首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The passive northern continental margin of the South China Sea is rich in gas hydrates, as inferred from the occurrence of bottom-simulating reflectors (BSR) and from well logging data at Ocean Drilling Program (ODP) drill sites. Nonetheless, BSRs on new 2D multichannel seismic reflection data from the area around the Dongsha Islands (the Dongsha Rise) are not ubiquitous. They are confined to complex diapiric structures and active fault zones located between the Dongsha Rise and the surrounding depressions, implying that gas hydrate occurrence is likewise limited to these areas. Most of the BSRs have low amplitude and are therefore not clearly recognizable. Acoustic impedance provides information on rock properties and has been used to estimate gas hydrate concentration. Gas hydrate-bearing sediments have acoustic impedance that is higher than that of the surrounding sediments devoid of hydrates. Based on well logging data, the relationship between acoustic impedance and porosity can be obtained by a linear regression, and the degree of gas hydrate saturation can be determined using Archie’s equation. By applying these methods to multichannel seismic data and well logging data from the northern South China Sea, the gas hydrate concentration is found to be 3–25% of the pore space at ODP Site 1148 depending on sub-surface depth, and is estimated to be less than values of 5% estimated along seismic profile 0101. Our results suggest that saturation of gas hydrate in the northern South China Sea is higher than that estimated from well resistivity log data in the gas hydrate stability zone, but that free gas is scarce beneath this zone. It is probably the scarcity of free gas that is responsible for the low amplitudes of the BSRs.  相似文献   

2.
This study aims to constrain the base of the hydrates stability field in structurally complexsites using the case of Woolsey Mound, a fault-controlled, transient, thermogenic hydrates system, in Mississippi Canyon Block 118, northern Gulf of Mexico. We have computed the base of the hydrates stability field integrating results from a recent heat-flow survey, designed to investigate geothermal anomalies along fault zones which exhibit different fluid flux regimes. An advanced “compositional” simulator was used to model hydrate formation and dissociation at Woolsey Mound and addresses the following hypotheses:
  • 1.Migrating thermogenic fluids alter thermal conditions of the Hydrate Stability Zone (HSZ), so heat-flow reflects fault activity;
  • 2.Gas hydrate formation and dissociation vary temporally at active faults, temporarily sealing conduits for migration of thermogenic fluids;
  • 3.High salinity and inclusion of thermogenic gases with higher molecular weight than methane produce opposite effects on the depth to the bottom of the hydrate stability zone.
Applications of results include identifying and quantifying hydrate deposits in shallow sediments using an interdisciplinary approach that includes multiple resolution seismic data evaluation, geological and geochemical groundtruthing and heat-flow analyses as a proxy for activity along faults.  相似文献   

3.
4.
Highly concentrated gas hydrate deposits are likely to be associated with geological features that promote increased fluid flux through the gas hydrate stability zone (GHSZ). We conduct conventional seismic processing techniques and full-waveform inversion methods on a multi-channel seismic line that was acquired over a 125 km transect of the southern Hikurangi Margin off the eastern coast of New Zealand’s North Island. Initial processing, employed with an emphasis on preservation of true amplitude information, was used to identify three sites where structures and stratal fabrics likely encourage focused fluid flow into and through the GHSZ. At two of the sites, Western Porangahau Trough and Eastern Porangahau Ridge, sub-vertical blanking zones occur in regions of intensely deformed sedimentary layering. It is interpreted that increased fluid flow occurs in these regions and that fluids may dissipate upwards and away from the deformed zone along layers that trend towards the seafloor. At Eastern Porangahau Ridge we also observe a coherent bottom simulating reflection (BSR) that increases markedly in intensity with proximity to the centre of the anticlinal ridge. 1D full-waveform inversions conducted at eight points along the BSR reveal much more pronounced low-velocity zones near the centre of the ridge, indicating a local increase in the flux of gas-charged fluids into the anticline. At another anticline, Western Porangahau Ridge, a dipping high-amplitude feature extends from the BSR upwards towards the seafloor within the regional GHSZ. 1D full-waveform inversions at this site reveal that the dipping feature is characterised by a high-velocity zone overlying a low-velocity zone, which we interpret as gas hydrates overlying free gas. These results support a previous interpretation that this high-amplitude feature represents a local “up-warping” of the base of hydrate stability in response to advective heat flow from upward migrating fluids. These three sites provide examples of geological frameworks that encourage prolific localised fluid flow into the hydrate system where it is likely that gas-charged fluids are converting to highly concentrated hydrate deposits.  相似文献   

