首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
18O/16O,87Sr/86Sr and chemical analyses were made on 39 lavas and ignimbrites from M. Vulsini, the most northerly district of the K-rich Quaternary Roman Province of Italy. These rocks belong mainly to the undersaturated, leucite-bearing (High-K) series, but also included are samples from the less abundant, SiO2-saturated, hypersthene-(quartz)-normative (Low-K) series. The effects of post-eruption alteration on the 18O of these lavas were taken into account by analyzing phenocrysts or by using the extrapolation procedure developed for the nearby Alban Hills center. Because of the high Sr contents (500–2400 ppm), the87Sr/86Sr ratios of these rocks were little affected by such alteration processes. The M. Vulsini volcanics have Sr- and O-isotopic ratios much less uniform, and on the average much higher, than at any of the other volcanic centers of the province:87Sr/86Sr=0.7097 to 0.7168; 18O=6.5 to 13.8. This is attributable to the fact that M. Vulsini is one of the sites of greatest crustal assimilation and hybridism between K-rich Roman magmas and SiO2-rich Tuscan anatectic magmas. The High-K series parent magmas at M. Vulsini had a very high and uniform87Sr/86Sr=0.7102 to 0.7104, and a somewhat more variable 18O=+5.5 to +7.5; they must have come from an upper mantle source region previously metasomatically enriched in87Sr and LIL elements. These18O/16O and87Sr/86Sr ratios are identical to the parent magma at the Alban Hills, 120 km to the south, where Low-K lavas are absent. Low-K series magmas at M. Vulsini originated from a lower-87Sr source region than the High-K series (<0.7097); a similar relationship is observed in all of the other localities in Italy where the two magma series coexist.Contribution No. 4167, Division of Geological and Planetary Sciences, California Institute of Technology  相似文献   

2.
Mineralogical, textural and geochemical investigations were made to determine the post-depositional evolution of Devonian and Early Carboniferous carbonates from Valle de Tena. The carbonate association is made up of low-Mg calcite, which occurs as micrite, spar cements, neomorphic patches and spar filling veinlets. Non-stoichiometric dolomite and ankerite occur as cements (dolomite also as replacements) in the Middle Devonian, post-dating calcite types. All these phases pre-date tectonic stylolites, indicating compaction after stabilization of the carbonate minerals. Strontium concentrations indicate that Early Devonian and Early Carboniferous micrites initially precipitated as aragonite; Middle and Late Devonian micrites precipitated as high-Mg calcites. Both precursors were diagenetically stabilized to low-Mg calcites through interaction with meteoric waters in phreatic environments. Trace elements in dolomite and ankerite indicate precipitation from Sr-enriched meteoric water. All studied carbonates, except Middle Devonian limestones, precipitated in reducing environments, which favoured incorporation of Fe and Mn. Late calcite generations precipitated from more saline waters than micrites. Light 18O values in micrites suggest alteration mainly in meteoric-phreatic environments. The dolomites and ankerites precipitated from more 18O-depleted fluids than the calcites, suggesting a greater contribution from meteoric waters. Variations in 13C of micrites represent primary secular trends, according to published 13C variations. The 13C oscillations within each succession probably relate to sea-level oscillations. Strontium isotopes also point to a meteoric origin of diagenetic fluids. Model calculations suggest that O and Sr isotopes equilibrated between calcites and fluid at relatively low water/rock ratios, whereas C isotopic signatures are inherited from limestones.  相似文献   

