首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We suggest that the study of the general behavior of a chemical system in planetary atmospheres might be equivalent to the study of the evolution of connected components in a random graphs model. The main result of our model is that interacting elements in a system self-organize in such a way that the distribution in size of the created compounds follows a power-law relation. We show that hydrocarbons in giant planets and Titan atmospheres might follow the same type of distribution, suggesting that atmospheric photochemical systems might self-organized as random graphs do. This property could give a new and predictive method for investigations of chemical complexity in planetary atmospheres.  相似文献   

2.
We have constructed a reaction system containing the chemical families of H, C, O, N, S, Si, Cl, metals (Me) and grains. A total of 104 species have been included and a network of 557 reactions has been studied. The chemical kinetic equations were integrated as a function of time by using gear program. The chemical reaction system was followed at low, intermediate and high cloud densities i.e. from 10–107 particles cm-3. The calculated fractional abundances of N2, CN, HCN, and CH which are in good agreement with the results of observations and with those of previous theoretical studies.  相似文献   

3.
For a long time it was believed that the atmospheres of the giant planets, dominated by molecular hydrogen and helium, were similar in composition to the primordial nebula from which they formed. However, this image has strongly evolved over the past twenty years, due to new developments of ground-based infrared spectroscopy, coupled with the success of the Voyager space mission.Significant differences were measured in the abundances of helium, deuterium and carbon of the four giant planets. The variations in the C/H and D/H ratios have given support to the "nucleation" formation scenario, in which the four giant planets first accreted a nucleus of about ten terrestrial masses, big enough to bind gravitationally the surrounding gaseous nebula; the helium depletion in Saturn has been interpreted as a differentiation effect in Saturn's interior; the apparent helium excess in Neptune, coupled with the recent unexpected detection of CO and HCN in this planet, might imply the presence of molecular nitrogen. In the case of Jupiter and Saturn, disequilibrium species have been detected (CO, PH3, GeH4, AsH3), which are tracers of vertical dynamical motions.In the future, significant progress in our knowledge of the Jovian composition, including the noble gases, should be obtained with the mass spectrometer of the Galileo probe. The ISO mission is expected to provide new far-infrared spectroscopic data which should lead to the detection of new minor species and a better determination of the D/H ratio.  相似文献   

4.
We consider an algorithm to construct averaged motion equations for four-planetary systems by means of the Hori–Deprit method. We obtain the generating function of the transformation, change-variable functions and right-hand sides of the equations of motion in elements of the second Poincaré system. Analytical computations are implemented by means of the Piranha echeloned Poisson processor. The obtained equations are to be used to investigate the orbital evolution of giant planets of the Solar system and various extrasolar planetary systems.  相似文献   

5.
Recent improvements in the quantitative estimates of the observed heat flow from planetary objects of the solar system may be used to put rather stringent limits on any background monopole flux. The axion flux from the giant planets is also estimated.  相似文献   

6.
We have made an observational study of the newly identified cyanomethane radical CH2CN and the possibly related species CH3CN with the goals of (1) elucidating the possible role of reactions of the type CnHm(+) + N in astrochemistry, and (2) providing a possible test of Bates's models of dissociative electron recombination. We find a remarkably different abundance ratio CH2CN/CH3CN in TMC-1 and Sgr B2, which we deduce is a result of the large difference in temperature of these objects. Studies of CH2CN and CH3CN in other sources, including two new detections of CH2CN, support this conclusion and are consistent with a monotonic increase in the CH2CN/CH3CN ratio with decreasing temperature over the range 10-120 K. This behavior may be explained by the destruction of CH2CN by reaction with O. If this reaction does not proceed, then CH2CN and CH3CN are concluded to form via different chemical pathways. Thus, they do not provide a test of Bates's conjectures (they do not both form from CH3CNH+). CH2CN is then likely to form via C2H4(+) + N --> CH2CNH+, thus demonstrating the viability of this important reaction in astrochemistry. The T dependence of the CH2CN/CH3CN ratio would then reflect the increasing rate of the C2H4(+) + N reaction with decreasing temperature.  相似文献   

