首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil data obtained from soil resource inventory, land and climate were derived from the remote sensing satellite data (Landsat TM, bands 1 to 7) and were integrated in GIS environment to obtain the soil erosion loss using USLE model for the watershed area. The priorities of different sub-watershed areas for soil conservation measures were identified. Land productivity index was also used as a measure for land evaluation. Different soil and land attribute maps were generated in GIS, and R,K,LS,C and P factor maps were derived. By integrating these soil erosion map was generated. The mapping units, found not suitable for agriculture production, were delineated and mapped as non-arable land. The area suitable for agricultural production was carved out for imparting the productivity analysis; the land suitable for raising agricultural crops was delineated into different mapping units as productivity ratings good, fair, moderate and poor. The analysis performed using remote sensing and GIS helped to generate the attribute maps with more accuracy and the ability of integrating these in GIS environment provided the ease to get the required kind of analysis. Conventional methods of land evaluation procedures in terms of either soil erosion or productivity are found not comparable with the out put generated by using remote sensing and GIS as the limitations in generating the attribute maps and their integration. The results obtained in this case study show the use of different kinds of data derived from different sources in land evaluation appraisals.  相似文献   

2.
The main objective of the present work is to delineate the groundwater potential zones in Bilari watershed of district Shivpuri, Madhya Pradesh. Remote Sensing data and GIS were used to delineate the groundwater potential zones of the area. IRS-1D (LISS III) data have been utilized to extract information on various themes such as geomorphology, structure, drainage and land use/land cover. Available lithology and soil maps have also been used. DEM has been generated from contours taken from Survey of India topographical maps in order to obtain the slope percentage and slope aspect of the area. The groundwater potential zones were delineated by weighted overlay analysis. The themes geology, geomorphology, slope and soil were considered and the weightages assigned to different classes of respective themes according to their role in groundwater potential. Finally, five groundwater potential zones viz., very good, good, moderate; poor and very poor were delineated for the study area. It was estimated that about 110.41?sq km area which forms 37.55% of the total area are in the zones of very poor, poor and moderate category and about 183.75?sq km (62.45%) in zones of good and very good category.  相似文献   

3.
In the present study, detailed field survey in conjunction with remotely sensed (IRS-1D, LISS-III) data is of immense help in terrain analysis and landscape ecological planning at watershed level. Geomorphologically summit crust, table top summits, isolated mounds. plateau spurs, narrow slopes, plateau side drainage floors, narrow valleys and main valley floor were delineated. The soil depth ranges from extremely shallow in isolated mounds to very deep soils in the lower sectors. Very good, good, moderate, poor and very poor groundwater prospect zones were delineated. By the integrated analysis of slope, geomorphology. soil depth, land use/land cover and groundwater prospect layers in GIS. 29 landscape ecological units were identified. Each landscape ecological unit refers to a natural geographic entity having distinctive properties of slope, geomorphology. soil depth, land use/ land cover and groundwater prospects. The landscape ecological stress zone mapping of the study area has been carried out based on the analysis and reclassification of tandscape ecological units. The units having minimum ecological impact in terms of slope, geomorphology, soil depth and land use/land cover were delineated under very low stress landscape ecological zones. The units having maximum ecological stress in the form of very high slopes, isolated mounds, table top summits and summit crust, extremely shallow soils, waste lands and very poor groundwater prospects were delineated into very high stress landscape ecological zones. The integrated analysis of remotely sensed data and collateral data in GIS environment is of immense help in evaluation of landscape ecological units and landscape ecological stress zones. The delineated landscape ecological stress zones in the watershed have been recommended for landscape ecological planning for better utilization of natural resources without harming the natural geo-ecosystem of the area.  相似文献   