3.
The 18O and D values in mud-volcanic waters of the Taman Peninsula and Kakhetia vary from +0.7 to +10.0 and from –37 to –13 , respectively. These values increase as the Greater Caucasus is approached. The increase in 18O and D also positively correlates with fluid generation temperatures based on hydrochemical geothermometers. This is accompanied by changes in the chemical composition of waters, in which contents of alkali metals, HCO 3 ion, and boron increase, while the content of halogen ions (Cl, Br, J) decreases. Changes in the isotopic composition of water are also accompanied by the increase of 13 in methane and decrease of 11 B in clays. Analysis of formal models of the evolution of isotopic composition of mud-volcanic waters showed that mud volcanoes are recharged by freshened water from the Maikop paleobasin with an inferred isotopic composition of D –40 and 18 O –6. Based on this assumption, the 18O and D values observed in mud-volcanic waters can be explained not only by processes of distillation and condensation in a closed system, but also by combined processes of isotopic reequilibration in the water-illite-methane system.Translated from Litologiya i Poleznye Iskopaemye, No. 2, 2005, pp. 143–158.Original Russian Text Copyright © 2005 by Lavrushin, Dubinina, Avdeenko.  相似文献   

4.
Sulfur isotope analyses were made on 14 alunites from volcanic and sedimentary rocks widely different in chemistry and age from southern Tuscany and northern Latium, central Italy. The 34S values range from +0.7 to +9.6, and appear not to be related to the nature of the host rock. Geological and isotopic evidence suggests that all the alunites formed by supergenic oxidation of sulfides. Sulfides occurring with alunites in the volcanic rocks of Latium can be divided into an isotopically light group of probably magmatic origin (34S=–1.5 to +3.4) and a heavy one with 34S=+6.0 to +10.3, tentatively interpreted as deposited by hydrothermal fluids that leached sulfides of similar 34S/32S from the deep basement. Such an interpretation is consistent with recent studies indicating that in the perityrrhenian belt of Latium exists a continuation, at depth, of the Tuscan stratigraphic series, rich in sulfides with 34 from +6 to +12.  相似文献   

5.
The 18O/16O ratios of rocks and coexisting minerals were measured for 93 samples of leucite-bearing lavas, pyroclastics, and related volcanic rocks from the Quaternary Roman Co-Magmatic Province, Italy. The 18O values were found to generally increase northward in the sequence: Ischia (5.8 to 7.0); Somma-Vesuvius and Phlegrean Fields (7.3 to 8.3); Alban Hills (7.3 to 8.7); M. Sabatini (7.3 to 9.7); Vico Volcano (7.4 to 10.2); and M. Vulsini (8.1 to 11.7). The northward increase in 18O parallels a similar increase in 87Sr/86Sr, and these data indicate that the Roman magmas have interacted strongly with high-18O continental crust. A marked increase in 18O occurs just north of Rome where the Roman Province begins to overlap the calc-alkaline, oversaturated Tuscan Magmatic Province. Therefore, some of the observed 18O/16O and 87Sr/86Sr enrichments in the Roman magmas may have been facilitated by direct mixing with the high-18O Tuscan magmas or because the high-18O country rocks underwent widespread heating during a couple of million years of Tuscan igneous activity. Although many of the Roman magmas underwent fractional crystallization without appreciable change in 18O, contamination has produced a correlation between 18O and SiO2 content at several of the volcanic centers; thus the trachytes are typically higher in 18O than the undersaturated rocks. The major features of the oxygen isotope data can be explained in terms of a simple two-component mixing model in which one end-member was a primary, strongly undersaturated magma derived from the upper mantle, with 18O+6, 87Sr/86Sr0.704 to 0.705, and SiO2<44wt.%. However, none of the analyzed samples have these values, as they have all been contaminated to some extent. The closest approach is found in some of the leucitepyroxenite ejecta from the Alban Hills. The second end-member, derived from the continental crust, had a variable composition with 18O+12 to +20, 87Sr/86Sr0.712 to 0.720, and SiO265wt.%, and it mixed in much greater proportions in the volcanoes north of Rome than in those of the Alban Hills or the Naples area. The widespread interactions between the Roman magmas and the continental crust are probably due to (1) the fact that such low-SiO2 magmas always have a very strong tendency to interact with quartz-bearing rocks of the continental crust, and (2) in Italy, these magmas were emplaced into a tectonically very active area containing poorly consolidated sedimentary rocks, and in the northern part of the belt there had been a prior history of extensive calc-alkaline igneous activity.Publication of the Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, Contribution Number 2501.  相似文献   

