首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2013年7月31日~8月1日陕西关中盆地爆发了一次强飑线灾害性天气过程,为揭示此次飑线生命史期间对定点地形变观测的影响特征与机理,本文结合多普勒天气雷达和气象资料,系统分析了关中盆地内4个地形变观测数据。结果表明:(1)飑线过境时的短时气压突变是造成定点地形变的主要原因,引起最大的地倾斜和地应变分别达9.70×10~(-3″)和21.02×10~(-9);(2)气压变幅与地形变的弹性响应量具有较好的线性关系,二者持续时间较一致,为2~4h,其中,钻孔体应变的动态气压系数达4.04×10~(-9)/h Pa;(3)宝鸡、乾陵和华阴台对飑线的响应能力较好,西安台则较差;(4)除水管仪外,垂直摆、洞体应变和钻孔体应变等对飑线的响应均较为灵敏。上述结果有助于合理识别和科学推定飑线所导致定点地形变异常变化的物理本质,进而减少实际业务中的误判;同时,还能为定点地形变观测台站的科学选址、仪器的优化布设及不同空间尺度大气负荷模型的实证等提供重要的参考依据。  相似文献   

2.
The Granada Basin (Central Betic Cordillera), one of the most seismically active areas of the Iberian Peninsula, is currently subjected to NW-SE compression and NE-SW extension. The present day extension is accommodated by normal faults with various orientations but particularly with a NW-SE strike. At the surface, these active NW-SE normal faults are mainly concentrated on the NE part of the Basin. In this part we have selected a 15-km long segment where several active normal faults crop out. Using the marine Tortonian rocks as a reference, we have calculated a minimum extensional rate of 0.15-0.30 mm/year. The observed block rotation, the listric geometry of faults at depth and the distribution of seismicity over the whole Basin, indicate that this rate is a minimum value. In the framework of an interdisciplinary research project a non-permanent GPS-network has been established in the central sector of Betic Cordillera to monitor the crustal deformations. The first two observation campaigns were done in 1999 and 2000.  相似文献   

3.
Debris flows generated from landslides are common processes and represent a severe hazard in mountain regions due to their high mobility and impact energy. We investigate the dynamics and the rheological properties of a 90 000 m3 debris‐flow event triggered by a rapid regressive landslide with high water content. Field evidence revealed a maximum flow depth of 7–8 m, with an estimated peak discharge of 350–400 m3 s?1. Depositional evidence and grain‐size distribution of the debris pose the debris flow in an intermediate condition between the fluid‐mud and grain‐flow behaviour. The debris‐flow material has silt–clay content up to 15 per cent. The rheological behaviour of the finer matrix was directly assessed with the ball measuring system. The measurements, performed on two samples at 45–63 per cent in sediment concentration by volume, gave values of 3·5–577 Pa for the yield strength, and 0·6–27·9 Pa s for the viscosity. Based on field evidence, we have empirically estimated the yield strength and viscosity ranging between 4000 ± 200 Pa, and 108–134 Pa s, respectively. We used the Flo‐2D code to replicate the debris‐flow event. We applied the model with rheological properties estimated by means of direct measurements and back‐analyses. The results of these models show that the rheological behaviour of a debris‐flow mass containing coarse clasts can not be assessed solely on the contribution of the finer matrix and thus neglecting the effects of direct grain contacts. For debris flows composed by a significant number of coarse clasts a back‐analysis estimation of the rheological parameters is necessary to replicate satisfactorily the depositional extent of debris flows. In these cases, the back‐estimated coefficients do not adequately describe the rheological properties of the debris flow. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
The Red Fault system is one of the main growth faults found in the South Eugene Island Basin, a salt withdrawal minibasin located offshore Louisiana, in the Gulf of Mexico. This fault system corresponds to a lateral boundary between fluid overpressured compartments. In addition, there is a set of observations indicating that the Red Fault system exhibits rapid episodic migration of fluids. This fault represents an example of preferential pathway for the upward episodic migration of overpressured hydrocarbons from deep, heavily pressured, compartments on time scales of years. The migrations of fluids into active growing faults could take the form of propagating surges (solitary waves) that propagate upward along the fault planes in a wave-like manner at km/yr. Solitary waves represent a very efficient mechanism for the upward transport of fluids along growth faults in sedimentary basins generating its own permeability. In addition, this mechanism is compatible with the fact that the fault plane is observed to sustain a static pore fluid pressure difference between its two sides. The propagation of solitary waves in active growth faults appears as a fundamental mechanism to understand the nature of upward fast migration of fluids along active growth faults in compartimentalized sedimentary basins.  相似文献   