7.
We present the high angular resolution technique of colour-differential interferometry for direct detection of extrasolar giant planets (EGPs). The measurement of differential phase with long-baseline ground-based interferometers in the near-infrared could allow the observation of several hot giant extrasolar planets in tight orbit around the nearby stars, and thus yield their low- or mid-resolution spectroscopy, complete orbital data set and mass. Estimates of potentially achievable signal-to-noise ratios are presented for a number of planets already discovered by indirect methods. The limits from the instrumental and atmospheric instability are discussed, and a subsequent observational strategy is proposed.  相似文献   

8.
In a scenario produced by the Capture Theory of planetary formation, a collision between erstwhile solar-system giant planets, of masses 798.75 and 598.37 M , is simulated using smoothed-particle hydrodynamics. Due to grain-surface chemistry that takes place in star-forming clouds, molecular species containing hydrogen, with a high D/H ratio taken as 0.01, form a layer around each planetary core. Temperatures generated by the collision initiate D–D reactions in these layers that, in their turn, trigger a reaction chain involving heavier elements. The nuclear explosion shatters and disperses both planets, leaving iron-plus-silicate stable residues identified as a proto-Venus and proto-Earth. A satellite of one of the colliding planets, captured or retained by the proto-Earth core, gave the Moon; two massive satellites released into heliocentric orbits became Mercury and Mars. For the Moon and Mars, abrasion of their surfaces exposed to collision debris results in hemispherical asymmetry. Mercury, having lost a large part of its mantle due to massive abrasion, reformed to give the present high-density body. Debris from the collision gave rise to asteroids and comets, much of the latter forming an inner reservoir stretching outwards from the inner Kuiper Belt that replenishes the Oort Cloud when it is depleted by a severe perturbation. Other features resulting from the outcome of the planetary collision are the relationship of Pluto and Triton to Neptune, the presence of dwarf planets and light-atom isotopic anomalies in meteorites.  相似文献   

9.
The chemical species containing carbon, nitrogen, and oxygen in atmospheres of giant planets, brown dwarfs (T and L dwarfs), and low-mass stars (M dwarfs) are identified as part of a comprehensive set of thermochemical equilibrium and kinetic calculations for all elements. The calculations cover a wide temperature and pressure range in the upper portions of giant planetary and T-, L-, and M-dwarf atmospheres. Emphasis is placed on the major gases CH4, CO, NH3, N2, and H2O but other less abundant gases are included. The results presented are independent of particular model atmospheres, and can be used to constrain model atmosphere temperatures and pressures from observations of different gases. The influence of metallicity on the speciation of these key elements under pressure-temperature (P-T) conditions relevant to low-mass object atmospheres is discussed. The results of the thermochemical equilibrium computations indicate that several compounds may be useful to establish temperature or pressure scales for giant planet, brown dwarf, or dwarf star atmospheres. We find that ethane and methanol abundance are useful temperature probes in giant planets and methane dwarfs such as Gl 229B, and that CO2 can serve as a temperature probe in more massive objects. Imidogen (NH) abundances are a unique pressure-independent temperature probe for all objects. Total pressure probes for warmer brown dwarfs and M dwarfs are HCN, HCNO, and CH2O. No temperature-independent probes for the total pressure in giant planets or T-dwarf atmospheres are identified among the more abundant C, N, and O bearing gases investigated here.  相似文献   

10.
Methane and ammonia abundances in the coma of Halley are derived from Giotto IMS data using an Eulerian model of chemical and physical processes inside the contact surface to simulate Giotto HIS ion mass spectral data for mass-to-charge ratios (m/q) from 15 to 19. The ratio m/q = 19/18 as a function of distance from the nucleus is not reproduced by a model for a pure water coma. It is necessary to include the presence of NH3, and uniquely NH3, in coma gases in order to explain the data. A ratio of production rates Q(NH3)/Q(H2O) = 0.01-0.02 results in model values approximating the Giotto data. Methane is identified as the most probable source of the distinct peak at m/q = 15. The observations are fit best with Q(CH4)/Q(H2O) = 0.02. The chemical composition of the comet nucleus implied by these production rate ratios is unlike that of the outer planets. On the other hand, there are also significant differences from observations of gas phase interstellar material.  相似文献   