6.
18O values of unaltered basic lavas range from 4.9 to 8.3 but different types of basalts are usually restricted to narrow and distinct ranges of isotopic composition. The average 18O values for Hawaiian tholeiites, mid-ocean ridge tholeiites, and alkali basalts are 5.4, 5.7, and 6.2 permil, respectively. Potassic lavas and andesites tend to be more 18O rich with 18O values between 6.0 and 8.0 permil. The differences among the oxygen isotopic compositions of most of these lavas can be attributed to partial melting of isotopically distinct sources. The oxygen isotope compositions of the sources may be a function of prior melting events which produce 18O-depleted partial melts and 18O-enriched residues as a consequence of relatively large isotopic fractionations that exist at high temperatures. It is proposed that lavas with relatively low 18O values are derived from primitive, 18O-depleted sources whereas 18O-rich basalts are produced from refractory sources that have already produced partial melts. High temperature fractionations among silicate liquids and coexisting minerals can be used in conjunction with the oxygen isotope compositions of ultramafic nodules to place constraints on the genetic relations between some nodules and different types of basic lavas.  相似文献   

7.
The transformation from blueschist to greenschist facies forms a major part of the Alpine regional geodynamic evolution of the Cyclades. The transition in metabasic rocks on Sifnos involves the retrogression of eclogites, blueschists and actinolite-bearing rocks from high-pressure conditions which have been estimated at 460±30° C and 15±3 kb. Petrographically observed parageneses are interpreted by a sequence of hydration and carbonation reactions involving the breakdown of omphacite and glaucophane-bearing assemblages to albite+chlorite±actinolite±calcite assemblages. The retrograde processes are calculated to occur at pressures of 10 to 8 kb during the isothermal uplift of the Sifnos units. Oxygen isotope analyses of different rock types show that interlayered lithologies have experienced a large degree of isotopic equilibration during both metamorphic phases. However, chemically equivalent rocks show systematic increases in 18O from lowest values (8 to 11 in metabasics) in the unaltered blueschists in the upper stratigraphic levels to higher values (>15 in metabasics) associated with greenschists in the deepest stratigraphic levels. Relict eclogites enclosed within greenschists have the lower 18O values typical of unaltered blueschist facies rocks. These isotopic gradients and the 13C and 18O compositions of carbonates demonstrate an infiltration mechanism involving the upward movement of 18O-enriched fluids whose compositions were buffered by exchange with marble units. Calculated minimum fluid/rock ratios for the blueschist-to-greenschist transition decrease from 0.4 in the deepest studied level (Central Sifnos) and 0.2 in the intermediate level (Kamares Bay samples) to an assumed value of zero in unaltered blueschists. These ratios may be lower if recycling of fluids occurred between schists and marbles. Infiltration of fluids became inhibited as the transformation advanced as a consequence of sealing effect of the hydration and carbonation reactions. Although infiltration most probably was a pre-requisite for the regional occurrence of the blueschist-to-greenschist transformation in the Cyclades, the evidence on Sifnos does not suggest the introduction of large quantities of fluid.  相似文献   

8.
The Precipitation of carbonate cements in the Pobitite Kamani area (Lower Eocene) began during early diagenesis of sediments. There is evidence, however, that calcite is still forming today.The negative 13C values to –29.2 suggest that the carbonate formed during degradation of 12C-enriched organic matter (perhaps partly from oxidation of methane). The 18O values of –0.9 to –1.6 reflect the marine origin of the early diagenetic carbonate cements. Most of the carbonates, however, formed during late diagenesis (at approximately 1300 m burial depth) and/or recently (after uplift) from percolating groundwaters. These carbonates have an isotopic composition characteristic of carbonates which precipitated from meteoric waters under normal sedimentary temperatures in isotopic equilibrium with 12C-enriched soil carbon dioxide.  相似文献   

