首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The major element, trace element and Nd-Sr isotopic composition of Cenozoic basaltic volcanic rocks from the Maguan area, eastern Tibet, indicates that the volcanic rocks are enriched in alkalis, especially K (K2O up to 3.81%) and depleted in Ti (TiO2 = 1.27%-2.00%). These rocks may be classified as two groups, based on their Mg# numbers: one may represent primary magma (Mg# numbers from 68 to 69), and the other, the evolved magma(Mg# numbers from 49 to 57). Their REE contents are very high (∑REE = 155.06-239.04μg/g). Their REE distribution patterns are of the right-inclined type, characterized by LREE enrichment [(La/Yb)N =12.0-19.2], no Ce anomaly (Ce/Ce*=1.0), and weak negative Eu anomaly (Eu/Eu*=0.9). The rocks are highly enriched in Rb, Sr and Ba (59.5-93.8μg/g, 732-999 μg/g, and 450-632 g/g, respectively), high in U and Th (1.59-2.31μg/g and 4.73-8.16 μg/g, respectively), and high in Nb, Ta, Zr and Hf (70-118 μg/g,3.72-5.93 μg/g, 215-381 μg/g, and 5.47-9.03 μg/g, respectively). In the primitive mantle-normalized incompatible element spidergram, Nb, Ta, Zr, Hf and P show positive anomalies, whereas Ba, Ti and Y show negative anomalies. The 87Sr/86Sr ratios range from 0. 704029 to 0.704761; 143Nd/144Nd from 0. 512769 to 0. 512949; and εNd from 2.6 to 6.1. These geochemical features might suggest that the potential source of the basaltic high-K volcanic rocks in the Maguan area is similar to the OIB-source mantle of Hawaii and Kergeulen volcanic rocks.  相似文献   

2.
Isotopic and geochemical data of the Zerenda series metamorphic rocks from the Kokchetav massif are reported. Some of these rocks contain microdiamond inclusions in garnets and other indicators of ultrahigh pressure metamorphism (P > 40 kbar, T = 900–1000 °C). The diamond-bearing rocks exhibit distinctive geochemical characteristics compared to typical crustal rocks. The REE patterns range from LREE depleted to slightly LREE enriched [chondrite normalized (La/Yb)N– 0.1–5.4] with a negative Eu anomaly. They are depleted in incompatible elements (e.g. Sr, Ba, U, Th) with respect to the upper crust. In contrast non-diamondiferous rocks of the Zerenda series exhibit normal crustal geochemistry. All rocks of the Zerenda series have very radiogenic lead isotopes. The measured μ values (238U/204Pb) compared with those calculated for the interval between crust formation and ultrahigh pressure (UHP) metamorphism suggest a decrease by factors of up to 200 during the UHP metamorphism. The Sm-Nd mineral isochrons from the diamond-bearing rocks and other rock types of the Zerenda series give a Middle Cambrian (524–535 Ma) age of metamorphism. The Nd model ages show that crust formation occurred about 2.3 Ga ago. Significant fractionation of Sm and Nd and loss of incompatible elements may be due to partial melting of the protoliths. The Ar-Ar age determinations of secondary biotite and muscovite from the diamond-bearing rocks yield an age of 517 ± 5 Ma. This cooling age requires a short time interval between UHP metamorphism and uplift to a crustal level. Ultrahigh pressure metamorphism might be a significant source of Pb for the mantle. We propose that the radiogenic Pb of the oceanic array is the contamination traces of numerous UHP events. Beside the geological aspect we demonstrate a method of dating a high grade metamorphic terrain using Nd isotopes. We compare whole rock isochrons and mineral isochrons and in this way get some insight into the behaviour of the Sm-Nd system during very high grade metamorphic events. Received: 14 August 1998 / Accepted: 1 June 1999  相似文献   

3.
There is a positive correlation between the concentration of P2O5 in basic magmas and the concentration of the REE and also between their light: heavy ratio, represented by both Ce/Yb and Nd/Sm. This suggests that a phosphate mineral, such as apatite or whitlockite, both of which can contain high concentrations of REE, is present in the magma source regions. Thermodynamic calculations indicate that fluorapatite is stable over the whole P-T range of magma generation, but at the greatest depths it may co-exist with whitlockite in the presence of fluorphlogopite. Using published REE crystal-liquid distribution coefficients, it is evident that for P2O5-rich basic magmas with 700–1000 times chondritic abundances of LREE, garnet need not have contributed significantly to their composition. The most convincing match of hypothetical liquid with actual basic magma is for the derivation of mid-ocean ridge (MOR) basalts from plagioclase- or spinel-lherzolite containing 3 times chondritic REE by ∼5% partial melting. The more P2O5-rich, and hence REE-rich, basic magmas are apparently derived from crystalline sources which are progressively impoverished in garnet and clinopyroxene, or in other words, the greater the REE concentration of basic magma, the more refractory is the mineral assemblage of the source. There is some evidence for a compositional dependence of radiogenic neodymium and lead in basic magma, and one way that this can be reconciled with mantle source-region evolution is to postulate that fusion is not always accompanied by isotopic equilibrium.  相似文献   

