首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
应用高频燃烧-红外碳硫分析仪测定农用地土壤质量调查样品中碳、硫的含量,解决了土壤样品中碳、硫测定过程中存在的基体影响和低电磁感应等问题。对样品称样量、助熔剂的加入量、氧气流量等测定条件进行优化试验,用国家一级标准物质验证了方法准确度和精密度,相对误差(RE)小于10%,相对标准偏差(RSD,n=8)总碳小于2%,硫小于9%。方法能够满足农用地土壤质量调查样品的分析质量要求。  相似文献   

2.
应用高频燃烧-红外碳硫吸收法测定含铜烧结物中的高含量硫。对样品称样量、助熔剂的种类、加入顺序、用量等测定条件进行研究。由于样品含硫量的不同,根据矿石标准样品中含硫量的比例关系确定具体的称样量。以纯铁屑和钨粒作助熔剂,高温燃烧分解试样,红外检测可定量测定含铜烧结物样品中含量为1%~23%的硫。方法加标回收率为94%~113%,相对标准偏差(RSD,n=6)小于2%。与经典的硫酸钡重量法对比,相对误差小于4%。建立的方法解决了大宗含铜烧结物中硫快速、准确测定的问题,已应用于实际的日常检验工作。  相似文献   

3.
周晓磊  刘忠胜 《吉林地质》2011,30(4):93-94,116
采用硝酸酸化处理,低温焙烧氧化除去无机碳及有机碳,样品于高频红外碳硫分析仪测定固定碳质量分数,经国家标准物质验证,测定值与标准值相符,方法精密度RSD%为0.71,检出限为0.02%,满足石墨低品位固定碳质量分数分析质量要求。  相似文献   

4.
高频燃烧-红外吸收法用于分析矿石中低含量硫的测定结果较为准确,但对于高含量的硫,分析结果的准确度不高。本文采用高频燃烧-红外碳硫分析仪测定钼矿石和镍矿石中的高含量硫,选择纯铁屑和钨粒作助熔剂,高温燃烧分解样品,通过实验优化了样品称样量、助熔剂用量、仪器分析时间等测定条件。用国家标准物质进行验证,方法精密度(RSD,n=9)小于1%,加标回收率为96.0%~101.9%;与传统的硫酸钡重量法进行比对试验,测定值的相对误差小于2%。针对不同的矿石样品,研究了实际样品与标准物质的基体匹配问题,消除了基体效应的影响,对于钼矿石和镍矿石样品中含量在1%~35%范围内的硫,均能够准确测定,解决了钼矿石和镍矿石中高含量硫的快速、准确测定问题。  相似文献   

5.
建立了高温燃烧红外碳硫仪测定重铀酸盐中硫质量分数的分析方法。样品以五氧化二钒为助熔剂,在高温炉燃烧后,用红外吸收测定重铀酸盐中的硫,样品分析重现性好,精密度高,相对标准偏差为0.26%;样品加标回收率在97.1%~103%之间。  相似文献   

6.
耶曼  李婧  马怡飞  柯艳  李小桂 《岩矿测试》2022,41(4):680-687
高频红外碳硫仪测定不同矿石种类中的硫含量,测定速度快,稳定性好,但当测定范围宽、样品种类多时,受助熔剂、氧化温度和氧化时间影响较大。本文应用高频红外碳硫分析仪,研究了实验条件对分析结果的影响,通过优化样品称样量、助熔剂添加量和分析时间,建立了矿石样品中质量分数为0.74%~32.0%的硫含量检测方法,分析条件为:分析氧气流速2.8L/min,样品称样量0.0400g,纯铁助熔剂0.50g,纯钨助熔剂2.0g,分析时间45s。通过国家标准物质验证该方法的检出限为0.185%,定量限为0.739%,标准曲线线性相关系数大于0.9995,测定结果的相对标准偏差小于3%(n=11),与标准值的相对误差小于2%,且均小于DZ/T 0130—2006中对矿石样品分析要求的相对误差允许限。采用本方法与传统燃烧碘量法对实际样品进行测定,两种方法测定值的绝对误差小于0.5%,测定结果之间呈极显著线性关系(R2=0.9995),表明两种方法具有良好的一致性。  相似文献   

7.
针对用直接法(或非水滴定法)测定碳酸盐型石墨矿中固定碳时,碳酸盐等杂质分解不完、遇酸分解易飞溅、检测效率低以及用间接法不能准确测定低含量碳酸盐型石墨矿中固定碳的难题,建立用硝酸前处理样品—高频红外吸收法测定碳酸盐型石墨矿中固定碳的方法,并建立校准曲线。从样品的称样量、助溶剂的加入量、酸溶剂及其浓度的选择等方面对该方法进行详细研究。精密度、准确度符合石墨矿中固定碳的分析实验要求,并用国家一级标准物质对其进行了验证(RSD%,n=10)3.37%~0.70%;(RE%,n=10)-1.03%~0.00%。不同检测方法比较发现,本法与直接法、间接法进行比较,具有操作简单、稳定好、快速等特点,提高了石墨矿中固定碳含量的检测效率,适合碳酸盐型石墨矿固定碳的分析测定。  相似文献   