5.
We investigate gas hydrate formation processes in compressional, extensional and un-faulted settings on New Zealand's Hikurangi margin using seismic reflection data. The compressional setting is characterized by a prominent subduction wedge thrust fault that terminates beneath the base of gas hydrate stability, as determined from a bottom-simulating reflection (BSR). The thrust is surrounded by steeply dipping strata that cross the BSR at a high angle. Above the BSR, these strata are associated with a high velocity anomaly that is likely indicative of relatively concentrated, and broadly distributed, gas hydrates. The un-faulted setting—sedimentary infill of a slope basin on the landward side of a prominent thrust ridge—is characterized by a strong BSR, a thick underlying free gas zone, and short positive polarity reflection segments that extend upward from the BSR. We interpret the short reflection segments as the manifestation of gas hydrates within relatively coarse-grained sediments. The extensional setting is a localized, shallow response to flexural bending of strata within an anticline. Gas has accumulated beneath the BSR in the apex of folding. A high-velocity zone directly above the BSR is probably mostly lithologically-derived, and only partly related to gas hydrates. Although each setting shows evidence for focused gas migration into the gas hydrate stability zone, we interpret that the compressional tectonic setting is most likely to contain concentrated gas hydrates over a broad region. Indeed, it is the only setting associated with a deep-reaching fault, meaning it is the most likely of the three settings to have thermogenic gas contributing to hydrate formation. Our results highlight the importance of anisotropic permeability in layered sediments and the role this plays in directing sub-surface fluid flow, and ultimately in the distribution of gas hydrate. Each of the three settings we describe would warrant further investigation in any future consideration of gas hydrates as an energy resource on the Hikurangi margin.  相似文献   

6.
Integrated geological, geochemical, and geophysical exploration since 2004 has identified massive accumulation of gas hydrate associated with active methane seeps on the Umitaka Spur, located in the Joetsu Basin on the eastern margin of Japan Sea. Umitaka Spur is an asymmetric anticline formed along an incipient subduction zone that extends throughout the western side of the Japanese island-arc system. Seismic surveys recognized chimney structures that seem strongly controlled by a complex anticlinal axial fault system, and exhibit high seismic amplitudes with apparent pull-up structures, probably due to massive and dense accumulation of gas hydrate. Bottom simulating reflectors are widely developed, in particular within gas chimneys and in the gently dipping eastern flank of the anticline, where debris can store gas hydrates that may represent a potential natural gas resource. The axial fault system, the shape of the anticline, and the carrier beds induce thermogenic gas migration to the top of the structure, and supply gas to the gas hydrate stability zone. Gas reaching the seafloor produces strong seepages and giant plumes in the sea water column.  相似文献   

7.
Gas hydrate was discovered in the Krishna–Godavari (KG) Basin during the India National Gas Hydrate Program (NGHP) Expedition 1 at Site NGHP-01-10 within a fractured clay-dominated sedimentary system. Logging-while-drilling (LWD), coring, and wire-line logging confirmed gas hydrate dominantly in fractures at four borehole sites spanning a 500 m transect. Three-dimensional (3D) seismic data were subsequently used to image the fractured system and explain the occurrence of gas hydrate associated with the fractures. A system of two fault-sets was identified, part of a typical passive margin tectonic setting. The LWD-derived fracture network at Hole NGHP-01-10A is to some extent seen in the seismic data and was mapped using seismic coherency attributes. The fractured system around Site NGHP-01-10 extends over a triangular-shaped area of ∼2.5 km2 defined using seismic attributes of the seafloor reflection, as well as “seismic sweetness” at the base of the gas hydrate occurrence zone. The triangular shaped area is also showing a polygonal (nearly hexagonal) fault pattern, distinct from other more rectangular fault patterns observed in the study area. The occurrence of gas hydrate at Site NGHP-01-10 is the result of a specific combination of tectonic fault orientations and the abundance of free gas migration from a deeper gas source. The triangular-shaped area of enriched gas hydrate occurrence is bound by two faults acting as migration conduits. Additionally, the fault-associated sediment deformation provides a possible migration pathway for the free gas from the deeper gas source into the gas hydrate stability zone. It is proposed that there are additional locations in the KG Basin with possible gas hydrate accumulation of similar tectonic conditions, and one such location was identified from the 3D seismic data ˜6 km NW of Site NGHP-01-10.  相似文献   