4.
The Archean Complex homologs of the Kola superdeep borehole (SG-3) were identified in the northern part of the White Sea mobile belt. Tonalite-trondhjemite-granodiorite gneisses of the Voche-Lambina test site and metavolcanic dacite-rhyodacite rocks of the borehole SG-3 were formed at the stages of 2.97–2.82, ∼2.81, and 2.78–2.79 Ga. The Sm-Nd model ages of the studied rocks do not exceed 3.1 Ga, and their positive ɛNd(t) values vary from +0.5 to +3.34. They are characterized by Mg# = 0.20−0.44, similar concentrations (HFSE) of Zr, Nb, Y, and also Rb, Cr, and Ni, and sharply differentiated spectra of the REE distribution (Ce/Sm = 3.2−5.8; Gd/Yb = 2.6−7.1). Primary melts were formed in balance with garnetamphibole restite under P ≥ 15−16 kbar.  相似文献   

5.
Summary ?To enhance the ability to distinguish tholeiitic from alkalic magma parentages by mineral compositions, I determined trace-element abundances in plagioclase separated from xenolithic gabbros of Mauna Kea volcano. These gabbros have origins in tholeiitic and alkalic magmas of the Hamakua postshield stage of Mauna Kea volcanism. Chondrite-normalized rare-earth element (REE) patterns for plagioclase show that highly calcic plagioclase, ≥ An78, from alkalic magma has greater light-REE/heavy-REE (LREE/HREE) ratios than less calcic plagioclase, An64–75, from tholeiitic magma (ratios, 22–33 vs < 20), suggesting that higher LREE/HREE ratios are inherent to plagioclase of alkalic magmas. However, with compositional evolution (i.e., to lower An), plagioclase REE patterns are of limited use for distinguishing tholeiitic from alkalic parentage because LREE/HREE ratios within each group increase and overlap in the range of ∼ 20–90. Sr, Ba, Hf, and Ta can also discern parentages as their abundances in plagioclase largely reflect abundances inherent to their parental magmas. The best expressions for identifying parentage use Sr abundances (Sr vs An; vs Ce/Yb; vs Sr/Ce), although Hf, Ba, and Ta abundances vs An and vs Ce/Yb are also useful – the distinctions due to tholeiitic plagioclase having relatively low Sr (∼ 500–1000 ppm), Ba (< 100 ppm), Hf (< 0.10 ppm), and Ta (< 0.05 ppm). These relationships help to distinguish between the effects of differentiation on trace-element abundances in plagioclase and their abundances owed to intrinsic concentrations in their magmas. They create compositional fields for tholeiitic and alkalic parentages that remain graphically separated even though differentiation may have enriched the plagioclase in incompatible elements.
Zusammenfassung ?Plagioklas aus tholeitischen und alkalischen Magmen von Hawaii: Unterscheidung aufgrund von REE, Sr, Ba, Hf und Ta Um die M?glichkeit der Unterscheidung tholeitischer von alkalischer Magmaherkunft durch Mineralzusammensetzungen zu verbessern, habe ich die Spurenelementverteilung in Plagioklasen, die von xenolithischen Gabbros des Mauna Kea Vulkans abgetrennt wurden, untersucht, Diese Gabbros entstammen tholeitischen und alkalischen Magmen des Hamakua “Post-Schild” Stadiums des Mauna Kea Vulkanismus. Chondritisch normalisierte Seltene Erd (SEE) Verteilungs-Muster für Plagioklase zeigen, dass stark kalzische Plagioklase, > An78, aus alkalischen Magmen h?here leichte SEE/schwere SEE (LSEE/HSEE) Verh?ltnisse zeigen, als weniger kalzische Plagioklase, An64–75 aus tholeitischem Magma (Verh?ltniszahlen 22–33 gegenüber < 20). Dies weist darauf hin, dass h?here LSEE/HSEE-Verh?ltnisse typisch für Plagioklase aus alkalischen Magmen sind. Im Zuge der Evolution der Zusammensetzungen (d.h. zu niedrigeren An-Werten hin), sind die SEE Verteilungsmuster von Plagioklasen weniger hilfreich um tholeitische von alkalischer Herkunft zu unterscheiden. Dies ist deshalb so, weil die Verh?ltniszahlen innerhalb jeder Gruppe zunehmen und im Bereich von 20–90 überlappen. Sr, Ba, Hf und Ta k?nnen auch dazu dienen, um die Herkunft der Plagioklase zu definieren, da ihre H?ufigkeit gro?teils auf H?ufigkeiten, die für die Ursprungsmagmen typisch sind, zurückgehen. Die besten Herkunft-Parameter sind die Sr H?ufigkeiten (Sr vs An; vs Ce/Yb; vs Sr/Ce), obwohl die H?ufigkeit von Hf, Ba und Ta gegen An und gegen Ce/Yb auch nützlich sind. Diese Unterscheidungen gehen darauf zurück, dass tholeitische Plagioklase relativ niedrige Sr (∼ 500–1000 ppm), Ba (< 500 ppm) Hf (< 0.10 ppm) und Ta (< 0.5 ppm) führen. Diese Beziehungen erleichtern die Unterscheidung zwischen den Auswirkungen der Differenzierung auf die Spurenelement-Verteilungsmuster in Plagioklasen und auf ihre H?ufigkeiten, die auf die intrisischen Konzentrationen in den Ursprungsmagmen zurückgehen. Sie definieren charakteristische Felder für tholeitische und für alkalische Herkunft, die graphisch separiert bleiben, auch wenn die Gehalte der Plagioklase an inkompatiblen Elementen durch Differenzierung zugenommen haben mag.