5.
简要介绍了第13届国际变形机理、流变学和构造学学术会议的概况和特点,综述了地震变形作用的研究现状。  相似文献   

6.
In a previous publication (Allison, 1989), a non-destructive method for indirectly determining rock strength by measuring Dynamic Young's Modulus was described. Data were presented to assess the Grindosonic apparatus in relation to standard laboratory techniques. A further Short Communication (Allison, 1990) evaluated the non-destructive test as a field technique, in part achieved by comparing the Grindosonic results with data collected using the Schmidt hammer. The Schmidt hammer is a widely used field technique in geomorphology for determining rock strength (see for example Day and Goudie, 1977; Day, 1981). Allison (1989, 1990) also suggested that the elastic properties of materials are becoming increasingly important in geomorphological studies. The opportunity to provide additional information and comments here is appreciated.  相似文献   

7.
Seismic Vulnerability of Historical Constructions: A Contribution   总被引:1,自引:0,他引:1  
Earthquakes are known to be natural hazards that have affected tremendously historical constructions. Unfortunately, as far as earthquake impacts are concerned, there are no world statistics to compare the suffering of populations or of the building stock and their evolution in time, with the damage inflicted to the stock of historical constructions. Lately, a great effort has been placed on engineering developments: (i) to better understand the seismic behaviour of historical construction and (ii) to assess the benefits of different techniques for reinforcing these structures. However, a great deal of discussion is still going on the type of reinforcement that should be applied, how effective it is and how much it costs. Research is needed for helping in these decisions, by providing a more precise framework in this field. The aim of this review is to make an overall insight on some of the available methods for assessing seismic vulnerability of historical constructions and on how to use them in the case of occurrence of an earthquake. Given this occurrence, the objective is to minimize the effects of aftershocks, avoid hurried demolition made under extreme pressure and help shore-up parts in risk of falling. The final aim is also to help in the definition of strategies for the repair of the damaged patrimony, or as a measure to prevent damage in future earthquakes for the most vulnerable cases. The paper is illustrated with the presentation of several examples published in the literature where the author participated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Vegetation can have an important role in controlling channel planform, through its effects on channel roughness, and root‐reinforcement of bank and bar materials. Along the Platte River in central Nebraska, USA, The Platte River Recovery Implementation Program (PRRIP) has been tasked with managing the planform of the river to benefit endangered species. To investigate the potential use of planned short duration high flow (SDHF) events to manage bar vegetation, this study combined several approaches to determine whether flows of up to 227 m3s?1 through the central Platte River, could remove cottonwood, Phragmites and reed canarygrass stands of various ages and densities from in‐channel bars. First, fieldwork was carried out to measure the uprooting resistance, and resistance to bending for each species. Second, a set of flume experiments was carried out to measure the forces exerted on the three species of interest under different flow conditions. Finally, a numerical study comparing drag forces (driving) measured in the flume study, with uprooting forces (resisting) measured in the field, was carried out for each species to determine the likelihood of plant removal by SDHF events. Results showed that plants with more than a year of root growth, likely cannot be removed through drag and local scour alone, even at the 100‐year recurrence interval discharge. At most, a few cottonwood seedlings could be removed from bars through drag, scour and undercutting, where rooting depths are still small. The results presented here help us further understand the positive feedbacks that lead to the creation of permanent, vegetated bars rather than mobile braided channels. As such, the findings could help inform management decisions for other braided rivers, and the combined field, flume and modeling techniques used in this study could be applied to other fluvial systems where vegetation and planform dynamics are of interest. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The erosional morphology in the vicinity of the Main Divide of the Southern Alps, and Fiordland, New Zealand, appears to be a product of the interaction between Alpine Fault-induced tectonic processes, rock mass strength of the uplifted and eroded bedrock, and the processes acting to denude the developing mountain landscape. The magnitude of the effects of glacial erosion on the landscape is directly controlled by the size and physical properties of the glaciers, whilst the form of the trough is a direct consequence of the rock mass strength (RMS) properties of the slope rock. Realistic models of development of the cross-profile shape of glacial valleys must take into consideration the RMS properties of the eroded substrate.  相似文献   