8.
The Hikurangi Margin, east of the North Island of New Zealand, is known to contain significant deposits of gas hydrates. This has been demonstrated by several multidisciplinary studies in the area since 2005. These studies indicate that hydrates in the region are primarily located beneath thrust ridges that enable focused fluid flow, and that the hydrates are associated with free gas. In 2009–2010, a seismic dataset consisting of 2766 km of 2D seismic data was collected in the undrilled Pegasus Basin, which has been accumulating sediments since the early Cretaceous. Bottom-simulating reflections (BSRs) are abundant in the data, and they are accompanied by other features that indicate the presence of free gas and concentrated accumulations of gas hydrate. We present results from a detailed qualitative analysis of the data that has made use of automated high-density velocity analysis to highlight features related to the hydrate system in the Pegasus Basin. Two scenarios are presented that constitute contrasting mechanisms for gas-charged fluids to breach the base of the gas hydrate stability zone. The first mechanism is the vertical migration of fluids across layers, where flow pathways do not appear to be influenced by stratigraphic layers or geological structures. The second mechanism is non-vertical fluid migration that follows specific strata that crosscut the BSR. One of the most intriguing features observed is a presumed gas chimney within the regional gas hydrate stability zone that is surrounded by a triangular (in 2D) region of low reflectivity, approximately 8 km wide, interpreted to be the result of acoustic blanking. This chimney structure is cored by a ∼200-m-wide low-velocity zone (interpreted to contain free gas) flanked by high-velocity bands that are 200–400 m wide (interpreted to contain concentrated hydrate deposits).  相似文献   

9.
The occurrence of gas hydrate has been inferred from the presence of Bottom-Simulating Reflectors (BSRs) along the western continental margin of India. In this paper, we assess the spatial and vertical distribution of gas hydrates by analyzing the interval velocities and Amplitude Versus Offset (AVO) responses obtained from multi-channel seismics (MCSs). The hydrate cements the grains of the host sediment, thereby increasing its velocity, whereas the free gas below the base of hydrate stability zone decreases the interval velocity. Conventionally, velocities are obtained from the semblance analysis on the Common Mid-Point (CMP) gathers. Here, we used wave-equation datuming to remove the effect of the water column before the velocity analysis. We show that the interval velocities obtained in this fashion are more stable than those computed from the conventional semblance analysis. The initial velocity model thus obtained is updated using the tomographic velocity analysis to account for lateral heterogeneity. The resultant interval velocity model shows large lateral velocity variations in the hydrate layer and some low velocity zones associated with free gas at the location of structural traps. The reflection from the base of the gas layer is also visible in the stacked seismic data. Vertical variation in hydrate distribution is assessed by analyzing the AVO response at selected locations. AVO analysis is carried out after applying true amplitude processing. The average amplitudes of BSRs are almost constant with offset, suggesting a fluid expulsion model for hydrate formation. In such a model, the hydrate concentrations are gradational with maxima occurring at the base of hydrate stability zone.  相似文献   

10.
Many mud diapirs have been recognized in southern Okinawa Trough by a multi-channel seismic surveying on R/V KEXUE I in 2001. Gas hydrates have been identified, by the seismic reflection characteristics, the velocity analysis and the impedance inversion. Geothermal heat flow around the central of the mud diapir has been determined theoretically by the Bottom Simulating Reflectors (BSRs). Comparing the BSR derived and the measured heat flow values, we infer that the BSR immediately at the top of the mud diapirs indicate the base of the saturated gas hydrate formation zone (BSGHFZ), but not, as we ordinarily know, the base of the gas hydrate stability zone (BGHSZ), which could be explained by the abnormal regional background heat flow and free gas flux associated with mud diapirs. As a result, it helps us to better understand the generation mechanism of the gas hydrates associated with mud diapirs and to predict the gas hydrate potential in the southern Okinawa Trough.  相似文献   