Received July 22, 1999;revised version accepted December 7, 1999  相似文献   

6.
The Nellore–Khammam Schist Belt (NKSB) in South India is a Precambrian greenstone belt sited between the Eastern Ghats Mobile Belt (EGMB) to the east and the Cratonic region to the west. The belt contains amphibolites, granite gneisses and metasediments including banded iron formations. Amphibolites occurring as dykes, sills and lenses—in and around an Archaean layered complex—form the focus of the present study. The amphibolites are tholeiitic in composition and are compositionally similar to Fe-rich mafic rocks of greenstone belts elsewhere. The NKSB tholeiites show highly variable incompatible trace element abundances for similar Mg#s, relatively constant compatible element concentrations, and uniform incompatible element ratios. Chondrite-normalized REE patterns of the tholeiites range from strongly LREE depleted ((La/Yb) N = 0.19) to LREE enriched ((La/Yb) N = 6.95). Constant (La/Ce) N ratios but variable (La/Yb) N values are characteristic geochemical traits of the tholeiites; the latter has resulted in crossing REE patterns especially at the HREE segment. Even for the most LREE depleted samples, the (La/Ce) N ratios are > 1 and are similar to those of the LREE enriched samples. There is a systematic decrease in FeOt, K2O and P2O5, as well as Ce and other incompatible elements from the LREE enriched to the depleted samples without any variation in the incompatible element ratios and Mg#s. Neither batch and fractional melting, nor magma chamber processes can account for the non-correlation between the LREE enrichment and HREE concentrations. We suggest that dynamic melting of the upper mantle is responsible for these geochemical peculiarities of the NKSB tholeiites. Polybaric dynamic melting within a single mantle column with variable mineralogy is the likely mechanism for the derivation of NKSB tholeiitic melts. It is possible that the NKSB tholeiites are derived from a source with higher FeO/MgO than that of present day ridge basalts.  相似文献   

7.
Based on the data of 64 samples ,the REE geochemical characteristics of volcanic rocks in northern Zhejiang and eastern Jiangxi provinces are discussed in this paper.The REE distribution patterns in acid and intermediate-acid volcanic rocks in these areas display some similarities,as indicated by rightward-inclined V-shaped curves with negative Eu anomalies,which are parallel to earch other.In addi-tion,their REE parameters(ΣREE,ΣLREE/ΣHREE,δEu,Ce/Yb,La/Sm,La/Yb,etc)also va-ry over a narrow range with small deviations.HREE are particularly concentrated in the volcanic rocks as-sociated with uranium mineralization.The initial ^87Sr/^86Sr ratio in the volcanic rocks is about 0.7056-0.7139.All these features in conjunction with strontium isotopic data indicate that the rock-forming materials come from the sialic crust.The REE distribution patterns and REE geochemical parameters of the volcanic rocks ,as well as La/Sm-La and Ce/Yb-Eu/Yb diagrams may be applied to the sources of rock-forming and ore-forming materials.  相似文献   

