首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative abundances of suprathermal (with energies ~0.04–2 MeV/nucleon) 3He, 4He, C, O, and Fe ions and the energy spectra of 3He and Fe ions in near-Earth space during quiescent periods of solar activity are studied. Measurements obtained with the ULEIS instrument onboard the ACE spacecraft during the 23rd and 24th solar cycles are used. Substantial differences in the energy spectra of suprathermal ions in the 23rd and 24th solar cycles are observed for the selected quiescent periods. Appreciable differences in the energy dependences of the relative ion abundances are also found. One possible explanation for the results obtained is that the background ions were accelerated to suprathrmal energies under different conditions in the solar corona in these two cycles.  相似文献   

2.
The energy spectra and relative abundances of 3He, 4He, C, O, and Fe ions with energies of ~0.04–2 MeV/nucleon are studied using data from the ULEIS instrument on board the ACE spacecraft obtained during quiescent periods in 2006–2012. During the unique, prolonged minimum between cycles 23 and 24, 35 quiescent periods were distnguished, during which solar-wind flows from near-equatorial coronal holes (CHs) were detected. It is shown that the C/O and Fe/O ratios for suprathermal ions correspond to the relative abundances of the corresponding thermal ions in the fast and slow (Maxwellian) solar wind (SWICS/ACE), while the 4He/O ratio exceeds the corresponding ratio in the solar wind by a factor of two. The intensities of the 3He, 4He, C, O, and Fe suprathermal ions in outflows from CHs grow with the speed of the solar wind. This indicates that, in periods ofminimumsolar activity, suprathermal ions from CHs represent a high-temperature “tail” of the solar wind. An additional flux of suprathermal helium ions may also be contributed by other external sources.  相似文献   

3.
The ion composition of fluxes of charged particles in interplanetary space with energies ∼0.03–10 MeV/nucleon are studied during quiet periods in the 23rd solar-activity cycle using data from the ACE spacecraft. Apart from the activity minimum, the Fe/O ratio during such periods corresponds to either the relative abundances of ions in particle fluxes accelerated in solar flares or the mean abundances of elements in the solar corona. At the cycle minimum, this ratio takes on values characteristic for the solar wind. These results indicate that the background fluxes of low-energy particles in the phases of the growth, maximum, and decay of the solar cycle include significant contributions from both coronal particles accelerated to suprathermal energies and particles accelerated in small impulsive solar flares. The particle fluxes from such flares are distinguished by an enhanced abundance of iron ions.  相似文献   

4.
This paper examines the possibility of using the energy spectra of accelerated solar cosmic-ray ions and features formed by Coulomb losses to study the solar plasma (the power-law index S for the scattering turbulence, particle number density N, and temperature T of the background medium). For an individual solar flare, Coulomb losses can be manifest to different degrees in the spectra of different ions, providing a means to determine S. A comparison of theoretical spectra for H, He, C, O, and Fe ions with observed spectra for the prolonged solar flare of October 20, 1995 yields S≈3, N≈5×109 cm?3, and T≈106 K, assuming that the characteristic time scale over which these particles gain energy is about a second.  相似文献   

5.
Astronomy Reports - Time variations in the fluxes of the suprathermal (0.04–2 MeV/nucleon) ions 3He, 4He, C, O, and Fe are studied together with their relative abundances in the 23rd and 24th...  相似文献   