11.
Multichannel seismic reflection data from the continental margin of western India suggest the potential presence of fluid expulsion features, which may or may not be associated with gas hydrates. No typical bottom simulating reflector was observed on the reflection seismic section. As a result we look for other evidence in seismic sections in a small corridor of the western continental margin of India in order to establish the presence of gas hydrates. We study features including venting through the seafloor, pockmarks, sea floor collapse, faults acting as migration paths for fluid flow, transparent gas-charged sediment, reduction in amplitude strength, diapirism and mud-volcano. Presence of all these gas-escape features on a seismic section implies the probable presence of methane within the zone of hydrate stability field.  相似文献   

12.
Pockmarks are observed worldwide along the continental margins and are inferred to be indicators of fluid expulsion. In the present study, we have analysed multibeam bathymetry and 2D/3D seismic data from the south-western Barents Sea, in relation to gas hydrate stability field and sediment type, to examine pockmark genesis. Seismic attributes of the sediments at and beneath the seafloor have been analysed to study the factors related to pockmark formation. The seabed depths in the study area are just outside the methane hydrate stability field, but the presence of higher order hydrocarbon gases such as ethane and/or propane in the expelled fluids may cause localised gas hydrate formation. The selective occurrence of pockmarks in regions of specific seabed sediment types indicates that their formation is more closely related to the type of seabed sediment than the source path of fluid venting such as faults. The presence of high acoustic backscatter amplitudes at the centre of the pockmarks indicates harder/coarser sediments, likely linked to removal of soft material. The pockmarks show high seismic reflection amplitudes along their fringes indicating deposition of carbonates precipitated from upwelling fluids. High seismic amplitude gas anomalies underlying the region away from the pockmarks indicate active fluid flow from hydrocarbon source rocks beneath, which is blocked by overlying less permeable formations. In areas of consolidated sediments, the upward flow is limited to open fault locations, while soft sediment areas allow diffused flow of fluids and hence formation of pockmarks over a wider region, through removal of fine-grained material.  相似文献   

13.
14.
The newly developed P-Cable 3D seismic system allows for high-resolution seismic imaging to characterize upper geosphere geological features focusing on geofluid expressions (gas chimneys), shallow gas and gas hydrate reservoirs. Seismic imaging of a geofluid system of an Arctic sediment drift at the Vestnesa Ridge, offshore western Svalbard, provides significantly improved details of internal chimney structures from the seafloor to ∼500 m bsf (below seafloor). The chimneys connect to pockmarks at the seafloor and indicate focused fluid flow through gas hydrated sediments. The pockmarks are not buried and align at the ridge-crest pointing to recent, topography-controlled fluid discharge. Chimneys are fuelled by sources beneath the base of gas hydrate stability zone (GHSZ) that is evident at ∼160–170 m bsf as indicated by a bottom-simulating reflector (BSR). Conduit centres that are not vertically straight but shift laterally by up to 200 m as well as discontinuous internal chimney reflections indicate heterogeneous hydraulic fracturing of the sediments. Episodically active, pressure-driven focused fluid flow could explain the hydro-fracturing processes that control the plumbing system and lead to extensive pockmark formation at crest of the Vestnesa Ridge. High-amplitude anomalies in the upper 50 m of the chimney structures suggest formations of near-surface gas hydrates and/or authigenic carbonate precipitation. Acoustic anomalies, expressed as high amplitudes and amplitude blanking, are irregularly distributed throughout the deeper parts of the chimneys and provide evidence for the variability of hydrate and/or carbonate formation in space and time.  相似文献   

15.
An analysis of 3D seismic data from the Zhongjiannan Basin in the western margin of the South China Sea (SCS) reveals seismic evidence of gas hydrates and associated gases, including pockmarks, a bottom simulating reflector (BSR), enhanced reflection (ER), reverse polarity reflection (RPR), and a dim amplitude zone (DAZ). The BSR mainly surrounds Zhongjian Island, covering an area of 350 km2 in this 3D survey area. The BSR area and pockmark area do not match each other; where there is a pockmark developed, there is no BSR. The gas hydrate layer builds upward from the base of the stability zone with a thickness of less than 100 m. A mature pockmark usually consists of an outside trough, a middle ridge, and one or more central pits, with a diameter of several kilometers and a depth of several hundreds of meters. The process of pockmark creation entails methane consumption. Dense faults in the study area efficiently transport fluid from large depths to the shallow layer, supporting the formation of gas hydrate and ultimately the pockmark.  相似文献   