8.
The Duolanasayi gold deposit, 60 km NW of Habahe County, Xinjiang Uygur Autonomous Region, is a mid-large-scale gold deposit controlled by brittle-ductile shearing, and superimposed by albitite veins and late-stage magma hydrothermal solutions. There are four types of pyrite, which are contained in the light metamorphosed rocks (limestone, siltstone), altered-mineralized rocks (chlorite-schist, altered albite-granite, mineralized phyllite), quartz veins and carbonatite veinlets. The pyrite is the most common ore mineral. The Au-barren pyrite is present mainly in a simple form and gold-bearing pyrite is present mainly in a composite form. From the top downwards, the pyrite varies in crystal form from {100} and {210} {100} to {210} {100} {111} to {100} {111}. Geochemical studies indicate that the molecular contents of pyrite range from Fe1.057S2 to Fe0.941S2. Gold positively correlates with Mn, Sr, Zn, Te, Pb, Ba and Ag. There are four groups of trace elements: Fe-Cu-Sr-Ag, Au-Te-Co, As-Pb-Zn and Mn-V-Ti-Ba-Ni-Cr in pyrite. The REE characteristics show that the total amount of REE (ΣREE) ranges from 32.35×10 -6 to 132.18×10 -6; LREE/HREE, 4.466-9.142; (La/Yb)N, 3.719-11.133; (Eu/Sm)N, 0.553-1.656; (Sm/Nd)N, 0.602-0.717; La/Yb, 6.26-18.75; δEu, 0.628-2.309; δCe, 0.308-0.816. Sulfur isotopic compositions (δ 34S=-2.46‰--7.02‰) suggest that the sulfur associated with gold mineralization was derived from the upper mantle or lower crust.  相似文献   

9.
Nature of the crust in Maine,USA: evidence from the Sebago batholith   总被引:7,自引:0,他引:7  
 Neodymium and lead isotope and elemental data are presented for the Sebago batholith (293±2 Ma), the largest exposed granite in New England. The batholith is lithologically homogeneous, yet internally heterogeneous with respect to rare earth elements (REE) and Nd isotopic composition. Two-mica granites in the southern/central portion of the batholith (group 1) are characterized by REE patterns with uniform shapes [CeN/YbN (chondrite normalized) = 9.4–19 and Eu/Eu* (Eu anomaly) = 0.27–0.42] and ɛ Nd(t) = −3.1 to −2.1. Peripheral two-mica granites (group 2), spatially associated with stromatic and schlieric migmatites, have a wider range of total REE contents and patterns with variable shapes (CeN/YbN = 6.1–67, Eu/Eu* = 0.20–0.46) and ɛ Nd(t) = −5.6 to −2.8. The heterogeneous REE character of the group 2 granites records the effects of magmatic differentiation that involved monazite. Coarse-grained leucogranites and aplites have kinked REE patterns and low total REE, but have Nd isotope systematics similar to group 2 granites with ɛ Nd(t) = −5.5 to −4.7. Rare biotite granites have steep REE patterns (CeN/YbN = 51–61, Eu/Eu* = 0.32–0.84) and ɛ Nd(t) = −4.6 to −3.8. The two-mica granites have a restricted range in initial Pb isotopic composition (206Pb/204Pb = 18.41–18.75; 207Pb/204Pb = 15.60–15.68; 208Pb/204Pb = 38.21–38.55), requiring and old, high U/Pb (but not Th/U) source component. The Nd isotope data are consistent with magma derivation from two sources: Avalon-like crust (ɛ Nd>−3), and Central Maine Belt metasedimentary rocks (ɛ Nd<−4), without material input from the mantle. The variations in isotope systematics and REE patterns are inconsistent with models of disequilibrium melting which involved monazite. Received: 8 December 1995 / Accepted: 29 April 1996  相似文献   

10.
《Gondwana Research》2002,5(1):133-146
Trace, REE, Sr and Nd isotopic studies have been carried out on gabbro-pyroxenite intrusives (Rb-Sr isochron age ∼ 1619±38 Ma; Sri ∼ 0.70552±0.00002) of the Dalma volcanic belt from eastern Indian craton. Primitive mantle-normalised trace element patterns show a general depletion of high field strength elements and LREE but more or less flat pattern in most compatible elements. Chondrite-normalised REE plots show depleted LREE-flat HREE patterns [(SLREE/SHREE)N < 1, (Ce/Yb)N < 1] strikingly similar to the komatiitic and tholeiitic lavas from this belt. Nd isotopic data with mean fSm/Nd ∼ +0.2704 and high eNd (mean +7.8) values indicate that the source of these rocks was depleted in LREE for considerably long time. When plotted on the global eNd evolution path for the upper mantle the Dalma intrusives fall exactly around the depleted MORB-type mantle at 1.6 Ga.Enrichment in some LILE like Rb, Ba, Th is found both in the tholeiitic lavas and the residues indicating them to be source characteristics. Positive DNb values of most of the mafic-ultramafic units (including komatiitic lavas) of this belt indicate that they originated from a mantle plume with thick envelope of hot upper mantle producing MORB-like depleted komatiites, tholeiites and intrusives. The mid-Proterozoic plume eventually rifted the continent above, forming a rapidly subsiding basin which was subsequently collapsed and compressed. The plume also caused widespread thermal events recorded in charnockitisation, migmatisation and granitisation around 1.6 Ga. This was possibly part of a global ∼1.6 Ga thermal anomaly which affected the pre-existing large landmass comprising atleast Antarctica, Australia and India (Mawson continent?).  相似文献   