6.
A natural quartz sample free of mineral and fluid inclusions was irradiated with a 200 MeV proton beam to produce spallogenic 21Ne, 3He and 4He. Temperature-dependent diffusivities of these three nuclides were then determined simultaneously by high precision stepped-heating and noble gas mass spectrometry. The outward mobility of proton-induced nuclides reflects diffusion through the quartz lattice. In the studied range of 70 to 400°C the helium diffusion coefficients exceed those of neon by 5-7 orders of magnitude. The implied diffusion parameters Ea = 153.7 ± 1.5 (kJ/mol) and ln(Do/a2) = 15.9 ± 0.3 (ln(s−1)) and Ea = 84.5 ± 1.2 (kJ/mol) and ln(Do/a2) = 11.1 ± 0.3 (ln(s−1)) for proton-induced 21Ne and 3He, respectively, indicate that cosmogenic neon will be quantitatively retained in inclusion-free quartz at typical Earth surface temperatures whereas cosmogenic helium will not. However, the neon diffusion parameters also indicate that diffusive loss needs to be considered for small (<1 mm) quartz grains that have experienced elevated temperatures. Since natural quartz often contains fluid inclusions which may enhance noble gas retentivity, these parameters likely represent an end-member case of purely solid-state diffusion. The ∼70 kJ/mol higher activation energy for neon diffusion compared to helium diffusion likely represents an energy barrier related to its ∼13% greater diameter and provides a fundamental constraint with which to test theories of solid state diffusion. The diffusion parameters for proton-induced 4He are indistinguishable from those for 3He, providing no evidence for the commonly expected inverse square root of the mass diffusion relationship between isotopes. We also find preliminary indication that increased exposure to radiation may enhance neon and helium retentivity in quartz at low temperatures.  相似文献   

7.
We have undertaken a study of the common green or orange-brown spots at the surface of rough diamond specimens, which are caused by alpha particles emanating from radioactive sources outside the diamond. Richly coloured haloes represent elevated levels of structural damage, indicated by strong broadening of the main Raman band of diamond, intense strain birefringence, and up-doming of spots due to their extensive volume expansion. Green radio-colouration was analogously generated through the irradiation of diamond with 8.8 MeV helium ions. The generation of readily visible radio-colouration was observed after irradiating diamond with ≥1015 He ions per cm2. The accumulation of such a high number of alpha particles requires irradiation of the diamond from a radioactive source over long periods of time, presumably hundreds of millions of years in many cases. In the samples irradiated with He ions, amorphisation was observed in volume areas where the defect density exceeded 5 × 10?3 Å?3 (or 0.03 dpa; displacements per target atom). In contrast, graphitisation as a direct result of the ion irradiation was not observed. The green colouration transformed to brown at moderate annealing temperatures (here 450 °C). The colour transformation is associated with only partial recovery of the radiation damage. The colour change is mainly due to the destruction of the GR1 centre, explained by trapping of vacancies at A defects to form the H3 centre. An activation energy of ~2.4 ± 0.2 eV was determined for the GR1 reduction. The H3 centre, in turn, causes intense yellowish-green photoluminescence under ultraviolet illumination. Radio-colouration and associated H3 photoluminescence are due to point defects created by the ions irradiated, whereas lattice ionisation is of minor importance. This is concluded from the depth distribution of the colouration and the photoluminescence intensity (which corresponds to the defect density but not the ionisation distribution pattern). The effect of the implanted He ions themselves on the colour and photoluminescence seems to be negligible, as radio-colouration and H3 emission were analogously produced through irradiation of diamond with C ions. The photoluminescence emission becomes observable at extremely low defect densities on the order of 10?6 Å?3 (or 0.000006 dpa) and is suppressed at moderate defect densities of ~5 × 10?4 Å?3 (or ~0.003 dpa). Intensely brown-coloured diamond hence does not show the H3 emission anymore. Anneals up to 1,600 °C has reduced considerably irradiation damage and radio-colouration, but the structural reconstitution of the diamond (and its de-colouration) was still incomplete.  相似文献   