16.
The presence of a wedge of offshore permafrost on the shelf of the Canadian Beaufort Sea has been previously recognized and the consequence of a prolonged occurrence of such permafrost is the possibility of an underlying gas hydrate regime. We present the first evidence for wide-spread occurrences of gas hydrates across the shelf in water depths of 60–100 m using 3D and 2D multichannel seismic (MCS) data. A reflection with a polarity opposite to the seafloor was identified ∼1000 m below the seafloor that mimics some of the bottom-simulating reflections (BSRs) in marine gas hydrate regimes. However, the reflection is not truly bottom-simulating, as its depth is controlled by offshore permafrost. The depth of the reflection decreases with increasing water depth, as predicted from thermal modeling of the late Wisconsin transgression. The reflection crosscuts strata and defines a zone of enhanced reflectivity beneath it, which originates from free gas accumulated at the phase boundary over time as permafrost and associated gas hydrate stability zones thin in response to the transgression. The wide-spread gas hydrate occurrence beneath permafrost has implications on the region including drilling hazards associated with the presence of free gas, possible overpressure, lateral migration of fluids and expulsion at the seafloor. In contrast to the permafrost-associated gas hydrates, a deep-water marine BSR was also identified on MCS profiles. The MCS data show a polarity-reversed seismic reflection associated with a low-velocity zone beneath it. The seismic data coverage in the southern Beaufort Sea shows that the deep-water marine BSR is not uniformly present across the entire region. The regional discrepancy of the BSR occurrence between the US Alaska portion and the Mackenzie Delta region may be a result of high sedimentation rates expected for the central Mackenzie delta and high abundance of mass-transport deposits that prohibit gas to accumulate within and beneath the gas hydrate stability zone.  相似文献   

17.
The Barents Sea seabed exhibits an area of major glacial erosion exposing parts of the old hydrocarbon basins. In this region, we modelled the gas hydrate stability field in a 3D perspective, including the effects of higher order hydrocarbon gases. We used 3D seismic data to analyse the linkage between fluid-flow expressions and hydrate occurrences above old sedimentary basin systems and vertical faults. Pockmarks showed a relation to fault systems where some of them are directly connected to hydrocarbon bearing sedimentary formations. The influence of bottom water temperature, pore water salinity and geothermal gradient variation on gas hydrate stability zone (GHSZ) thickness is critically analysed in relation to both geological formations and salt tectonics. Our analysis suggests a highly variable GHSZ in the Barents Sea region controlled by local variations in the parameters of stability conditions. Recovery of gas-hydrate sample from the region and presence of gas-enhanced reflections below estimated BSR depths may indicate a prevalent gas-hydrate stable condition.  相似文献   

18.
《Marine and Petroleum Geology》2012,29(10):1915-1931
Highly concentrated gas hydrate deposits are likely to be associated with geological features that promote increased fluid flux through the gas hydrate stability zone (GHSZ). We conduct conventional seismic processing techniques and full-waveform inversion methods on a multi-channel seismic line that was acquired over a 125 km transect of the southern Hikurangi Margin off the eastern coast of New Zealand’s North Island. Initial processing, employed with an emphasis on preservation of true amplitude information, was used to identify three sites where structures and stratal fabrics likely encourage focused fluid flow into and through the GHSZ. At two of the sites, Western Porangahau Trough and Eastern Porangahau Ridge, sub-vertical blanking zones occur in regions of intensely deformed sedimentary layering. It is interpreted that increased fluid flow occurs in these regions and that fluids may dissipate upwards and away from the deformed zone along layers that trend towards the seafloor. At Eastern Porangahau Ridge we also observe a coherent bottom simulating reflection (BSR) that increases markedly in intensity with proximity to the centre of the anticlinal ridge. 1D full-waveform inversions conducted at eight points along the BSR reveal much more pronounced low-velocity zones near the centre of the ridge, indicating a local increase in the flux of gas-charged fluids into the anticline. At another anticline, Western Porangahau Ridge, a dipping high-amplitude feature extends from the BSR upwards towards the seafloor within the regional GHSZ. 1D full-waveform inversions at this site reveal that the dipping feature is characterised by a high-velocity zone overlying a low-velocity zone, which we interpret as gas hydrates overlying free gas. These results support a previous interpretation that this high-amplitude feature represents a local “up-warping” of the base of hydrate stability in response to advective heat flow from upward migrating fluids. These three sites provide examples of geological frameworks that encourage prolific localised fluid flow into the hydrate system where it is likely that gas-charged fluids are converting to highly concentrated hydrate deposits.  相似文献   