11.
The consequences of a postulated collision between planets in the early solar system have been investigated. At least one of the planets has been taken with a D/H ratio similar to that of Venus (0.016) and the temperature of the collision interface (3 × 106 K) triggers chain reactions in near-surface material beginning with D-D reactions. The initial composition of the reacting material is consistent with a silicate + ices surface and a hydrogen-helium-inert gas atmosphere. The reaction chain contains 284 reactions, plus reverse reactions, and 40 radioactive decay processes. When the pressure in the reacting region is sufficiently high the colliding planets are blown apart and the highly-processed material at the heart of the explosion mixes with less processed and unprocessed material from cooler parts of the system. Mixtures of materials are found to explain isotopic anomalies associated with oxygen, magnesium, neon, silicon, carbon and nitrogen. The local production of isotopic anomalies avoids the problems associated with other suggested explanations - in particular the observation of neon E, almost pure22Ne, assumed as the product of the decay of22Na with a half-life of 2.6 years.  相似文献   

12.
Jade C. Bond  Dante S. Lauretta 《Icarus》2010,205(2):321-19170
No terrestrial planet formation simulation completed to date has considered the detailed chemical composition of the planets produced. While many have considered possible water contents and late veneer compositions, none have examined the bulk elemental abundances of the planets produced as an important check of formation models. Here we report on the first study of this type. Bulk elemental abundances based on disk equilibrium studies have been determined for the simulated terrestrial planets of O’Brien et al. [O’Brien, D.P., Morbidelli, A., Levison, H.F., 2006. Icarus 184, 39-58]. These abundances are in excellent agreement with observed planetary values, indicating that the models of O’Brien et al. [O’Brien, D.P., Morbidelli, A., Levison, H.F., 2006. Icarus 184, 39-58] are successfully producing planets comparable to those of the Solar System in terms of both their dynamical and chemical properties. Significant amounts of water are accreted in the present simulations, implying that the terrestrial planets form “wet” and do not need significant water delivery from other sources. Under the assumption of equilibrium controlled chemistry, the biogenic species N and C still need to be delivered to the Earth as they are not accreted in significant proportions during the formation process. Negligible solar photospheric pollution is produced by the planetary formation process. Assuming similar levels of pollution in other planetary systems, this in turn implies that the high metallicity trend observed in extrasolar planetary systems is in fact primordial.  相似文献   