8.
The model of stellar origin of the anomalous component in the low energy cosmic rays for He to Fe ions observed in space vehicles is studied in the light of recent results. The model of heliospheric origin by Fisket al which has several attractive features cannot explain the long-term variations of intensity observed during 1974 to 1978 as pointed out by Nagashima and Morishita. The stellar origin model of Durgaprasad and Biswas, on the other hand, can easily account for the sudden appearance of the anomalous component in 1972 and its large decrease in intensity in 1978 on the basis of polarity reversal of the solar magnetic field as discussed by Nagashima and Morishita (1980). In this work, we show that in the stellar model energetic ions of He, C, N, O, etc. could originate in O-type stars which manifest very strong stellar wind with mass loss rate of 3·10?6 M per year. These have terminal velocities of about 1200 to 4000 km/sec and are typically a few times their escape velocity. These velocities correspond to ion energies of 10 to 100 keV/amu. These ions are in partly ionised state and are accelerated in the interstellar shock fronts to about 1 to 50 MeV/amu and thus account for the observed anomalous component of low energy cosmic rays.  相似文献   

9.
The paper presents data on the production of the 3He nuclide in rocks under the effect of cosmicray particles. The origin of the nuclide in the ground in neutronand proton-induced spallation reactions, reactions induced by high-energy muons, and negative muon capture reactions is analyzed. The cross sections of reactions producing 3He and 3H are calculated by means of numerical simulations with the GEANT4 simulation toolkit. The production rate of the 3He nuclide in the ground is evaluated for the average level of solar activity at high geomagnetic latitudes and at sea level. It is proved that the production of 3He in nearsurface ground layers by spallation reactions induced by cosmic-ray protons may be approximately 20% of the total production rate of cosmogenic 3He. At depths of 10–50 m.w.e., the accumulation of 3He is significantly contributed by reactions induced by cosmic-ray muons. Data presented in the paper make it possible to calculate the accumulation rate of 3He in a rock depending on depth that is necessary for the evaluation of the exposure time of the magmatic or metamorphic complex on the Earth’s surface (3He dating).  相似文献   

10.
Dissolved helium concentrations and 3He/4He ratios were measured for 18 groundwater samples collected from the Quaternary confined aquifers in the North China Plain (NCP). The dissolved helium concentrations ranged from 1 × 10−7 to 1 × 10−6 cm3STP·g−1 in the 14 samples from the central plain, but was approximately two orders of magnitude higher, between 6 × 10−6 and 9 × 10−5 cm3STP·g−1, in 4 samples from the coastal plain. Based on these concentrations and the corresponding 3He/4He ratios varying from 0.09 to 0.55 Ra (where Ra is the 3He/4He ratio of air), the dissolved helium in groundwater in the central plain was identified to be primarily a mixture of atmospheric helium with radiogenic helium and a representative radiogenic helium ratio was estimated to be 0.035 Ra. Despite the high fraction of terrigenic 4He in the samples from the coastal plain, their 3He/4He ratios were found to be significantly above this radiogenic value, ranging between 0.20 and 0.37 Ra, indicating the presence of a mantle-derived He component in this area. About 2–4% mantle helium was estimated to be present in the groundwater of the coastal plain, which probably is associated with the regional Cangdong fault and tectonic activities. Based on the radiogenic He component, 4He ages of the groundwater in the central plain were calculated by assuming either pure in situ production or an external helium flux J0 of 4.7 × 10−8 cm3STPcm−2a−1. The estimated 4He ages fall between 9.5 and 51.4 ka and are comparable to the 14C ages, suggesting that the results of 4He dating are reasonable and can be an effective tool to estimate groundwater residence times under suitable conditions.  相似文献   

11.
A linear zone with high strain rates along the Japan Sea coast, the Niigata-Kobe Tectonic Zone (NKTZ), is considered to be associated with rheological heterogeneities in the lower crust and/or upper mantle. Helium isotope variations along the NKTZ reveal a close association with the geophysical evidence for rheological heterogeneities in the crust and mantle. In the southern NKTZ, the 3He/4He ratios lower than 3.4 Ra (Ra denotes the atmospheric 3He/4He ratio of 1.4 × 10−6) could be interpreted as a two-component mixture of helium stored in aqueous fluids driven off the subducting oceanic crust and radiogenic crustal helium. Higher 3He/4He ratios are observed in the central NKTZ where Quaternary volcanoes and high-temperature hot springs are concentrated, suggesting that the 3He emanation manifest in the central NKTZ results from the effective transfer of mantle helium by intrusion and degassing of mantle-derived magma in the crust. In the northern NKTZ where two large inland earthquakes occurred recently, there appears to be many samples with 3He/4He ratios significantly higher than those observed in the fore-arc side of northeast Japan. A plausible source of mantle helium could be attributed to upward mobilization of aqueous fluids generated by dehydration of the subducting Pacific Plate slab.  相似文献   