19.
The presence of gas hydrate in the Ulleung Basin, East Sea (Japan Sea), inferred by various seismic indicators, including the widespread bottom-simulating reflector (BSR), has been confirmed by coring and drilling. We applied the standard AVO technique to the BSRs in turbidite/hemipelagic sediments crosscutting the dipping beds and those in debris-flow deposits to qualitatively assess the gas hydrate and gas concentrations. These BSRs are not likely to be affected by thin-bed tuning which can significantly alter the AVO response of the BSR. The BSRs crosscutting the dipping beds in turbidite/hemipelagic sediments are of low-seismic amplitude and characterized by a small positive gradient, indicating a decrease in Poisson’s ratio in the gas-hydrate stability zone (GHSZ), which, in turn, suggests the presence of gas hydrate. The BSRs in debris-flow deposits are characterized by a negative gradient, indicating decreased Poisson’s ratio below the GHSZ, which is likely due to a few percent or greater gas saturations. The increase in the steepness of the AVO gradient and the magnitude of the intercept of the BSRs in debris-flow deposits with increasing seismic amplitude of the BSRs is probably due to an increase in gas saturations, as predicted by AVO model studies based on rock physics. The reflection strength of the BSRs in debris-flow deposits, therefore, can be a qualitative measure of gas saturations below the GHSZ.  相似文献   

20.
The Ulleung Basin, East (Japan) Sea, is well-known for the occurrence of submarine slope failures along its entire margins and associated mass-transport deposits (MTDs). Previous studies postulated that gas hydrates which broadly exist in the basin could be related with the failure process. In this study, we identified various features of slope failures on the margins, such as landslide scars, slide/slump bodies, glide planes and MTDs, from a regional multi-channel seismic dataset. Seismic indicators of gas hydrates and associated gas/fluid flow, such as the bottom-simulating reflector (BSR), seismic chimneys, pockmarks, and reflection anomalies, were re-compiled. The gas hydrate occurrence zone (GHOZ) within the slope sediments was defined from the BSR distribution. The BSR is more pronounced along the southwestern slope. Its minimal depth is about 100 m below seafloor (mbsf) at about 300 m below sea-level (mbsl). Gas/fluid flow and seepage structures were present on the seismic data as columnar acoustic-blanking zones varying in width and height from tens to hundreds of meters. They were classified into: (a) buried seismic chimneys (BSC), (b) chimneys with a mound (SCM), and (c) chimneys with a depression/pockmark (SCD) on the seafloor. Reflection anomalies, i.e., enhanced reflections below the BSR and hyperbolic reflections which could indicate the presence of gas, together with pockmarks which are not associated with seismic chimneys, and SCDs are predominant in the western-southwestern margin, while the BSR, BSCs and SCMs are widely distributed in the southern and southwestern margins. Calculation of the present-day gas-hydrate stability zone (GHSZ) shows that the base of the GHSZ (BGHSZ) pinches out at water depths ranging between 180 and 260 mbsl. The occurrence of the uppermost landslide scars which is below about 190 mbsl is close to the range of the GHSZ pinch-out. The depths of the BSR are typically greater than the depths of the BGHSZ on the basin margins which may imply that the GHOZ is not stable. Close correlation between the spatial distribution of landslides, seismic features of free gas, gas/fluid flow and expulsion and the GHSZ may suggest that excess pore-pressure caused by gas hydrate dissociation could have had a role in slope failures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号