8.
为满足石墨样品中固定碳快速、准确的测试要求,建立了硝酸预处理- 高频红外碳硫分析仪测定固定碳的方法,探讨称样量、预处理温度、助熔剂选择等对测试结果的影响,并对测试参数进行了优化试验,确定了适宜工作条件。该方法检出限为0. 15%,精密度( RSD%,n = 12) 为0. 24% ~ 4. 07%,以国家一级标准物质验证,相对误差为0. 1% ~ 0. 69%,适用于含碳量≤30%的石墨样品。  相似文献   

9.
探针原子化石墨炉原子吸收法测定高纯金属镁中痕量铝   总被引:3,自引:3,他引:3  
侯书恩  常诚  王亚平 《岩矿测试》2000,19(2):142-145
采用探针恒温原子化技术的石墨炉原子吸收 ,测定高纯金属镁中的痕量铝 ,利用样品中的基体镁转化成硝酸镁成为一种有效基体改进剂 ,进一步改善了铝的分析性能。实验优化了仪器条件和分析方法。结果表明 ,在有Mg(NO3) 2 存在时 ,可显著提高探针原子化测铝的灰化温度 ,降低原子化温度 ,并且使铝的灵敏度提高了 50 %。方法的检出限为 2 .2× 1 0 - 1 1 gAl,测定 50 μg/LAl标准溶液的相对标准偏差 (n =1 2 )为 3.1 %。用该法测定了 4个金属镁内部管理样品中Al的含量 ,结果与推荐值相符合 ,其RSD(n =6)为 3.4%~ 1 1 .0 %。  相似文献   

10.
测试地质样品中的硫含量,以电感耦合等离子体发射光谱法(ICP-OES)和燃烧-红外吸收光谱法应用最为广泛。ICP-OES法灵敏度高、稳定性好,但受样品预处理和基体干扰的影响较大;燃烧-红外吸收光谱法便捷高效,但受结晶水红外吸收干扰,分析硫含量低的样品稳定性较差。本文采用5种酸溶方式处理样品ICP-OES测定硫含量,同时采用燃烧-红外吸收光谱法测定低中高含量的硫,综合比较了两类方法的检出限、检测范围、精密度和准确度、分析效率等,明确了各方法的适用范围。实验中确定了燃烧-红外吸收光谱法最佳测试条件为:称样量0.0500g,燃烧时间25s,分析时间40s,氧气流量4.0L/min;通过标准物质验证,该方法检出限为10×10-6,检测范围为10×10-6~470000×10-6,相对标准偏差(RSD) < 6%(n=12),相对误差绝对值小于8%。实验结果表明,ICP-OES分析效率高,但是样品处理时间长,检测范围不如燃烧-红外吸收光谱法宽;燃烧-红外吸收光谱法采用固体直接进样,成本低,用高氯酸镁作为干燥剂可解决结晶水红外吸收干扰问题。总体上,ICP-OES法适用于分析硫含量低的样品或作为测试结果佐证的手段,可实现多元素联测;批量样品或基体类型复杂的样品宜采用燃烧-红外吸收光谱法测试,更加便捷。  相似文献   

11.
对于铅精粉中银含量高的样品,特别是银含量大于1000μg/g和含有机质及含硫量高的铅精粉样品,在湿法处理样品过程中因存在难溶解、易包裹、易沉淀,使得银含量的测定结果偏低。针对上述问题,本文从优化样品消解方法出发,研究了铅精矿中银的最佳分析条件。即首先用盐酸除硫,再用硝酸-氢氟酸-高氯酸溶解试样,在20%盐酸介质中,用火焰原子吸收光谱仪于波长328.07 nm测定银的含量。在此实验条件下溶矿完全,提取液清澈,无沉淀。用铅精粉国家标准物质GBW07167、GBW07172和标准样品Pb-3进行验证,方法精密度(RSD,n=12)为1.0%~3.2%,银的测定结果与其标准值吻合较好。本方法制备的样品溶液稳定性较好,分析快速,可测定的银含量高达3000μg/g。  相似文献   

12.
The contents of total carbon and sulfur in 52 international geochemical reference samples have been determined by a method of infrared absorption following combustion in a high-frequency induction furnace. A comparison with published data shows clearly the need for much more data on most samples before consensus values could be assigned.
Les teneurs en carbone et soufre totaux ont été déterminées dans 52 échantillons géochimiques de référence par combustion suivie de spectrométrie d'absorption infra-rouge. Une comparaison de ces résultats avec ceux de la littérature montre bien la nécessité de disposer davantage de données pour pouvoir fixer des valeurs de consensus.  相似文献   

13.
贾双琳  李长安 《贵州地质》2019,36(2):193-196
在高锰酸钾外加热法测试土壤中有机碳的过程中,常遇到高含量氯离子对测试结果的正干扰,为解决此问题,本文提出了利用化学方法消除较高含量氯离子对测定土壤有机碳的干扰消除方法。在称取样品时,加入0. 15 g硫酸汞,消除样品中氯的干扰,通过对部分国家土壤、水系沉积物标准样品的分析测试,验证其方法准确度良好,方法的精密度为:5. 83%,可满足地质行业相关标准要求。  相似文献   