9.
The stable carbon isotopic composition of the planktonic foraminifera Globigerinoides sacculifer and G. ruber (white) and sedimentary organic matter from the northern Gulf of Aqaba have been investigated to estimate changes in 13CDIC in surface waters during the last 1,000 years. The high sedimentation rates at the core sites (about 54 cm/Kyear) provide high temporal resolution (~10 years). Recent sediments at the top of the cores reflect conditions younger than 1950. The 13C records of the planktonic foraminifera from three multicores display similar trends, showing a uniform and consistent pattern before the 1750s, and a gradual decrease of approximately 0.63 over the last two centuries. This decrease seems to track the decrease of 13CDIC in surface waters, which is mainly caused by the increase of anthropogenic input of 13C-depleted CO2 into the atmosphere. Similarly, a trend towards lighter values of the carbon isotopic composition of sedimentary organic matter (13Corg) during the last 200 years supports the interpretation obtained from the planktonic foraminiferal 13C. Furthermore, direct measurements of seawater show that 13C of the dissolved inorganic carbon (DIC) in the northern Gulf of Aqaba has decreased by about 0.44 during the period 1979–2000. The average annual decrease is 0.021, which is similar to that observed globally. The 13C values of planktonic foraminifera combined with organic matter 13C from marine sediments are good indicators for reconstructing past changes in atmospheric CO2 concentrations from the northern Gulf of Aqaba.  相似文献   

10.
The world-class Idrija mercury deposit (western Slovenia) is hosted by highly deformed Permocarboniferous to Middle Triassic sedimentary rocks within a complex tectonic structure at the transition between the External Dinarides and the Southern Alps. Concordant and discordant mineralization formed concomitant with Middle Triassic bimodal volcanism in an aborted rift. A multiple isotopic (C, O, S) investigation of host rocks and ore minerals was performed to put constraints on the source and composition of the fluid, and the hydrothermal alteration. The distributions of the 13C and 18O values of host and gangue carbonates are indicative of a fracture-controlled hydrothermal system, with locally high fluid-rock ratios. Quantitative modeling of the 13C and 18O covariation for host carbonates during temperature dependent fluid-rock interaction, and concomitant precipitation of void-filling dolomites points to a slightly acidic hydrothermal fluid (13C–4 and 18O+10), which most likely evolved during isotopic exchange with carbonates under low fluid/rock ratios. The 34S values of hydrothermal and sedimentary sulfur minerals were used to re-evaluate the previously proposed magmatic and evaporitic sulfur sources for the mineralization, and to assess the importance of other possible sulfur sources such as the contemporaneous seawater sulfate, sedimentary pyrite, and organic sulfur compounds. The 34S values of the sulfides show a large variation at deposit down to hand-specimen scale. They range for cinnabar and pyrite from –19.1 to +22.8, and from –22.4 to +59.6, respectively, suggesting mixing of sulfur from different sources. The peak of 34S values of cinnabar and pyrite close to 0 is compatible with ore sulfur derived dominantly from a magmatic fluid and/or from hydrothermal leaching of basement rocks. The similar stratigraphic trends of the 34S values of both cinnabar and pyrite suggest a minor contribution of sedimentary sulfur (pyrite and organic sulfur) to the ore formation. Some of the positive 34S values are probably derived from thermochemical reduction of evaporitic and contemporaneous seawater sulfates.Editorial handling: P. Lattanzi  相似文献   