4.
Visual interpretation of IRS-L1SS-II (January, 1995) FCC (1:50,000 scale) of spectral bands 2, 3 and 4 was carried out for the identification and mapping of major physiographic units in an arid watershed of Jodhpur district (Rajasthan). Based on image characteristics and field traverses, seven major physiographic units identified are (1) hills (2) pediments, flat to undulating (3) buried pediments, moderately deep to deep, coarse textured (4) buried pediment, shallow to moderately deep and deep, medium to fine textured, saline (5) older alluvial plains, deep and very deep, coarse textured (6) younger alluvial plains, deep to very deep, very coarse textured and (7) dune complexes. Based on physiographicvariatton and soil or site characteristics such as texture, depth, slope, erosion and underneath substrata, 41 soil mapping units were identified and mapped. Final physiography, soil, slope, drainage and landuse maps were prepared on 1:5,000 scale. Taxonomically, the soils of the watershed were classified as Para-Lithic Torriorthents, coarse-loamy, Lithic/Typic Haplocambids, fine-loamy, Lithic/Typic Haplosalids and Typic Torrifluvents and Typic Torripsamments. Land suitability for various mapping units in the watershed have been assessed on the basis of soil physico-chemical characteristics.  相似文献   

5.
Delineation of Banikdih Agricultural watershed in Eastern India was carried out and various watershed parameters were extracted using Geographic Information System (GIS) and Remote Sensing. Digital Elevation Model (DEM) was developed with a contour interval of 10 m in the scale of 1:25000 using ARC/INFO modules. Sub watershed, drainage, slope, aspect, flow direction, soil series, soil texture, and soil class maps were independently generated and they were properly registered and integrated for analysis. The watershed was digitally delineated using AVSWAT model that couples hydrological model and GIS with appropriate threshold value of cell size. Subsequently, stream characteristics through the interface were generated. Indian Remote Sensing Satellite IRS-1D LISS-III data pertaining to the period of October 29, 1998 and October 23, 2000 was used to develop land use/land cover thematic map using ERDAS- 8.4 version image processing software. Eight major land use/land cover classes namely water body, lowland paddy, upland paddy, fallow land, upland crop (non-paddy crops), settlement, open mixed forest, and wasteland were segregated through digital image processing techniques using maximum likelihood algorithm. The information generated would be of immense help in hydrological modeling of watershed for prediction of runoff and sediment yield, thereby providing necessary inputs for developing suitable developmental management plans with sound scientific basis.  相似文献   

6.
为了解该县目前的耕地质量现状及其发展趋势,为当地的耕地资源保护提供参考撰写此文。采用PRA技术进行农户调查,得到农户普遍关注的耕地质量因素有坡度、灌溉条件、土壤质地、产量、肥料投入、作物长势、沙化和水蚀程度,将这些因素通过基于遥感数据的SVMI、MSAVI、SARP等指标反映出来,构建耕地质量评价指标体系;基于压力——状态——响应模型(PSR),借助地理信息系统(GIS)构建生产压力指数、耕地状态指数以及农户行为指数,从不同角度分别描述耕地质量,并进行耕地质量综合评价。结果显示,当地将近70%的耕地质量现状较差,并且其中大部分耕地面临巨大的退化危险;60%以上的耕地其社会经济条件和管理行为是不可持续的。最后,针对不同等级耕地提出了政策建议。  相似文献   

7.
The groundwater occurrence and movement within the flow systems are governed by many natural factors like topography, geology, geomorphology, lineament structures, soil, drainage network and land use land cover (LULC). Due to complex natural geological/hydro-geological regime a systematic planning is needed for groundwater exploitation. It is even more important to characterize the aquifer system and delineate groundwater potential zones in different geological terrain. The study employed integration of weighted index overlay analysis (WIOA) and geographical information system (GIS) techniques to assess the groundwater potential zones in Krishna river basin, India and the validation of the result with existing groundwater levels. Different thematic layers such as geology, geomorphology, soil, slope, LULC, drainage density, lineament density and annual rainfall distribution were integrated with WIOA using spatial analyst tools in Arc-GIS 10.1. These thematic layers were prepared using Geological survey of India maps, European Digital Archive of Soil Maps, Bhuvan (Indian-Geo platform of ISRO, NRSC) and 30 m global land cover data. Drainage, watershed delineation and slope were prepared from the Shuttle Radar Topography Mission digital elevation model of 30 m resolution data. WIOA is being carried out for deriving the normalized score for the suitability classification. Weight factor is assigned for every thematic layer and their individual feature classes considering their significant importance in groundwater occurrence. The final map of the study area is categorized into five classes very good, good, moderate, poor and very poor groundwater potential zones. The result describes the groundwater potential zones at regional scale which are in good agreement with observed ground water condition at field level. Thus, the results derived can be very much useful in planning and management of groundwater resources in a regional scale.  相似文献   