11.
The Sula Mountains greenstone belt is the largest of the late-Archaean greenstone belts in the West African Craton. It comprises a thick (5 km) lower volcanic formation and a thinner (2 km) upper metasedimentary formation. Komatiites and basalts dominate the volcanic formation and komatiites form almost half of the succession. All the volcanic rocks are metamorphosed to amphibolite grade and have been significantly chemically altered. Two stages of alteration are recognised and are tentatively ascribed to hydrothermal alteration and later regional amphibolite facies metamorphism. Ratios of immobile trace elements and REE patterns preserve, for the most part, original igneous signatures and these are used to identify five magma types. These are: low-Ti komatiites – depleted in light REE; low-Ti komatiites – with flat REE patterns; high-Ti komatiitic basalts – with flat REE; low-Ti basalts – depleted in light REE; high-Ti basalts – with flat REE patterns. Much of the variation between the magma types can be explained in terms of different melt fractions of the mantle source, although there were two separate mantle sources one light REE depleted, the other not. The interleaving of the basalts and komatiites produced by this melting indicates that the two mantle sources were melted simultaneously. The simplest model with which to explain these complex melting processes is during melting within a rising mantle plume in which there were two different mantle compositions. The very high proportion of komatiites in the Sula Mountains relative to other greenstone belts suggests either extensive deep melting and/or the absence of a thick pre-existing crust which would have acted as a “filter” to komatiite eruption. Received: 10 February 1998 / Accepted: 28 July 1998  相似文献   

12.
The 1.86 Ga Liangtun-Kuangdonggou complex (LKC) is one of the oldest alkaline syenite bodies so far discovered in China. This syenite suite has elevated contents of total alkali (K2O Na2O), with an average of 10.50%, and a mean Rittmann Index (σ) of 6.48. The intrusions have slightly higher concentrations of K2O than those of Na2O on a weight percent basis, indicating the rocks belong to potassium-rich alkaline syenite series. Total rare-earth element concentrations (∑REE ) of the rocks are relatively high, ranging from 324×10 -6 to 1314×10 -6, with a mean value of 666×10 -6. The REE patterns are subparallel and rightward steep with (La/Yb)N >33, showing mild negative to positive Eu anomalies (δEu: 0.63-1.15). All samples exhibit strong LILE and LREE enrichments and TNT (Nb, Ta, Ti) and P depletions in multi-element spidergrams. On the εSr(t)-εNd(t) correlation diagram, most analytical data points plot within the enriched mantle field with low ( 87Sr/86Sr)i ratios (0.7045-0.7051) and negative εNd(t) values (-3.72--3.97), falling among those kimberlites from Fuxian County, Liaoning Provinve, from Mengyin County, Shandong Province and the Ⅱ-type kimberlites from South Africa. These characteristics imply that the LKC-rocks may have the same source as the above-mentioned kimberlites, i.e., they have close connections to the materials derived from enriched mantle reservoirs, further revealing that the upper mantle beneath the northeastern part of the North China Plate had been highly enriched before 1.86 Ga. Geodynamically, the LKC-rocks were formed in a within-plate environment with close genetic connections to rift-related alkaline magma activities possibly controlled by ancient mantle plumes.  相似文献   