12.
A laser-ablation inductively-coupled plasma mass spectrometry technique was developed to measure U, Th, and Ce zonation in polished sections of apatite for assessing the consequences of parent zonation for (U-Th)/He thermochronometry. The technique produces concentration maps with an averaging length-scale of ∼20 μm, comparable to the α-stopping distance, and a precision of ∼5% down to few ppm concentration levels. A model was developed to transform the measured concentration distribution into a simplified representation for use in spherical-geometry He production-diffusion models. To illustrate these methods, 30 sections of apatite from a single granite (GC863) were mapped. Every analyzed apatite from GC863 is zoned, with most grains having variable thickness rims and terminations that are enriched in U and Th by about a factor of three over the grain cores.Parent zonation has three independent effects on (U-Th)/He He ages: it influences the α ejection correction, the 4He concentration profile which governs diffusive loss, and, via radiation damage trap accumulation, spatial variability of diffusivity within the crystal. If the observed zonation is typical of the apatite population in GC863, use of the standard homogenous α ejection correction would cause He ages to be on average 3% too young, and with a large amount of grain-to-grain variability (9% too young in the most rim-enriched case to 6% too old in a core-enriched case). Independent of the ejection correction, the concentration profile modifies the effective closure temperature of the apatites by placing more (or less) 4He near the grain edge. The parent zonation in GC863 apatites causes closure temperatures to range from four degrees lower (rim-enriched case) to two degrees higher (core-enriched case) than applies in the homogenous case. Alpha ejection and concentration profile effects on He age are additive and of the same sense. In the case of typical grains in GC863 cooled between 1 and 10 °C/Ma, the two effects are roughly equal in magnitude. The effects of intracrystalline variations in radiation damage trap accumulation become apparent at slow cooling rates (1 °C/Ma). For example, in rim-enriched GC863 grains cooled at 1 °C/Ma, preferential accumulation of radiation damage traps near the grain rim almost compensates for the higher loss rate expected of 4He also located preferentially near the rim. Under some circumstances strong rim-enrichment may actually increase the effective closure temperature of an apatite. Zonation at the level observed in GC863 modifies the 4He/3He spectra substantially from that expected from a uniform distribution. Measured 4He/3He spectra are strikingly similar to predictions based on the mapped eU distributions of the very same crystals, supporting the overall validity of the analytical and interpretive approach presented here.The magnitude and style of U, Th zonation documented in GC863 is one possible source of frequently observed over-dispersion of apatite (U-Th)/He ages as well as anomalous 4He/3He spectra.  相似文献   

13.
Controls governing the production of 4He and 222Rn in the solid phase as well as parameters and processes contributing to their transport into the pore fluid are discussed. 222Rn activity is used to quantify the uranium sources for 4He and the result is a simplified pore-fluid age equation which is virtually independent of the porosity, the water/rock ratio, the rock density and the uranium concentration, but does require a Th/U estimate. The crucial parameter is the ratio of the release factors for the two species, /GLRn//GLHe, which is discussed in terms of three possible release mechanisms: (1) recoil; (2) recoil followed by diffusion; and (3) weathering release of accumulated 4He. It was found that /GLRn//GLHe can vary over several orders of magnitude, but can be expressed in terms of the effective grain size r, and the diffusive half-length for 222Rn decay, re.4He measurements are used to “date” gases from known gas fields and the agreement with the assumed source-rock age is good. Application of 4He/ 222Rn measurements to continental freshwater springs indicates that the weathering release of accumulated 4He dominates the input and results in a large overestimate of groundwater age. Measurement in the Lardarello geothermal field indicates that the 4He/222Rn method can indicate relative transport direction. Other possible applications in various geochemical fields are suggested.  相似文献   