8.
Flagrant soil erosion in Morocco is an alarming sign of soil degradation. Due to the considerable costs of detailed ground surveys of this phenomenon, remote sensing is an appropriate alternative for analyzing and evaluating the risks of the expansion of soil degradation. In this paper, we characterize the state of land degradation in a small Mediterranean watershed using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and ground-based spectroradiometric measurements. The two visible, the near-infrared and six shortwave infrared bands of the above sensor were calibrated using ground measurements of the spectral reflectance. Field measurements were carried out in the Saboun experimental basin located in the marl soil region of the Moroccan western Rif. The study leads to the development and evaluation of a new spectral approach to express land degradation. This index called Land degradation index (LDI) is based on the concept of the soil line derived from spectroradiometric ground measurements. In this study, we compare LDI and the spectral angle mapping (SAM) approaches to assess and map land degradation. Results show that LDI provides more accurate results for mapping land degradation (Kappa = 0.79) when compared to the SAM method (Kappa = 0.61). Validation and evaluation of the results are based on the thematic maps derived from the ground data (organic matter, clay, silt and sand) by kriging, DEM, slope gradient and photointerpretation.  相似文献   

9.
A case study has been conducted to identify suitable sites for water harvesting structures in Soankhad watershed, Punjab using information technologies such as Remote Sensing and Geographical Information System (RS-GIS). The IRS-1C, P6 satellite imagery of the Soankhad watershed was used. The various Thematic maps such as land use map, hydrological soil group map, slope map and DEM map were prepared for selecting suitable site for construction of water harvesting structures. The suitable sites were not found for nala bunding and farm ponds due to steep slope, less soil thickness and high runoff velocity. Fourteen check dams and six percolation tanks were proposed for the construction as per Integrated Mission for Sustainable Development (IMSD) guidelines. The water balance study of the Soankhad watershed was also computed with monthly mean temperature and rainfall data using TM model. The average runoff for the wet season (July–September) 1996 was computed to be about 1543.82 mm and the total runoff volume from the Soankhad watershed was estimated to be about 143.52 Mm3.  相似文献   

10.
Sediment Yield Index (SYI) model and results of morphometric analysis have been used to prioritize watersheds and to locate sites for checkdam positioning in Tarafeni watershed in Midnapur district. West Bengal. Various thematic maps such as land use/land cover, slope, drainage, soil etc. were prepared from 1RS ID LISS III digital data, SOI toposheets of 1:50,000 scale and other reference maps. Morphometric parameters such as bifurcation ratio (Rb). drainage density (Dd), texture ratio (T), length of overland flow (Lo), stream frequency (Fu), compactness coefficient (Cc), circularity ratio (Rc), elongation ratio (Er), shape factor (Bs) and form factor (Rf) were computed. Automated demarcation of prioritization of micro-watersheds was done by using GIS overlaying technique by assigning weight factors to all the identified features in each thematic map and ranks were assigned to the morphometric parameters. Five categories of priority viz., very high, high, medium, low and very low, were given to all the watersheds in both the methods. Sixty-two micro-watersheds using SYI method and twenty-three micro-watersheds using morphometric have been prioritized as very high priority. Final priority map was prepared by considering the commonly occurred very high-prioritized micro-watersheds in both SYI model and morphometric analysis. Twenty-four suitable sites were identified for check dam construction in 21 highly prioritized watersheds. It is proved that integrated study of SYI model and morphometric analysis yield good result in prioritization of watersheds.  相似文献   