11.
Impure limestones with interstratified metachert layers were contact metamorphosed and metasomatized by the Bufa del Diente alkali syenite. Massive marbles exhibit mineralogical and stable isotope evidence for limited fluid infiltration, confined to a 17 m wide zone at the contact. Influx of magmatic brines along most metacherts produced up to 4 cm thick wollastonite rims, according to calcite (Cc)+quartz (Qz)= wollastonite (Wo)+CO2, and were observed at distances of up to 400 m from the contact. The produced CO2 exsolved as an immiscible low density CO2-rich fluid. Chert protolith isotope compositions were 18O (Qz)=27–30%. and 18O (Cc)=24–27%.. Many wollastonites in infiltrated metacherts have low 18O ranging from 11–17 and confirm that decarbonation occurred in presence of a magmatic-signatured fluid. Large gradients in 18O (Wo) across the rims may reach 6 The 18O of remaining quartz is often lowered to 15–20 whereas caleites largely retained their original compositions. The isotopic reversals of up to 10 between quartz and calcite along with reaction textures demonstrate non-equilibrium between infiltrating fluid in the aquifer and the assemblage calcite+quartz+wollastonite. This is compatible with the assumption of a down-temperature flow of magmatic fluids that occurred exclusively in the remaining quarzite layer. The 13C (Cc) and 18O (Cc) of marble calcites measured perpendicular to two metachert bands reveal significant isotopic alterations along distances of 4.5 cm and 7.5 cm from the wollastonite-marble boundary only into the hanging wall marble, suggesting an advection process caused by a fluid phase which movel upwards. Covariation trends of 13C (Cc) and 18O (Cc) across the alteration front indicate that this fluid was CO2-rich. Mass balance calculations show that all CO2-rich fluid produced by the decarbonation reaction was lost into overlying marble. The metachert aquifers did not leak with respect to water-rich fluids.  相似文献   

12.
Further support for the view that mineralization at Mount Isa comprises two separate events is provided by 34S/32S measurement. Isotopic exchange between sulphides in lead-zinc-silver ores appears to have been promoted locally during metamorphism, whereas isotopic disequilibrium persists in the copper ores. These isotopic data are explained by a model in which sedimentary deposition of lead, zinc and silver was succeeded by the post-metamorphic emplacement of copper. Past biological activity is inferred from the occurrence of low concentrations of organic carbon with 13C values ranging from –21 to –26 PDB. Carbonate contents, expressed as carbon, vary from <0.1% to 10.9%. The 13C and 18O values for the carbonates are relatively constant at –4.4±1.1 and –17.6±1.1 PDB respectively. These values are interpreted as reflecting isotopic changes induced in original marine carbonates by isotopic exchange during lower greenschist metamorphism.  相似文献   

13.
The isotopic composition of oxygen and carbon was studied in accessory carbonates and quartz separated from salts in Upper Devonian halogenous formations of the Pripyat Trough (Belorus). It is established that isotopic characteristics vary in a wide range. Values of 18O vary in the following range (SMOW): from 18.2 to 29.2 in calcites, from 15.7 to 32.5 in dolomites, and from 17.4 to 27.2 in quartz. Values of 13C range from –13.4 to 1.4 in calcites and from –11.1 to 1.7 in dolomites (PDB). Results obtained indicate highly variable isotope-geochemical conditions of sedimentation and early diagenesis during the formation of evaporitic sediments. Accessory minerals were repeatedly formed in a wide temperature range and probably at various stages of the lithogenesis.  相似文献   

14.
The Shamrocke ore body is a stratiform deposit of disseminated copper-iron sulphides found within lenses of calcareous meta-arkose occurring in Lomagundi Group graphitic schist (Late Precambrian) at Karoi, Rhodesia. Both sulphides and sediments were subjected to high grades of regional metamorphism. Argon/argon isochron ages indicate a major metamorphic event at 550 m. y. (Damaran orogeny) with later minor argon losses. Ore sulphide 34S values range from +3.0 to +14.8 CDT and a general decrease from footwall to hanging-wall reflects an original sedimentary environment where sulphides formed about the sea bed from hydrothermal fluids progressively mixing with sea water. Isotopically lighter sulphides formed syngenetically in the host rocks from bacterial reduction of sulphate. The pyrrhotite was probably formed from pyrite during metamorphism, and owing to reducing conditions maintained similar 34S values to the original pyrite. Oxygen and carbon isotopic analyses of mineralised and unmineralised carbonate lenses are consistent with deposition as marine limestones in an evaporitic environment and/or near hot spring vents.I. N. S. Contribution No 734  相似文献   