14.
高频燃烧—红外碳硫仪测定地质样品中的碳和硫   总被引:7,自引:6,他引:7  
应用HIR-944B型高频-红外碳硫分析仪,对不同地质样品中碳、硫的测定进行了研究,称样30~60mg,加入0.4g纯铁屑及1.7g钨粒助熔剂,高温燃烧分解试样,红外检测,可定量地质样品中质量为0~O.9mg的硫及质量为0~15mg的碳.用该仪器测定地质标样中碳、硫的结果与标准值符合,碳和硫11次测定的RSD分别是<2.6%和<3.0%.  相似文献   

15.
硫酸盐矿石和硫化物矿石大部分是低电磁性的物质,利用高频红外碳硫仪测定这类矿石中的硫时,在燃烧过程中难以产生较大的电磁感应涡流,导致矿石中的硫释放不完全,造成硫的测定结果偏低。本文采用二氧化硅将重晶石精矿和黄铁矿精矿稀释成不同硫含量的重晶石和黄铁矿样品,通过优化称样量及助熔剂等测试条件,建立了使用高频红外碳硫仪测定重晶石和黄铁矿中硫含量的分析方法。结果表明:当样品中的硫含量高于2%时确定称样量为0.07 g,当硫含量低于2%时确定称样量为0.1 g,加入助熔剂0.4 g锡粒+0.4 g铁粒+1.5 g钨粒,可使重晶石和黄铁矿中的硫完全释放进入仪器红外吸收区域,硫的回收率提高至95.8%~104.2%(重晶石)和95.3%~105.1%(黄铁矿),分别高于常规红外碳硫仪的回收率(83.39%~91.1%和91.5~97.5%)。本方法精密度高(RSD5%),实现了硫含量的准确测定。  相似文献   

16.
李东 《岩矿测试》2001,20(1):71-73
报道了高频红外分析仪同时测定煤中碳和硫的方法,可测ω(C)为0%-80%,ω(S)为0%-2.0%。方法经国家一级标准物质分析验证,结果与标准值相符,相对标准偏差(RSD,n=8)C<1.7%,S<1.3%。  相似文献   

17.
歪长石的晶体结构多年前已用单晶方法测定过。本文利用粉末衍射仪收集了474个独立的衍射数据,对歪长石的晶体结构进行了修正,偏离因子R=0.114。将粉末法测定的结果与用单晶法测定的结果作了对比。结构的键长、键角基本合理,但测定的精度有待提高。  相似文献   

18.
张志刚  刘凯  黄劲  高晶  陈泓  魏晶晶 《岩矿测试》2014,33(2):236-240
应用王水溶样-活性炭富集金-氢醌容量法测定岩石、土壤等一般地质样品中的金时,王水溶样后经布氏漏斗抽滤后剩余的不溶物残渣中金含量小于金总量的4%,通常不计入分析结果。而碳酸盐地质样品经焙烧后在王水溶解过程中因为钙和镁的硅酸盐含量较高,形成了不溶于王水的二氧化硅凝胶及大量钙镁胶状物,包裹和吸附样品溶液中的金,造成分析过程中金的损失。本文将抽滤后的滤液和不溶物残渣分别处理,收集王水分解样品抽滤步骤后的不溶物残渣,用氢氟酸-硫酸除硅,王水溶解测定残渣中的金含量,滤液和残渣两次测试合量为样品中金含量。实验研究了不溶物残渣中的金量、金的来源以及样品中硅钙镁的含量对金测定的影响。结果表明,不溶物残渣吸附和包裹的金量占样品金总量的18%~22%,残渣中金的主要来源是已被王水溶解但被二氧化硅等胶状物包裹吸附而未进入溶液的金,其次是未被王水溶解的单质金。胶状物的形成与样品中钙镁硅含量有直接的关系,当CaCO3、MgCO3含量达到30%以上时,必须考虑残渣中的金,以保证金的测试结果准确。  相似文献   

19.
试样经NH4HF2助溶,HNO3-KClO3溶解后,在冒SO3白烟时(340℃),高温硝解残渣。在1mol/L的H2SO4介质中沉淀铅,生成PbSO4沉淀,过滤除去溶解于溶液的干扰元素,用pH=5.5~5.9的HAC-NAC缓冲溶液溶解PbSO4沉淀,以二甲酚橙作指示剂,EDTA容量法测定铅。本方法克服了国标方法测定流程长,多点测定(残渣、滤液、溶液中的铅),溶解矿样过程繁杂,费时费力等缺点。建立的方法可一次性测定铅量,经用铅精粉国家一级标准物质GBW07167验证,结果与标准值吻合,方法的精密度RSD%(n=11)在0.1%~0.3%之间,方法简便、快速。适合于钡含量低(〈2%)的铅精粉中铅的测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号