14.
Weathering geochronology by (U-Th)/He dating of goethite   总被引:3,自引:0,他引:3  
Nine samples of supergene goethite (FeOOH) from Brazil and Australia were selected to test the suitability of this mineral for (U-Th)/He dating. Measured He ages ranged from 61 to 8 Ma and were reproducible to better than a few percent despite very large variations in [U] and [Th]. In all samples with internal stratigraphy or independent age constraints, the He ages corroborated the expected relationships. These data demonstrate that internally consistent He ages can be obtained on goethite, but do not prove quantitative 4He retention. To assess possible diffusive He loss, stepped-heating experiments were performed on two goethite samples that were subjected to proton irradiation to produce a homogeneous distribution of spallogenic 3He. The 3He release pattern indicates the presence of at least two diffusion domains, one with high helium retentivity and the other with very low retentivity at Earth surface conditions. The low retentivity domain, which accounts for ∼ 5% of 3He, contains no natural 4He and may represent poorly crystalline or intergranular material which has lost all radiogenic 4He by diffusion in nature. Diffusive loss of 3He from the high retentivity domain is independent of the macroscopic dimensions of the analyzed polycrystalline aggregate, so probably represents diffusion from individual micrometer-size goethite crystals. The 4He/3He evolution during the incremental heating experiments shows that the high retentivity domain has retained 90%-95% of its radiogenic helium. This degree of retentivity is in excellent agreement with that independently predicted from the helium diffusion coefficients extrapolated to Earth surface temperature and held for the appropriate duration. Considering both the high and low retentivity domains, these data indicate that one of the samples retained 90% of its radiogenic 4He over 47.5 Ma and the other retained 86% over 12.3 Ma. Thus while diffusive-loss corrections to supergene goethite He ages are required, these initial results indicate that the corrections are not extremely large and can be rigorously quantified using the proton-irradiation 4He/3He method.  相似文献   

15.
Abundances and isotopic ratios of He and isotopic ratios of Sr and Nd have been measured for 18 mantle-derived xenoliths from three Cenozoic volcanic provinces in NE China. The xenoliths are characterized by low He concentrations (2.3×10−9–2.5×10−7 cm3 STP g−1) and large variations of 3He/4He ratios (1.6×10−7–15.8×10−6 or R/Ra=0.1–11). 3He/4He, 87Sr/86Sr and 143Nd/144Nd ratios in xenoliths from Kuandian Holocene volcanic provinces are consistent with those observed in mid-oceanic ridge basalt (MORB), indicating that the source of He–Sr–Nd in the lithospheric mantle is chemically and isotopically identical to that of MORB reservoir. However, xenoliths in Huinan Pleisteocene–Holocene volcanic province are characterized by slightly low 3He/4He ratios (R/Ra=4.3–6.5) and more radiogenic Sr and Nd. The age-corrected 3He/4He ratios suggest that their time-integrated ratio of (U+Th)/3He is slightly elevated compared to the depleted upper mantle. The Hannuoba xenoliths in the Miocene volcanic province show much lower and wider variable 3He/4He ratios, which is most likely caused by in situ radiogenic 4He accumulation since it erupted on to the surface. The He–Sr–Nd results suggest chemical and isotopical heterogeneity in the subcontinental mantle beneath NE China.  相似文献   