15.
Additional measurements of 34S/32S, 13C/12C and 18O/16O ratios in metallic sulphides, carbonates and organic residues suggest a mode of genesis of the McArthur deposit generally consistent with geological and geochemical evidence. A very stable marine environment is indicated by the constant values for 13C and 18O observed throughout the entire deposit. However, 34S contents of pyrites varied by 25 in a manner consistent with the water depths and sulphate availability postulated for the McArthur environment.  相似文献   

16.
Following its birth on the 20th of February 1943, the Mexican volcano Paricutin discharged a total of 1.38 km3 of basaltic andesite and andesite before the eruption came to an end in 1952. Until 1947, when 75% of the volume had been erupted, the lavas varied little in chemical or isotopic composition. All were basaltic andesites with 55 to 56% SiO2, 18O of +6.9 to 7.0, and 87Sr/86Sr ratios close to 0.7038. Subsequent lavas were hypersthene andesites with silica contents reaching 60%, 18O values up to +7.6, and 87Sr/86Sr of 0.7040 to 0.7043. The later lavas were enriched in Ba, Rb, Li, and K2O and depleted in MgO, Cu, Zn, Cr, Ni, Sr, and Co. The isotopic and other chemical changes, which appeared abruptly over a few months in 1947, are interpreted as the result of tapping a sharply zoned and density stratified magma chamber. Xenoliths of partially fused felsic basement rocks in the lavas have silica contents greater than 70%, 18O of +5.6 to 9.9 and 87Sr/86Sr between 0.7043 and 0.7101. In many respects they resemble samples of basement rocks collected from nearby outcrops. Three analysed samples of the latter have silica contents of 65 to 67%, 18O of +7.7 to 8.6, and 87Sr/86Sr between 0.7047 and 0.7056.These new data provide strong support for the original interpretations of Wilcox (1954), who explained the chemical variations by a combination of fractional crystallization and concurrent assimilation of up to 20 weight % continental crust. Except for a few trace elements, particularly Ba, Sr, and Zr, the chemical and isotopic compositions of the xenoliths and basement rocks that crop out nearby match the type of contaminant required to explain the late-stage lavas. Some of the discrepancies may be explained by postulating a contaminant that was older and richer in Ba, Sr, and Zr than those represented by the analysed xenoliths. Others can be attributed to chemical changes accompanying disequilibrium partial melting, contact metamorphism, and meteoric-hydrothermal alteration of the country rock. Many of the xenoliths show evidence of having been affected by such processes.The lavas were erupted from a zoned magma chamber that had differentiated by liquid fractionation prior to the eruption. The order of appearance of the lavas can be explained in terms of withdrawal of stratified liquids of differing densities and viscosities.  相似文献   