11.
Accelerated soil erosion, high sediment yields, floods and debris flow are serious problems in many areas of Iran, and in particular in the Golestan dam watershed, which is the area that was investigated in this study. Accurate land use and land cover (LULC) maps can be effective tools to help soil erosion control efforts. The principal objective of this research was to propose a new protocol for LULC classification for large areas based on readily available ancillary information and analysis of three single date Landsat ETM+ images, and to demonstrate that successful mapping depends on more than just analysis of reflectance values. In this research, it was found that incorporating climatic and topographic conditions helped delineate what was otherwise overlapping information. This study determined that a late summer Landsat ETM+ image yields the best results with an overall accuracy of 95%, while a spring image yields the poorest accuracy (82%). A summer image yields an intermediate accuracy of 92%. In future studies where funding is limited to obtaining one image, late summer images would be most suitable for LULC mapping. The analysis as presented in this paper could also be done with satellite images taken at different times of the season. It may be, particularly for other climatic zones, that there is a better time of season for image acquisition that would present more information.  相似文献   

12.
The study area is characterized by low and fluctuating rainfall pattern, thin soil cover, predominantly rain-fed farming with low productivity coupled with intensive mining activities, urbanization, deforestation, wastelands and unwise utilization of natural resources causing human induced environmental degradation and ecological imbalances, that warrant sustainable development and optimum management of land resources. Spatial information related to existing geology, land use/land cover, physiography, slope and soils has been derived through remote sensing, collateral data and field survey and used as inputs in a widely used erosion model (Universal Soil Loss Equation) in India to compute soil loss (t/ha/yr) in GIS. The study area has been delineated into very slight (<5 t/ha/yr), slight (5–10 t/ha/yr), moderate (10–15 t/ha/yr), moderately severe (15–20 t/ha/yr), severe (20–40 t/ha/yr) and very severe (>40 t/ha/yr) soil erosion classes. The study indicate that 45.4 thousand ha. (13.7% of TGA) is under moderate, moderately severe, severe and very severe soil erosion categories. The physiographic unit wise analysis of soil loss in different landscapes have indicated the sensitive areas, that has helped to prioritize development and management plans for soil and water conservation measures and suitable interventions like afforestation, agro-forestry, agri-horticulture, silvipasture systems which will result in the improvement of productivity of these lands, protect the environment from further degradation and for the ecological sustenance.  相似文献   

13.
In recent years, the use of remotely sensed data and Geographic Information System (GIS) applications has been found increasing in a wide range of resources inventory, mapping, analysis, monitoring and environmental management. Remote sensing data provides an opportunity for better observation and systematic analysis of terrain conditions following the synoptic and multi-spectral coverage. In the present study, the geomorphological analysis reveals that various denudational and depositional landforms have been analysed and mapped. The soil depth ranges from extremely shallow in isolated mounds to very deep in the pediplains. Based on the slope gradient, morphometry, soil depth, vegetation cover and image characteristics of standard FCC imagery of IRS-1D LISS-III data, four categories of eroded lands i.e., very severe, severe, moderate and nil to slight have been identified and mapped. The integrated analysis of slope, geomorphology and degraded lands layers in GIS revealed that the pediplains, rolling plains and subdued plateau are associated with very severe land degradation and accounts for 6.05%, 3.85% and 3.47% of total area respectively. The analysis of percentage of degraded lands at geomorphic sub unit level indicates that severe land degradation process is dominant in the dissected ridges, isolated mounds, escarpments and plateau spurs. The remote sensing data and GIS based detailed geomorphological and degraded lands analysis ensure better understanding of landform-eroded lands relationship and distribution to assess the status of land degradation at micro geomorphic unit for reclamation, geo-environmental planning and management. Similar study also helps in the areas of natural resource management, environmental planning and management, watershed management and hazards monitoring and mitigation.  相似文献   

14.
This study was undertaken to prepare an inventory on soil erosion of a hilly river watershed — the Aglar watershed, part of Tehri Garhwal and Dehradun districts (U.P.), using terrain physiography and soil survey data obtained from interpretation and analysis of Landsat TM FCC (1:62,500 scale) and limited ground investigations. The watershed is divided into four broad physiographic units viz. higher Himalayas (> 2000m elevation); lower Himalayas (< 2000m elevation); river terraces and flood plains. Each physiographic unit has been further divided into subunits on the basis of aspects and landuse. Three major orders of soils viz. Inceptisols, Mollisols and Entisols were found in different physiographic units. Soil, and land properties of soilscape units viz. soil depth, texture, structure, slope, landuse and soil temperature regime were evaluated for soil-erosion hazard. The results indicate that in the whole watershed 19.13%, 45.68%, 26.51% and 7.92% areas have been found to be under none to slight, moderate, severe and very severe soil erosion hazard categories, respectively.  相似文献   