16.
Controls governing the production of 4He and 222Rn in the solid phase as well as parameters and processes contributing to their transport into the pore fluid are discussed. 222Rn activity is used to quantify the uranium sources for 4He and the result is a simplified pore-fluid age equation which is virtually independent of the porosity, the water/rock ratio, the rock density and the uranium concentration, but does require a Th/U estimate. The crucial parameter is the ratio of the release factors for the two species, /GLRn//GLHe, which is discussed in terms of three possible release mechanisms: (1) recoil; (2) recoil followed by diffusion; and (3) weathering release of accumulated 4He. It was found that /GLRn//GLHe can vary over several orders of magnitude, but can be expressed in terms of the effective grain size r, and the diffusive half-length for 222Rn decay, re.4He measurements are used to “date” gases from known gas fields and the agreement with the assumed source-rock age is good. Application of 4He/ 222Rn measurements to continental freshwater springs indicates that the weathering release of accumulated 4He dominates the input and results in a large overestimate of groundwater age. Measurement in the Lardarello geothermal field indicates that the 4He/222Rn method can indicate relative transport direction. Other possible applications in various geochemical fields are suggested.  相似文献   

17.
Solar-type helium (He) and neon (Ne) in the Earths mantle were suggested to be the result of solar-wind loaded extraterrestrial dust that accumulated in deep-sea sediments and was subducted into the Earths mantle. To obtain additional constraints on this hypothesis, we analysed He, Ne and argon (Ar) in high pressure–low temperature metamorphic rocks representing equivalents of former pelagic clays and cherts from Andros (Cyclades, Greece) and Laytonville (California, USA). While the metasediments contain significant amounts of 4He, 21Ne and 40Ar due to U, Th and K decay, no solar-type primordial noble gases were observed. Most of these were obviously lost during metamorphism preceding 30 km subduction depth. We also analysed magnetic fines from two Pacific ODP drillcore samples, which contain solar-type He and Ne dominated by solar energetic particles (SEP). The existing noble gas isotope data of deep-sea floor magnetic fines and interplanetary dust particles demonstrate that a considerable fraction of the extraterrestrial dust reaching the Earth has lost solar wind (SW) ions implanted at low energies, leading to a preferential occurrence of deeply implanted SEP He and Ne, fractionated He/Ne ratios and measurable traces of spallogenic isotopes. This effect is most probably caused by larger particles, as these suffer more severe atmospheric entry heating and surface ablation. Only sufficiently fine-grained dust may retain the original unfractionated solar composition that is characteristic for the Earths mantle He and Ne. Hence, in addition to the problem of metamorphic loss of solar noble gases during subduction, the isotopic and elemental fractionation during atmospheric entry heating is a further restriction for possible subduction hypotheses.  相似文献   

18.
We present new He-Ne data for geothermal fluids and He-Ne-Ar data for basalts from throughout the Icelandic neovolcanic zones and older parts of the Icelandic crust. Geothermal fluids, subglacial glasses, and mafic phenocrysts are characterized by a wide range in helium isotope ratios (3He/4He) encompassing typical MORB-like ratios through values as high as 36.8 RA (where RA = air 3He/4He). Although neon in geothermal fluids is dominated by an atmospheric component, samples from the northwest peninsula show a small excess of nucleogenic 21Ne, likely produced in-situ and released to circulating fluids. In contrast, geothermal fluids from the neovolcanic zones show evidence of a contribution of mantle-derived neon, as indicated by 20Ne enrichments up to 3% compared to air. The neon isotope composition of subglacial glasses reveals that mantle neon is derived from both depleted MORB-mantle and a primordial, ‘solar’ mantle component. However, binary mixing between these two endmembers can account for the He-Ne isotope characteristics of the basalts only if the 3He/22Ne ratio of the primordial mantle endmember is lower than in the MORB component. Indeed, the helium to neon elemental ratios (4He/21Ne∗ and 3He/22Nes where 21Ne∗ = nucleogenic 21Ne and 22Nes = ‘solar’-derived 22Ne) of the majority of Icelandic subglacial glasses are lower than theoretical values for Earth’s mantle, as observed previously for other OIB samples. Helium may be depleted relative to neon in high-3He/4He ratio parental melts due to either more compatible behavior during low-degree partial melting or more extensive diffusive loss relative to the heavier noble gases. However, Icelandic glasses show higher 4He/40Ar∗ (40Ar∗ = radiogenic Ar) values for a given 4He/21Ne∗ value compared to the majority of other OIB samples: this observation is consistent with extensive open-system equilibrium degassing, likely promoted by lower confining pressures during subglacial eruptions of Icelandic lavas. Taken together, the He-Ne-Ar systematics of Icelandic subglacial glasses are imprinted with the overlapping effects of helium depletion in the high-3He/4He ratio parental melt, binary mixing of two distinct mantle components, degassing fractionation and interaction with atmospheric noble gases. However, it is still possible to discern differences in the noble gas characteristics of the Icelandic mantle source beneath the neovolcanic zones, with MORB-like He-Ne isotope features prevalent in the Northern Rift Zone and a sharp transition to more primitive ‘solar-like’ characteristics in central and southern Iceland.  相似文献   