17.
Carbon and oxygen isotopic covariations in hydrothermal calcites   总被引:5,自引:0,他引:5  
Isotopic covariations of carbon and oxygen in hydrothermal calcites are quantitatively modeled in terms of the following three mixing processes: (1) mixing between two different fluids which leads to the precipitation of calcite; (2) mixing between fluid and rock: (a) calcite precipitation due to fluid/rock interaction, (b) secondary alteration of primary calcite by interaction with a subsequent fluid. The models are derived from mass balance equations. A distinction among the three mixing processes can be made on a 13C vs 18O diagram, which places important constraints on the genesis of hydrothermal mineralization. The variables which control the ultimate isotopic composition of hydrothermal calcites include the composition of the initial fluid and the wallrock, temperature, and dissolved carbon species. Owing to significant temperature-dependent fractionation effects during equilibrium precipitation of calcite from a hydrothermal fluid, the mixing processes may be distinguished by telltale patterns of isotopic data in 13C vs 18O space. In particular, caution must be exercised in postulating the fluid mixing as the cause for mineral deposition. This is demonstrated for hydrothermal Pb-Zn deposits in the western Harz Mountains, Germany. A positive correlation between 13C and 18O values is observed for calcites from the Bad Grund deposit in the Upper Harz. Two sample profiles through calcite veins show similar correlations with the lowest -values at the center of the veins and the highest -values at the vein margins. Because the correlation array has a greater slope than for calcite precipitation at equilibrium in a closed system and because fluid mixing may not proceed perpendicular to the vein strike, it is assumed that a fluid/rock interaction is responsible for the observed correlation and thus for the precipitation of calcite. A deep-seated fluid is inferred with a 13C value of — 7% and a 18O value of +10%., as well as H2CO3 as the dominant dissolved carbon species; precipitation temperatures of the calcites are estimated to be about 280 170°C. Quite different isotopic distributions are observed for calcites from the St. Andreasberg deposit in the Middle Harz. An alteration model is suggested based mainly on the isotopic distribution through a calcite vein. In addition to a primary fluid which has the same isotopic composition as that in the Bad Grund deposit and thus seems to be responsible for the precipitation of calcite associated with sulfides, an evolved, HCO 3 - -dominant subsurface fluid with 13C about -20 — 15% and 18O 0% is deduced to alter the primary calcite at low temperatures of 70 40°C.  相似文献   

18.
The stable isotope composition of veins, pressure shadows, mylonites and fault breccias in allochthonous Mesozoic carbonate cover units of the Helvetic zone show evidence for concurrent closed and open system of fluid advection at different scales in the tectonic development of the Swiss Alps. Marine carbonates are isotopically uniform, independent of metamorphic grade, where 13C=1.5±1.5 (1 ) and 18O=25.4±2.2 (1 ). Total variations of up to 2 in 13C and 1.5 in 18O occur over a cm scale. Calcite in pre- (Type I) and syntectonic (Type II) vein arrays and pressure shadows are mostly in close isotopic compliance with the matrix calcite, to within ±0.5, signifying isotopic buffering of pore fluids by host rocks during deformation, and closed system redistribution of carbonate over a cm to m scale. This is consistent with microstructural evidence for pressure solution — precipitation deformation.Type III post-tectonic veins occur throughout 5 km of structural section, extend several km to the basement, and accommodate up to 15% extension. Whereas the main population of Type III veins is isotopically undistinguishable from matrix carbonates, calcite in the largest of these veins is depleted in 18O by up to 23 but acquired comparable 13C values. This generation of veins involved geopressurized hydrothermal fluids at 200 to 350° C where 18O H2O=–8 to +20, representing variable mixtures of 18O enriched pore and metamorphic fluids, with 18O depleted meteoric water. Calc-mylonites ( 18O=25 to 11) at the base of the Helvetic units, and syntectonic veins from the frontal Pennine thrust are characterized by a trend of 18O depletion relative to carbonate protoliths, due to exchange with an isotopically variable reservoir ( 18O H2O=20 to 4). The upper limiting value corresponds to carbonate-buffered pore fluid, whereas the lower value is interpreted as 18O-depleted formation brines tectonically expelled at lithostatic pressure from the crystalline basement. Carbonate breccias in one of the large scale late normal faults exchanged with infiltrating 18O-depleted meteoric surface waters ( 18O=–8 to –10).During the main ductile Alpine deformation, individual lithological units and associated tectonic vein arrays behaved as closed systems, whereas mylonites along thrust faults acted as conduits for tectonically expelled lithostatically pressured reservoirs driven over tens of km. At the latest stages, marked by 5 to 15 km uplift and brittle deformation, low 18O meteoric surface waters penetrated to depths of several km under hydrostatic gradients.  相似文献   