13.
 Latest Devonian to early Carboniferous plutonic rocks from the Odenwald accretionary complex reflect the transition from a subduction to a collisional setting. For ∼362 Ma old gabbroic rocks from the northern tectonometamorphic unit I, initial isotopic compositions (εNd=+3.4 to +3.8;87Sr/86Sr =0.7035–0.7053;δ18O=6.8–8.0‰) and chemical signatures (e.g., low Nb/Th, Nb/U, Ce/Pb, Th/U, Rb/Cs) indicate a subduction-related origin by partial melting of a shallow depleted mantle source metasomatized by water-rich, large ion lithophile element-loaded fluids. In the central (unit II) and southern (unit III) Odenwald, syncollisional mafic to felsic granitoids were emplaced in a transtensional setting at approximately 340–335 Ma B.P. Unit II comprises a mafic and a felsic suite that are genetically unrelated. Both suites are intermediate between the medium-K and high-K series and have similar initial Nd and Sr signatures (εNd=0.0 to –2.5;87Sr/86Sr=0.7044–0.7056) but different oxygen isotopic compositions (δ18O=7.3–8.7‰ in mafic vs 9.3–9.5‰ in felsic rocks). These characteristics, in conjunction with the chemical signatures, suggest an enriched mantle source for the mafic magmas and a shallow metaluminous crustal source for the felsic magmas. Younger intrusives of unit II have higher Sr/Y, Zr/Y, and Tb/Yb ratios suggesting magma segregation at greater depths. Mafic high-K to shoshonitic intrusives of the southern unit III have initial isotopic compositions (εNd=–1.1 to –1.8;87Sr/86Sr =0.7054–0.7062;δ18O=7.2–7.6‰) and chemical characteristics (e.g., high Sr/Y, Zr/Y, Tb/Yb) that are strongly indicative of a deep-seated enriched mantle source. Spatially associated felsic high-K to shoshonitic rocks of unit III may be derived by dehydration melting of garnet-rich metaluminous crustal source rocks or may represent hybrid magmas. Received: 7 December 1998 / Accepted: 27 April 1999  相似文献   

14.
The major elements, trace elements and Nd-Sr isotopic composition of Cenozoic high-K igneous rocks and mafic deep-derived enclaves from the Liuhe-Xiangduo area, eastern Tibet, indicate the high-K igneous rocks are characterized as being enriched in Ca (CaO= 1.20% - 8.80% ), alkali (Na2O K2O= 3.47% - 10.65% ), especially K (K2O up to 5.96% ) and depleted in Ti (TiO2= 0.27% - 1.50% ). Their REE contents are very high (REE= 91.29 - 231.11 μg/g). Their REE distribution patterns are of the right-inclined type, characterized by intense LREE enrichment [(La/Yb)N= 7.44 - 15.73 ]. The rocks are distinctly enriched in Rb, Sr and Ba ( 46.3 -316 μg/g, 349-1220 μg/g and 386-2394 μg/g, respectively), high in U and Th ( 1.17 - 8.10 μg/g and 2.58 - 27.0 μg/g, respectively), moderate in Zr and Hf ( 87.5 -241 μg/g and 2.83 - 7.52 μg/g, respectively), and depleted in Nb and Ta ( 4.81 - 16.8 μg/g and 0.332 - 1.04 μg/g, respectively). In the primitive mantle-normalized incompatible element spidergram, U, K, Sr and Hf show positive anomalies, whereas Th, Nb, Ta, P, and Ti show negative anomalies. The rocks are strongly depleted in Cr and Ni ( 21.4 -1470 μg/g and 7.79 -562 μg/g, respectively), and their transition element distribution curves are obviously of type-W. The ( 87 Sr/ 86 Sr)i ratios range from 0.704184 to 0.707539 ; ( 143 Nd / 144 Nd)i from 0.512265 to 0.512564 ; and ε Nd (t) from -6.3 to -0.4 . These geochemical features might suggest that the potential source of the high-K igneous rocks in the Liuhe-Xiangduo area is similar to the EM2, which may be similar to the material enriched K that is located under the crust-mantle mixed layer. The mafic deep-derived enclaves in the high-K igneous rocks belong to chance xenoliths. Their ( 87 Sr/ 86 Sr)i ratios range from 0.706314 to 0.707198 ; ( 143 Nd / 144 Nd)i from 0.512947 to 0.513046 ; and ε Nd (t) from 7.0 to 9.0 . These geochemical features might indicate that the enclaves probably came from the depleted mantle. The P-T conditions of the enclaves also showed that the enclaves are middle-lower crust metamorphic rocks, which were accidentally captured at 20-50 km level by rapidly entrained high-K magma, whose source is over 50 km in depth.  相似文献   