15.
In the present study, an attempt has been made to characterize the biophysical land units in Kanholi bara river basin of sub-humid tropical ecosystem of central India using remotely sensed data, field surveys and GIS based multi-criteria overlay analysis. The geo-spatial database on elevation, slope, landforms, soil depth, soil erosion, land use/land cover and hydrogeomorphological parameters has been generated using IRS-ID LISS-III satellite data coupled with soil survey data in GIS. The methodology followed in characterization of biophysical land units in GIS includes assigning scores for different classes of the layers and weighatges for different layers based on their characteristics and degree of influence on desired output. GIS based ‘multi criteria overlay’ analysis reveals seventeen distinct biophysical land units in the river basin. Severe (50.5-59.5) to very severe (59.5) biophysical stress units are found in plateau spurs, isolated mounds, linear ridges, dissected plateau and escarpments. These zones are associated with severe to very severe erosion, steep to very steep, extremely shallow soils, poor to very poor groundwater prospects, wastelands and scrublands. The characterization of biophysical land units helps in analysis of their potentials, problems and stress environment to plan and execute site-specific landscape management practices and maximize the productivity from each biophysical land unit. The present study demonstrates that generation of geo-spatial database based on remotely sensed data and field surveys in GIS and their analysis helps great extent in characterization of biophysical land units and analysis of their stress environment for management.  相似文献   

16.
Lateritic soils of Mathamangalam, Kannur District, located in midlands of Kerala, were morphologically studied, characterized, classified and mapped at 1:50,000 scale using remote sensing techniques. The terrain of the study area being hilly and covered with perennial vegetation, soil-landscape model was applied. For this purpose physiographic information was inferred from SRTM DEM, Resourcesat-1 LISS-III satellite image and topographical maps. The interpreted units were validated in the field and characterized through soil-site examination, soil profile study and soil analysis. The study indicated that the lateritic soils of midlands of Kerala vary in physical, chemical and morphological properties in relation to micro-relief. Soils developed on moderately steeply sloping side slopes (15–30% slope) are deep, moderately well drained with gravelly clay textured, where as the soils developed on moderately slopping side slope (10–15% slope) are very deep and well drained. The soils of valleys are very deep, moderately well drained with fine texture. Very gently sloping (1–3%) laterite plateau tops have extremely shallow soils associated with rock outcrops. These soils mainly belong to Order Ultisols followed by Inceptisols and Entisols. These were further grouped up to Family and Series level by tentatively establishing seven soil series. This study helps in understanding the behaviour of lateritic soils of midlands of Kerala, which can be useful in generation of interpretative maps and in optimizing the land use.  相似文献   

17.
Hydro-ecological modelers often use spatial variation of soil information derived from conventional soil surveys in simulation of hydro-ecological processes over watersheds at mesoscale (10–100 km2). Conventional soil surveys are not designed to provide the same level of spatial detail as terrain and vegetation inputs derived from digital terrain analysis and remote sensing techniques. Soil property layers derived from conventional soil surveys are often incompatible with detailed terrain and remotely sensed data due to their difference in scales. The objective of this research is to examine the effect of scale incompatibility between soil information and the detailed digital terrain data and remotely sensed information by comparing simulations of watershed processes based on the conventional soil map and those simulations based on detailed soil information across different simulation scales. The detailed soil spatial information was derived using a GIS (geographical information system), expert knowledge, and fuzzy logic based predictive mapping approach (Soil Land Inference Model, SoLIM). The Regional Hydro-Ecological Simulation System (RHESSys) is used to simulate two watershed processes: net photosynthesis and stream flow. The difference between simulation based on the conventional soil map and that based on the detailed predictive soil map at a given simulation scale is perceived to be the effect of scale incompatibility between conventional soil data and the rest of the (more detailed) data layers at that scale. Two modeling approaches were taken in this study: the lumped parameter approach and the distributed parameter approach. The results over two small watersheds indicate that the effect does not necessarily always increase or decrease as the simulation scale becomes finer or coarser. For a given watershed there seems to be a fixed scale at which the effect is consistently low for the simulated processes with both the lumped parameter approach and the distributed parameter approach.  相似文献   