10.
The island of Tenerife is volcanically complex, and its eruptive history predominantly reflects the processes and products of two different eruptive styles: (1) non-explosive effusions of basaltic lavas from fissure vents mostly aligned along two ridges; and (2) less frequent but explosive salic eruptions from central vents associated with the Las Cañadas volcanic edifice and associated summit caldera. We have taken into account this fundamental distinction to develop a volcanic-hazards zonation (for lava flows and ash fall only) that includes: definition of the principal hazards; identification of the areas that have higher probability of containing emission centres; and numerical modelling of the vulnerable areas to be affected by volcanic hazards. Not only does the volcanic-hazards zonation map provide emergency-management officials with an updated assessment of the volcanic hazards, but it also represents a starting point for the preparation of a volcanic risk map for Tenerife. Finally, the hazards-zonation map also furnishes the basis for the design of a proposed volcano surveillance network.  相似文献   

11.
Both laboratory experiments and numerical modelling were conducted to study the biodegradation and transport of benzene–toluene–xylenes (BTX) in a simulated semi‐confined aquifer. The factors incorporated into the numerical model include advection, hydrodynamic dispersion, adsorption, and biodegradation. The various physico‐chemical parameters required by the numerical model were measured experimentally. In the experimental portion of the study, BTX compounds were introduced into the aquifer sand. After the contaminants had been transported through the system, BTX concentrations were measured at 12 equally spaced wells. Subsequently, microorganisms obtained from the activated sludge of a sewage treatment plant and cultured in BTX mixtures were introduced into the aquifer through the 12 sampling wells. The distribution data for BTX adsorption by the aquifer sand form a nonlinear isotherm. The degree of adsorption by the sand varies, depending on the composition of the solute. The degradation time, measured from the time since the bacteria were added to the aquifer until a specific contaminant was no longer detectable, was 35–42 h for BTX. The dissolved oxygen, after degradation by BTX compounds and bacteria, was consumed by about 40–60% in the entire simulated aquifer; thus the aerobic conditions were maintained. This study provides insights for the biodegradation and transport of BTX in aquifers by numerical modelling and laboratory experiments. Experimental and numerical comparisons indicate that the results by Monod degradation kinetics are more accurate than those by the first‐order degradation kinetics. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract The deformation style of the Torlesse Terrane along the southern Kaikoura coast, South Island, New Zealand, records shallow level deformation processes within an accretionary prism during the Early Cretaceous. The beds exhibit complicated structural features resulting from multistage deformations in a lithological unit, that were intimately related with the dewatering and lithification of terrigenous sediments. The earliest phase of deformation throughout the transect studied was the development of pinch-and-swell structures and boudinage fabrics due to layer-parallel extension while the beds were poorly consolidated. This was followed locally by mesoscopic tight to close recumbent folding. The beds are cut locally by two phases of mudstone intrusions. The earlier phase was initiated by 'in situ' fluidization of mudstone layers, whereas the later phase represented intrusion of siliceous claystone probably derived from an overpressured decollement. Minor faults at high-angles to bedding by layer-normal shortening then disrupted the beds throughout the transect. The deformation was followed by formation of meso- and macroscopic scale open to gentle folds by layer-parallel shortening. Kilometer-scale differential stratal rotations were produced during the final main tectonic phase that occurred in association with post-accretion Neogene regional disturbance.  相似文献   

13.
The simulation of solute transport in rivers is frequently based on numerical models of the Advection-Dispersion Equation. The construction of reliable computational schemes, however, is not necessarily easy. The paper reviews some of the most important issues in this regard, taking the finite volume method as the basis of the simulation, and compares the performance of several types of scheme for a simple case of the transport of a patch of solute along a uniform river. The results illustrate some typical (and well known) deficiencies of explicit schemes and compare the contrasting performance of implicit and semi-Lagrangian versions of the same schemes. It is concluded that the latter have several benefits over the other types of scheme.  相似文献   