13.
Abstract— Here I discuss the series of events that led to the formation and evolution of our planet to examine why the Earth is unique in the solar system. A multitude of factors are involved: These begin with the initial size and angular momentum of the fragment that separated from a molecular cloud; such random factors are crucial in determining whether a planetary system or a double star develops from the resulting nebula. Another requirement is that there must be an adequate concentration of heavy elements to provide the 2% “rock” and “ice” components of the original nebula. An essential step in forming rocky planets in the inner nebula is the loss of gas and depletion of volatile elements, due to early solar activity that is linked to the mass of the central star. The lifetime of the gaseous nebula controls the formation of gas giants. In our system, fine timing was needed to form the gas giant, Jupiter, before the gas in the nebula was depleted. Although Uranus and Neptune eventually formed cores large enough to capture gas, they missed out and ended as ice giants. The early formation of Jupiter is responsible for the existence of the asteroid belt (and our supply of meteorites) and the small size of Mars, whereas the gas giant now acts as a gravitational shield for the terrestrial planets. The Earth and the other inner planets accreted long after the giant planets, from volatile-depleted planetesimals that were probably already differentiated into metallic cores and silicate mantles in a gas-free, inner nebula. The accumulation of the Earth from such planetesimals was essentially a stochastic process, accounting for the differences among the four rocky inner planets—including the startling contrast between those two apparent twins, Earth and Venus. Impact history and accretion of a few more or less planetesimals were apparently crucial. The origin of the Moon by a single massive impact with a body larger than Mars accounts for the obliquity (and its stability) and spin of the Earth, in addition to explaining the angular momentum, orbital characteristics, and unique composition of the Moon. Plate tectonics (unique among the terrestrial planets) led to the development of the continental crust on the Earth, an essential platform for the evolution of Homo sapiens. Random major impacts have punctuated the geological record, accentuating the directionless course of evolution. Thus a massive asteroidal impact terminated the Cretaceous Period, resulted in the extinction of at least 70% of species living at that time, and led to the rise of mammals. This sequence of events that resulted in the formation and evolution of our planet were thus unique within our system. The individual nature of the eight planets is repeated among the 60-odd satellites—no two appear identical. This survey of our solar system raises the question whether the random sequence of events that led to the formation of the Earth are likely to be repeated in detail elsewhere. Preliminary evidence from the “new planets” is not reassuring. The discovery of other planetary systems has removed the previous belief that they would consist of a central star surrounded by an inner zone of rocky planets and an outer zone of giant planets beyond a few astronomical units (AU). Jupiter-sized bodies in close orbits around other stars probably formed in a similar manner to our giant planets at several astronomical units from their parent star and, subsequently, migrated inwards becoming stranded in close but stable orbits as “hot Jupiters”, when the nebula gas was depleted. Such events would prevent the formation of terrestrial-type planets in such systems.  相似文献   

14.
We present a methodology to build a reduced chemical scheme adapted to the study of hydrocarbons in the atmospheres of giant planets and Titan. As an example, we have built a reduced chemical scheme, containing only 25 compounds and 46 reactions (including photolysis), which is well adapted to compute the abundance of the main hydrocarbons observed so far in the atmosphere of Saturn (CH3, CH4, C2H2, C2H4, C2H6, CH3C2H, C3H8 and C4H2). This scheme gives similar results, within the error bars of the model, as a 1D photochemical model using an initial chemical scheme containing 90 compounds and more than 600 reactions. As a consequence, such a methodology can be used to build a reduced scheme well adapted to future 2D (or 3D) photochemical models and GCMs.  相似文献   

15.
We have designed an experimental technique to use on the National Ignition Facility (NIF) laser to achieve very high pressure (P max > 10 Mbar = 1000 GPa), dense states of matter at moderate temperatures (T < 0.5 eV = 6000 K), relevant to the core conditions of the giant planets. A discussion of the conditions in the interiors of the giant planets is given, and an experimental design that can approach those conditions is described.  相似文献   

16.
McDonald GD  Thompson WR  Sagan C 《Icarus》1992,99(1):131-142
Low-pressure continuous-flow laboratory simulations of plasma induced chemistry in H2/He/CH4/NH3 atmospheres show radiation yields of hydrocarbons and nitrogen-containing organic compounds that increase with decreasing pressure in the range 2-200 mbar. Major products of these experiments that have been observed in the Jovian atmosphere are acetylene (C2H2), ethylene (C2H4), ethane (C2H6), hydrogen cyanide (HCN), propane (C3H8), and propyne (C3H4). Major products that have not yet been observed on Jupiter include acetonitrile (CH3CN), methylamine (CH3NH2), propene (C3H6), butane (C4H10), and butene (C4H8). Various other saturated and unsaturated hydrocarbons, as well as other amines and nitriles, are present in these experiments as minor products. We place upper limits of 10(6)-10(9) molecules cm-2 sec-1 on production rates of the major species from auroral chemistry in the Jovian stratosphere, and calculate stratospheric mole fraction contributions. This work shows that auroral processes may account for 10-100% of the total abundances of most observed organic species in the polar regions. Our experiments are consistent with models of Jovian polar stratospheric aerosol haze formation from polymerization of acetylene by secondary ultraviolet processing.  相似文献   