15.
The isotope-geochemical study of the Eocene-Oligocene magmatic rocks from the Western Kamchatka-Koryak volcanogenic belt revealed a lateral heterogeneity of mantle magma sources in its segments: Western Kamchatka, Central Koryak, and Northern Koryak ones. In the Western Kamchatka segment, magmatic melts were generated from isotopically heterogeneous (depleted and/or insignificantly enriched) mantle sources significantly contaminated by quartz-feldspathic sialic sediments; higher 87Sr/86Sr (0.70429–0.70564) and lower 143Nd/144Nd(ɛNd(T) = 0.06–2.9) ratios in the volcanic rocks from the Central Koryak segment presumably reflect the contribution of enriched mantle source; the high positive ɛNd(T) and low 87Sr/86Sr ratios in the magmatic rocks from the Northern Koryak segment area indicate their derivation from isotopically depleted mantle source without significant contamination by sialic or mantle material enriched in radiogenic Sr and Nd. Significantly different contamination histories of the Eocene-Oligocene mantle magmas in Kamchatka and Koryakia are related to their different thermal regimes: the higher heat flow beneath Kamchatka led to the crustal melting and contamination of mantle suprasubduction magmas by crustal melts. The cessation of suprasubduction volcanism in the Western Kamchatka segment of the continentalmargin belt was possibly related to the accretion of the Achaivayam-Valagin terrane 40 Ma ago, whereas suprasubduction activity in the Koryak segment stopped due to the closure of the Ukelayat basin in the Oligocene time.  相似文献   

16.
The origin and evolution of different ore deposits grouped in the same district are often complex and may involve inheritance from crustal or mantle geochemical anomalies, remobilization of former ore deposits and a polyphase hydrothermal history. Localized in a Proterozoic basement in the Parana state, the Ribeira fluorite district is such an example composed of three deposit types with distinct geological and geochemical characters. Emplaced at different periods from the late Proterozoic to the Cretaceous, they are roughly aligned along a belt nearly 10 km in width and 50 km in length, the southern boundary of which is a transcurrent fault. Two main ore facies are present: (1) microcrystalline ore (< 0.1 mm grains) and (2) macrocrystalline ore (with a grain size of several millimetres). The former results from the replacement of metalimestones or internal karstic sediments and the latter from microcrystalline ore dissolution and pore precipitation or recrystallization. At least two different groups of source rocks can be proposed for the trapped REE in CaF2: (1) fluorite samples associated with the Mato Preto carbonatitic rocks display a slightly negative ɛNd compatible with a mantle source and a REE pattern with the higher ΣREE and La/Yb ratio in the district; (2) other fluorites have a strongly negative ɛNd (− 14 to − 20) which indicates a crustal source. That fluorine and REE have the same source is possible in strata-bound and fracture-filling deposits, but is doubtful at Mato Preto, the only economic fluorite deposit associated with carbonatite rocks in Brazil. This occurrence within a Precambrian fluorite belt suggests that remobilization of a former strata-bound deposit was a more significant metallogenic process than magmatic differentiation. Editorial handling: DR  相似文献   

17.
The Mazhuangshan area lies in northeast to Aqikekuduke,where are distributed in-termediate-acid rocks,which were formed in the Middle-Late Carboniferous epoch.The magmatic rocks are peraluminous and belong to calcareous series.All values of ACNK(1.03-2.12),ANK(1.67-2.93),SI(4.1-33),δ(0.71-4.82),La/∑REE(0.09-0.26) ∑LREE/∑HREE(1.76-11.01),(La/Sm)N(1.60-6.35),(Sm/Nd)N(0.33-0.58),(La/Yb)N(4.7-12.1),LaN/Lux(5.9-11.8),(Ce/Yb)N(3.14-6.64),δEu(0.38-1.06),RbN/SrN(41-120)and Sr(0.02-0.2)demonstrate they vary with D_I(45-90).S-B diagram also shows that the lithophile elements are abundant in acidic magmatic rocks,Moreover,it is concluded that the primitive magma originated from a subduction zone at the continental edge,and underwent fractional crystallization and contamination,then generated the magmatic rocks,The multi-cation index(R:3055-3993,R2:286-438) shows that the primitive magma originated from the mantle,All these conclusions are beneficial for exploring gold deposits in the area.  相似文献   

18.
The supracrustal rocks of the Wuyang metamorphic terrain are divided into the Zhao anzhuang,Tieshanmiao and Yangshuwan Formations.These three Formations were dated at 3000-2550Ma,2550-2300Ma and 2300-2200Ma,respectively.∑REE and La/Yb)n of the Zhao anzhuang Formation volcanic rocks are obviously higher than those of the Tiesanmiao Formation equivalents,suggesting a sedimentary gap(2550 Ma boundary)between these two formations,The Zhao‘anzhuang Formation is older than the Tieshanmiao Formation.The sediments of these two Formations show no obvious differences in REE and are generally characterized by low ∑REE and positive Eu anomalies.On the contrary,the sediments of the Yangshuwan Formation are characterized by high ∑REE and negative Eu anomalies.Detailed discussions demonstrate that the Yangshuwan Formation was deposited in an oxidizing environment whereas the other two formations were formed in a reducing environment.At the end of the evolution of the Tieshanmiao Formation about 2300 Ma ago,the sedimentary environment was transformed from reducing to oxidizing .On the basis of the SHAB (soft/hard acid and base)theory,an oxidation-reduction model for sedimentary REE evolution has been established .It is proposed that the mantle tends to become gradually depleted in REE.especially in LREE,and the indices ∑REE and La/Yb) n of mantle-dervived volcanic rocks also tend to become lower and lower.  相似文献   