14.
We have used a coupled thermo-mechanical finite-element (FE) model of crustal deformation driven by mantle/oceanic subduction to demonstrate that the tectonic evolution of the Lachlan Fold Belt (LFB) during the Mid-Palaeozoic (Late Ordovician to Early Carboniferous) can be linked to continuous subduction along a single subduction zone. This contrasts with most models proposed to date which assume that separate subduction zones were active beneath the western, central and eastern sections of the Lachlan Orogen. We demonstrate how the existing data on the structural, volcanic and erosional evolution of the Lachlan Fold Belt can be accounted for by our model. We focus particularly on the timing of fault movement in the various sectors of the orogen. We demonstrate that the presence of the weak basal decollement on which most of the Lachlan Fold Belt is constructed effectively decouples crustal structures from those in the underlying mantle. The patterns of faulting in the upper crust appears therefore to be controlled by lateral strength contrasts inherited from previous orogenic events rather than the location of one or several subduction zones. The model also predicts that the uplift and deep exhumation of the Wagga-Omeo Metamorphic Belt (WOMB) is associated with the advection of this terrane above the subduction point and is the only tectonic event that gives us direct constraints on the location of the subduction zone. We also discuss the implications of our model for the nature of the basement underlying the present-day orogen.  相似文献   

15.
The morphology of coastal sequences provides fundamental observations to unravel past sea level (SL) variations. For that purpose, converting morphometric observations into a SL datum requires understanding their morphogenesis. The long-lasting sequence of coral reef terraces (CRTs) at Cape Laundi (Sumba Island, Indonesia) could serve as a benchmark. Yet, it epitomizes a pitfall that challenges the ultimate goal: the overall chronology of its development remains poorly constrained. The polycyclic nature of the terraces, involving marine erosion and reoccupation of old coral colonies by more recent ones hinders any clear assignment of Marine Isotope Stages (MIS) to specific terraces, in particular the reference datum corresponding to the last Interglacial maximum (i.e., MIS 5e). Thus, to overcome these obstacles, we numerically model the genesis of the sequence, testing a range of eustatic SL (ESL) reconstructions and uplift rates, as well as exploring the parameter space to address reef growth, erosion and sedimentation. A total of 625 model runs allowed us to improve the morpho-chronological constraints of the coastal sequence and, more particularly, to explain the morphogenesis of the several CRTs associated with MIS 5e. Our results suggest that the lowermost main terrace was first constructed during the marine transgression of MIS 5e and was later reshaped during the marine regression of MIS 5e, as well as during the MIS 5c and MIS 5a highstands. Finally, we discuss the general morphology of the sequence and the implications it may have on SL reconstructions. At Cape Laundi, as elsewhere, we emphasize the necessity of addressing the development of CRT sequences with a dynamic approach, that is, considering that a CRT is a landform built continuously throughout the history of SL oscillations, and not simply during a singular SL maximum.  相似文献   

16.
孙凯  孟国杰  洪顺英  黄星  董彦芳 《地震》2020,40(3):15-27
利用大地测量数据研究2019年6月17日四川长宁MS6.0地震同震形变场特征和发震断层参数, 基于DInSAR技术处理升降轨Sentinel-1A数据获取干涉相位图, 并考虑大气折射效应和余震形变误差实现同震形变场改正。四叉树采样后的形变数据作为反演数据源, 采用弹性半空间分层模型反演发震断层几何面滑动分布。结果表明本次地震发震机制为兼具逆冲和左旋走滑, 矩震级为MW5.9, 断层破裂尺度达28 km×20 km, 震源深度约9.4 km。升降轨视线向同震形变场在断层两侧呈现形变特征差异, 最大沉降量分别是8.34 cm(升轨)和4.23 cm(降轨), 最大抬升量分别是5.5 cm(升轨)和7.5 cm(降轨); 发震断层走向为302°, 倾角为43°, 平均滑动角为50°, 断层面最大滑动量达到0.28 m。  相似文献   

