the combined spectral representation method and one‐dimensional wave propagation theory. Random soil properties, including shear modulus, density and damping ratio of each layer, are assumed to follow normal distributions, and are modelled by the independent one‐dimensional random fields in the vertical direction. Monte‐Carlo simulations are employed to model the effect of random variations of soil properties on the simulated surface ground motion time histories. The coherency function is estimated from the simulated ground motion time histories. Numerical examples are presented to illustrate the proposed method. Numerical results show that coherency function directly relates to the spectral ratio of two local sites, and the influence of randomly varying soil properties at a canyon site on coherency functions of spatial surface ground motions cannot be neglected. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
20.
This paper presents results recently obtained for generating site-specific ground motions needed for design of critical facilities. The general approach followed in developing these ground motions using either deterministic or probabilistic criteria is specification of motions for rock outcrop or very firm soil conditions followed by adjustments for site-specific conditions. Central issues in this process include development of appropriate attenuation relations and their uncertainties, differences in expected motions between Western and Eastern North America, and incorporation of site-specific adjustments that maintain the same hazard level as the control motions, while incorporating uncertainties in local dynamic material properties. For tectonically active regions, such as the Western United States (WUS), sufficient strong motion data exist to constrain empirical attenuation relations for M up to about 7 and for distances greater than about 10–15 km. Motions for larger magnitudes and closer distances are largely driven by extrapolations of empirical relations and uncertainties need to be substantially increased for these cases. For the Eastern United States (CEUS), due to the paucity of strong motion data for cratonic regions worldwide, estimation of strong ground motions for engineering design is based entirely on calibrated models. The models are usually calibrated and validated in the WUS where sufficient strong motion data are available and then recalibrated for applications to the CEUS. Recalibration generally entails revising parameters based on available CEUS ground motion data as well as indirect inferences through intensity observations. Known differences in model parameters such as crustal structure between WUS and CEUS are generally accommodated as well. These procedures are examined and discussed. 相似文献
|