19.
Intrusions of the Irtysh Complex are spatially restricted to the regional Irtysh Shear Zone (ISZ) and are hosted in blocks of high-grade metamorphic rocks (Kurchum, Predgornenskii, Sogra, and others) in the greenschist matrix of the ISZ. The massifs consist of contrasting rock series from gabbro to plagiogranite and granite at strongly subordinate amounts of diorite and the practical absence of rocks of intermediate composition (tonalite and granodiorite). The complex was produced in the Early Carboniferous, simultaneously with the onset of the origin of the ISZ itself. The granitoids composing the complex affiliate with diverse petrochemical series (from subaluminous plagiogranite of the andesite series to granite of the calc-alkaline series) and contain similar REE and HFSE concentrations [total REE = 103–163 ppm (La/Yb) n = 3.59–5.44, Zr (200–273 ppm), Nb (7.6–10.6 ppm), Hf (6.1–7.6 ppm), and Ta (0.68–1.19 ppm)] but are different in concentrations in LILE [Rb (3–9 and 121–221 ppm), Sr (213–375 and 77–148 ppm), and Ba (67–140 and 240–369 ppm)] and isotopic composition of Nd (ɛNd(T) from +5.3 in the plagiogranite to −1.2 in the granite) and O (δ18O from +9.4 in the plagiogranite to +14.5 in the granite). Data on the geochemistry and isotopic composition of metamorphic rocks of the Kurchum block and numerical geochemical simulations indicate that the granitoids were generated via the melting of a heterogeneous crustal source, which consisted of upper crustal metapelites and metabasites of the oceanic basement of the blocks of high-grade metamorphic rocks. The differences in the chemical and isotopic compositions of the granitoids were predetermined by the mixing of variable proportions of granitoid magmas derived from metapelite and metabasite sources.  相似文献   

20.
The island of Salina comprises one of the most distinct calc-alkaline series of the Aeolian arc (Italy), in which calc-alkaline, high-K calc-alkaline, shoshonitic and leucite-shoshonitic magma series are developed. Detailed petrological, geochemical and isotopic (Sr, Nd, Pb, O) data are reported for a stratigraphically well-established sequence of lavas and pyroclastic rocks from the Middle Pleistocene volcanic cycle (430–127 ka) of Salina, which is characterized by an early period of basaltic volcanism (Corvo; Capo; Rivi; Fossa delle Felci, group 1) and a sequence of basaltic andesites, and andesites and dacites in the final stages of activity (Fossa delle Felci, groups 2–8). Major and trace element compositional trends, rare earth element (REE) abundances and mineralogy reveal the importance of crystal fractionation of plagioclase + clinopyroxene + olivine/ orthopyroxene ± titanomagnetite ± amphibole ± apatite in generating the more evolved magma types from parental basaltic magmas, and plagioclase accumulation in producing the high Al2O3 contents of some of the more evolved basalts. Sr isotope ratios range from 0.70410 to 0.70463 throughout the suite and show a well-defined negative correlation with 143Nd/144Nd (0.51275–0.51279). Pb isotope compositions are distinctly radiogenic with relatively large variations in 206Pb/204Pb (19.30–19.66), fairly constant 207Pb/204Pb (15.68–15.76) and minor variations in 208Pb/204Pb ratios (39.15–39.51). Whole-rock δ18O values range from +6.4 to +8.5‰ and correlate positively with Sr isotope ratios. Overall, the isotopic variations are correlated with the degree of differentiation of the rocks, indicating that only small degrees of crustal assimilation are overprinting the dominant evolution by crystal–liquid fractionation (AFC-type processes). The radiogenic and oxygen isotope composition of the Salina basalts suggests derivation from primary magmas from a depleted mantle source contaminated by slab-derived fluids and subducted sediments with an isotopic signature of typical upper continental crust. These magmas then evolved further to andesitic and dacitic compositions through the prevailing process of low-pressure fractional crystallization in a shallow magma reservoir, accompanied by minor assimilation of crustal lithologies similar to those of the Calabrian lower crust. Received: 29 November 1999 / Accepted: 16 April 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号