18.
This study applied a computerized parametric methodology to monitor, map, and quantify land degradation by salinization risk detection techniques at a 1:250 000 mapping scale using geo-information technology. The northern part of the Shaanxi province in China was taken as a case. Multi-temporal remotely sensed materials of both Landsat TM and thematic maps (ETM+) were used as the bases to provide comprehensive views of surface conditions such as vegetation cover and salinization detection. With ERDAS ver. 9.1 software, the Normalized Differential Salinity Index (NDSl) and Salinity Index (S.I.) were computed and then evaluated for land degradation by salinization. Arc/Info ver. 9.2 software was used along with field observation data (GPS) for analysis. Using spatial analysis methods, results showed that 19 973.1 km^2 (72%) of land had no risk of land degradation by salinization, 3 684.7 km^2 (13%) had slight land degradation by salinization risk, 2 797.9 km^2 (10%) had moderate land degradation by salinization risk, and 1 218.9 km^2 (4%) of the total land area was at a high risk of land degradation by salinization. The study area, in general, is exposed to a high risk of soil salinization.  相似文献   

19.
The vegetation dynamics and land use/land cover types of Birantiya Kalan watershed located in the arid tracts of western Rajasthan have been characterized and evaluated using Remote Sensing and Geographical Information System (GIS). The watershed under study falls in the transitional plain of Luni Basin and is characterized by Aravali ranges in the eastern half and vast alluvial plains in the west. The land use/land cover types, as identified are cropland, fallow, forest, land with scrub, land without scrub, sandy area and the water body. Land with scrub occupied maximum area (39% area of the watershed) in 1996 in place of crop land which was dominant (43% of total area) in the year 1988. During eight years period, seasonal fallow land increased significantly and the areal extent of water body decreased to almost half. Vegetation vigour types have been classified into very poor, poor. moderate, good and very good categories. Moderate vigour type reduced from 62 to 27% and poor type increased from 34 to 68% during the period 1988 to 1996. Other vegetation vigour types have not shown any significant changes. To quantify the changes over the years in both vegetation and land use/land cover, weightages have been given to each type and composite values of both vegetation vigour and land use types for 1996 and 1988 have been calculated. It has been observed that the ratio for vegetation vigour has been found to be 0.85 showing that the overall vegetation have not improved after the treatment. The ratio for land use is found to be 1.01, which indicates negligible change in land use.  相似文献   

20.
Runoff modelling of a small watershed using satellite data and GIS   总被引:1,自引:0,他引:1  
This study was conducted for the Nagwan watershed of the Damodar Valley Corporation (DVC), Hazaribagh, Bihar, India. Geographic Information System (GIS) was used to extract the hydrological parameters of the watershed from the remote sensing and field data. The Digital Elevation Model (DEM) was prepared using contour map (Survey of India, 1:50000 scale) of the watershed. The EASI/PACE GIS software was used to extract the topographic features and to delineate watershed and overland flow-paths from the DEM. Land use classification were generated from data of Indian Remote Sensing Satellite (IRS-1B—LISS—II) to compute runoff Curve Number (CN). Data extracted from contour map, soil map and satellite imagery, viz. drainage basin area, basin shape, average slope of the watershed, main stream channel slope, land use, hydrological soil groups and CN were used for developing an empirical model for surface runoff prediction. It was found that the model can predict runoff reasonably well and is well suited for the Nagwan watershed. Design of conservation structures can be done and their effects on direct runoff can be evaluated using the model. In broader sense it could be concluded that model can be applied for estimating runoff and evaluating its effect on structures of the Nagwan watershed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号