19.
About possibility of isotope dating of native gold by the (U-Th)/He method   总被引:2,自引:0,他引:2  
For investigation of helium in native gold, a new measuring complex was created and used: the high sensitivity mass spectrometer MSU-G (ZAO SKB “SPECTRON”). The sensitivity of measuring 4He was 5.3 × 10?13 cm3/g per impulse. Experiments in stepwise heating of samples have been carried out, and the kinetics of radiogenic 4He emanation from native gold was investigated. Migration parameters (activation energy and frequency factor) were determined. Model calculations of stability (closure temperature) of radiogenic 4He in the native gold structure with a given time and temperature of thermal influences were made using the data received. The concentration of 4He in native gold from the original deposit Nesterovskoe is (4.7 ± 0.1) × 10?5 cm3/g in the sample from the placer; from Chudnoe deposit, it is (3.8 ± 0.1) × 10?5 cm3/g; from sulfide deposits of Kitoiskii knot of Eastern Sayani, it is (1.9 ± 0.1) × 10?5 cm3/g; and from the South Muiskii ore region it is (8.7 ± 0.5) × 10?7 cm3/g. The received curve lines of kinetics of 4He emanation from native gold show that radiogenic helium is well bonded in the native gold structure: in all the examined samples, most 4He emanates only by reaching the temperature of 950–1000°C. A specific feature of the kinetics of radiogenic 4He emanation in all examined samples is an outburstlike emanation in the form of a peak of large amplitude in the area of temperatures near the melting temperature point of gold. This is stipulated by the existence of helium bubbles released by metals only while they melt. The spectrum of helium thermal desorption from native gold has a complicated form and is a result of superposition of several peaks. This proves the migration of groups of atoms located in the gold structure in different energy states. Very large values of the activation energy of helium migration from native gold were received: up to 161–176 kcal/mol. Extremely large values of the frequency factor, from 2 × 1018 to 3 × 1032, correspond to such values of activation energies. This is caused probably by helium migration in the form of gas bubbles. The received data indicate the very high stability of the (U-Th)/He isotope system in native gold. Using the (U-Th)/He method of isotope geochronology seems to be very promising for isotope dating of these strategic raw materials.  相似文献   

20.
There is little consensus on whether carbonate-hosted base metal deposits, such as the world-class Irish Zn + Pb ore field, formed in collisional or extensional tectonic settings. Helium isotopes have been analysed in ore fluids trapped in sulphides samples from the major base metal deposits of the Irish Zn-Pb ore field in order to quantify the involvement of mantle-derived volatiles that require melting to be realised, as well as test prevailing models for the genesis of the ore fields. 3He/4He ratios range up to 0.2 R a, indicating that a small but clear mantle helium contribution is present in the mineralising fluids trapped in galena and marcasite. Sulphides from ore deposits with the highest fluid inclusion temperatures (~200 °C) also have the highest 3He/4He (>0.15 R a). Similar 3He/4He are recorded in fluids from modern continental regions that are undergoing active extension. By analogy, we consider that the hydrothermal fluids responsible for the carbonate-hosted Irish base metal mineralization circulated in thinned continental crust undergoing extension and demonstrate that enhanced mantle heat flow is ultimately responsible for driving fluid convection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号