19.
The preservation of premetamorphic, whole-rock oxygen isotope ratios in Adirondack metasediments shows that neither these rocks nor adjacent anorthosites and gneisses have been penetrated by large amounts of externally derived, hot CO2-H2O fluids during granulite facies metamorphism. This conclusion is supported by calculations of the effect of fluid volatilization and exchange and is also independently supported by petrologic and phase equilibria considerations. The data suggest that these rocks were not an open system during metamorphism; that fluid/rock ratios were in many instances between 0.0 and 0.1; that externally derived fluids, as well as fluids derived by metamorphic volatilization, rose along localized channels and were not pervasive; and thus that no single generalization can be applied to metamorphic fluid conditions in the Adirondacks.Analyses of 3 to 4 coexisting minerals from Adirondack marbles show that isotopic equilibrium was attained at the peak of granulite and upper amphibolite facies metamorphism. Thus the isotopic compositions of metamorphic fluids can be inferred from analyses of carbonates and fluid budgets can be constructed.Carbonates from the granulite facies are on average, isotopically similar to those from lower grade or unmetamorphosed limestones of the same age showing that no large isotopic shifts accompanied high grade metamorphism. Equilibrium calculations indicate that small decreases in 18O, averaging 1 permil, result from volatilization reactions for Adirondack rock compositions. Additional small differences between amphibolite and granulite facies marbles are due to systematic lithologie differences.The range of Adirondack carbonate 18O values (12.3 to 27.2) can be explained by the highly variable isotopic compositions of unmetamorphosed limestones in conjunction with minor 18O and 13C depletions caused by metamorphic volatilization suggesting that many (and possibly most) marbles have closely preserved their premetamorphic isotopic compositions. Such preservation is particularly evident in instances of high 18O calcites (25.0 to 27.2), low 18O wollastonites (–1.3 to 3.5), and sharp gradients in 18O (18 permil/15m between marble and anorthosite, 8 permil/25 m in metasediments, and 6 permil/1 m in skarn).Isotopic exchange is seen across marble-anorthosite and marble-granite contacts only at the scale of a few meters. Small (<5 m) marble xenoliths are in approximate exchange equilibrium with their hosts, but for larger xenoliths and layers of marble there is no evidence of exchange at distances greater than 10 m from meta-igneous contacts.  相似文献   

20.
Carbon isotope fractionation between coexisting calcite and grpahite ( 13Ccc-gr) has been determined in metamorphosed limestones and calc-silicate rocks from the Ryoke metamorphic belt in the northern Kiso district. In this district, the Ryoke metamorphic rocks, ranging from the lower greenschist facies to the upper amphibolite facies, are widely distributed. The fractionation of 13C/12C between calcite and graphite decreases regularly with increasing metamorphic grade and is independent of absolute 13C values of calcite. This evidence suggests that carbon isotopic exchange equilibrium has been attained during metamorphism even in the greenschist facies and isotopic modification, possibly caused by retrogressive metamorphism, is not distinguished. For T=270–650° C, the fractionation is expressed by the following equation: 13Ccc-gr=8.9×106T–2–7.1 (T in °K).This equation has a slope steeper than the current results on the 13Ccc-gr versus 106T–2 diagram. It can be used as a potential geothermometer for almost the entire temperature range of metamorphism. 13C values of carbonaceous matter in unmetamorphosed limestones in this district are approximately –22, due to its biogenic origin. Graphite from metamorphosed limestones is also considered to be of biogenic origin but shows enrichment of 13C due to isotopic exchange with calcite. 13C values of graphite as well as 13Ccc-gr confirm that zone II represents the lowest grade zone of Ryoke metamorphism. The maximum equilibrium fractionation of 13C between calcite and graphite is considered to be approximately 23%, which corresponds to 270° C. Below this temperature, it seems that carbon isotopic exchange between the minerals does not occur.Calcite in marble from the higher grade zones has relatively lower 13C and 18O values. The depletion of heavy isotopes is considered to be caused by the loss of 13C and 18O enriched carbon dioxide during decarbonation reactions. For oxygen, it is considered that isotopic exchange with metamorphic fluids plays an important role in lowering the 18O value of calcite in some higher grade marbles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号