17.
Anomalous behaviour of specific electrical conductivity (SEC) was observed at a karst spring in Slovenia during 26 high‐flow events in an 18‐month monitoring period. A conceptual model explaining this anomalous SEC variability is presented and reproduced by numerical modelling, and the practical relevance for source protection zoning is discussed. After storm rainfall, discharge increases rapidly, which is typical for karst springs. SEC displays a first maximum during the rising limb of the spring hydrograph, followed by a minimum indicating the arrival of freshly infiltrated water, often confirmed by increased levels of total organic carbon (TOC). The anomalous behaviour starts after this SEC minimum, when SEC rises again and remains elevated during the entire high‐flow period, typically 20–40 µS/cm above the baseflow value. This is explained by variable catchment boundaries: When the water level in the aquifer rises, the catchment expands, incorporating zones of groundwater with higher SEC, caused by higher unsaturated zone thickness and subtle lithologic changes. This conceptual model has been checked by numerical investigations. A generalized finite‐difference model including high‐conductivity cells representing the conduit network (“discrete‐continuum approach”) was set up to simulate the observed behaviour of the karst system. The model reproduces the shifting groundwater divide and the nearly simultaneous increase of discharge and SEC during high‐flow periods. The observed behaviour is relevant for groundwater source protection zoning, which requires reliable delineation of catchment areas. Anomalous behaviour of SEC can point to variable catchment boundaries that can be checked by tracer tests during different hydrologic conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
At Writing-On-Stone Provincial Park in southern Alberta, Canada, weathering is causing deterioration and loss of archaeologically important Indian rock art. A procedure devised for the use of park personnel identified four classes of weathering ranging from largely unweathered rock to severely weathered. The technique employed simple visual, qualitative assessment and photo interpretation of 50 sample sections of sandstone cliff face covering a total area of 354 m2. Schmidt hammer tests indicated large variations in rock strength and provided a numerical basis for the visual assessment. About 43 per cent of the cliffs are severely to completely weathered, 41 per cent show moderate weathering.  相似文献   

19.
This article has been retracted and replaced. See Retraction and Replacement Notice DOI: 10.1002/hyp.6350 Studies of hyporheic exchange flows have identified physical features of channels that control exchange flow at the channel unit scale, namely slope breaks in the longitudinal profile of streams that generate subsurface head distributions. We recently completed a field study that suggested channel unit spacing in stream longitudinal profiles can be used to predict the spacing between zones of upwelling (flux of hyporheic water into the stream) and downwelling (flux of stream water into the hyporheic zone) in the beds of mountain streams. Here, we use two‐dimensional groundwater flow and particle tracking models to simulate vertical and longitudinal hyporheic exchange along the longitudinal axis of stream flow in second‐, third‐, and fourth‐order mountain stream reaches. Modelling allowed us to (1) represent visually the effect that the shape of the longitudinal profile has on the flow net beneath streambeds; (2) isolate channel unit sequence and spacing as individual factors controlling the depth that stream water penetrates the hyporheic zone and the length of upwelling and downwelling zones; (3) evaluate the degree to which the effects of regular patterns in bedform size and sequence are masked by irregularities in real streams. We simulated hyporheic exchange in two sets of idealized stream reaches and one set of observed stream reaches. Idealized profiles were constructed using regression equations relating channel form to basin area. The size and length of channel units (step size, pool length, etc.) increased with increasing stream order. Simulations of hyporheic exchange flows in these reaches suggested that upwelling lengths increased (from 2·7 m to 7·6 m), and downwelling lengths increased (from 2·9 m to 6·0 m) with increase in stream order from second to fourth order. Step spacing in the idealized reaches increased from 5·3 m to 13·7 m as stream size increased from second to fourth order. Simulated upwelling lengths increased from 4·3 m in second‐order streams to 9·7 m in fourth‐order streams with a POOL–RIFFLE–STEP channel unit sequence, and increased from 2·5 m to 6·1 m from second‐ to fourth‐order streams with a POOL–STEP–RIFFLE channel unit sequence. Downwelling lengths also increased with stream order in these idealized channels. Our results suggest that channel unit spacing, size, and sequence are all important in determining hyporheic exchange patterns of upwelling and downwelling. Though irregularities in the size and spacing of bedforms caused flow nets to be much more complex in surveyed stream reaches than in idealized stream reaches, similar trends emerged relating the average geomorphic wavelength to the average hyporheic wavelength in both surveyed and idealized reaches. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
The Romanian earthquake of August 30, 1986 is the second largest intermediate depth event in this area since the worldwide deployment of digital instrumentation, and the first one since the installation of GEOSCOPE network. It offers the unique opportunity to document this well-known but poorly understood zone of deep continental seismicity using high quality teleseismic data in different frequency bands. The source is well constrained both from very-long period surface wave data observed on GEOSCOPE stations and, independently, from body wave modelling at various worldwide stations. The depth obtained is approximately 140 kilometers, the seismic moment, 0.8 1027 dyne-cm and the mechanism from both data sets is very similar to that of the previous 1940 and 1977 Vancrea events, indicating that these events, although having occurred at noticeably different depths, are expressions of the same tectonic process. However, from the detailed study of the source using broadband data, it can be inferred that the source presents much less complexity than the 1977 event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号