17.
Planetary impact probabilities for long-period (near-parabolic) comets are determined by averaging Öpik's equations over inclination and perihelion distance for each planet. These averaged values compare well with the results of more elaborate Monte Carlo calculations. The impact probabilities are proportional to the square of the normalized capture radius of each planet, which in turn is a function of the planet's radius and mass, so that the major planets have the highest impact probabilities. Encounter velocities have an average value of 312 times the planetary orbital velocity but the most probable encounter velocities are slightly higher than this for the terrestrial planets and slightly lower for the major planets. Comparison of the impact probabilities with the cratering record, corrected for gravity and velocity effects, indicates that long-period comets may account for 3 to 9% of the observed large crattes (diameter > 10 km) on the terrestrial planets. The inclination and perihelion properties of the impact probabilities obtained from numerical averaging provide a simple method for determining the impact probabilities for nonuniform distributions. The perihelion distribution of long period comets from J. A. Fernandez ((1981) Astron. Astrophys.96, 26–35) results in a crater production rate quite similar throughout the solar system, unlike that of a uniform perihelion distribution.  相似文献   

18.
Jenkins JM  Doyle LR  Cullers DK 《Icarus》1996,119(2):244-260
The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.  相似文献   

19.
Dissociation and ionization of hydrogen molecules and ionization of hydrogen atoms due to extreme UV radiation from the parent star are accompanied by the formation of a concurrent photoelectron flux with excess kinetic energy. These dissociation and ionization processes are the main source of atomic and molecular ions in the thermospheres of extrasolar planets, such as the “hot Jupiter” HD 209458b. The ionization processes are the most important part of contemporary aeronomic models of planetary atmospheres in the Solar System and extrasolar systems (Johnson et al., 2008; Yelle et al., 2008). We estimate the contribution of the dissociation and ionization processes due to the stellar UV radiation and the concurrent photoelectron flux to the formation of extended ionospheres around extrasolar giant planets. As opposed to models of other researchers, we calculated the ionization rates due to the concurrent photo-electron flux for the first time. It is established that, in contrast to a widely used parametrization of the photoelectron contribution (Cecchi-Pestellini et al., 2006; 2009), the rate of secondary ionization due to the photoelectrons depends appreciably on the altitude, approaching the photoionization rate in the lower layers of the thermosphere. The calculated ionization rate in the thermosphere of the extrasolar giant planet (EGP) orbiting close to its parent star is a necessary link when modeling an aeronomic model and estimating the rate of the EGP atmospheric loss.  相似文献   

20.
Gladstone GR  Allen M  Yung YL 《Icarus》1996,119(1):1-52
The hydrocarbon photochemistry in the upper atmosphere of Jupiter is investigated using a one-dimensional, photochemical-diffusive, and diurnally averaged model. The important chemical cycles and pathways among the major species are outlined and a standard model for the North Equatorial Belt region is examined in detail. It is found that several traditionally dominant chemical pathways among the C and C2 species are replaced in importance by cycles involving C-C4 species. The pressure and altitude profiles of mixing ratios for several observable hydrocarbon species are compared with available ultraviolet- and infrared-derived abundances. The results of sensitivity studies on the standard model with respect to variations in eddy diffusion profile, solar flux, atomic hydrogen influx, latitude, temperature, and important chemical reaction rates are presented. Measured and calculated airglow emissions of He at 584 angstroms and H at 1216 angstroms are also used to provide some constraints on the range of model parameters. The relevance of the model results to the upcoming Galileo mission is briefly discussed. The model is subject to considerable improvement; there is a great need for laboratory measurements of basic reaction rates and photodissociation quantum yields, even for such simple species as methylacetylene and allene. Until such laboratory measurements exist there will be considerable uncertainty in the understanding of the C3 and higher hydrocarbons in the atmospheres of the jovian planets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号