首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study evaluates the performance of Indian Remote Sensing (JRS) LISS Jl and LISS III data having spatial resolutions of 36 m and 23.5 m respectively in the Classification accuracy of rice, mustard and potato crops grown in West Bengal, India. The role of Middle infra-red (MIR.) band, of IRS 1C LISS III was also investigated in this context. The results indicated that in case of crop like rice which was grown over large contiguous fields, no significant change in classification accuracy was observed between LISS II and LISS III data. However, the accuracy increased by 5–7 per cent with the inclusion of MIR band mainly due to better separability between lowland rice and other hill vegetation. In case of crops like mustard and potato which were grown on small size or less contiguous fields, the classification accuracy increased by 5–8 per cent due to higher spatial resolution of LISS III. Inclusion of MIR band did not improve the accuracy of these crops.  相似文献   

2.
Texture in high resolution satellite images requires substantial improvement in the conventional segmentation algorithms. The use of wavelet packet transforms for texture analysis and image classification of high spatial resolution LISS IV imagery provide more details about the urban areas. This paper analyses the performance of a combination of Wavelet Packet Statistical Features (WPSFs) and Wavelet Packet Co-occurrence Features (WPCFs) for the classification of LISS IV images. The classification accuracy per pixel is improved in this paper by varying the window size. Four indices—user’s accuracy, producer’s accuracy, overall accuracy and kappa co-efficient are used to assess the accuracy of the classified data. Experimental results show that a multi-band and multi-level wavelet packet approach can be used to drastically increase the classification accuracy.  相似文献   

3.
The accuracy of cotton crop classification using satellite data has been assessed with respect to a detailed land cover map prepared by field survey. The effect of spatial resolution on classification accuracy was studied using LISS-I (spatial resolution 72.6 m) and LISS-II data (spatial resolution 36.25 m) of the Indian remote sensing satellite IRS-1B. The performances of the maximum likelihood and the minimum distance to mean as classifiers have also been assessed. LISS-II data have been found to give a higher classification accuracy. The estimate of cotton acreage using LISS-II data was closer to that obtained from the base map. The maximum likelihood classifier (MXL) and the minimum distance to mean (MDM) classifier performed equally well.  相似文献   

4.
Land cover classification of finer resolution remote sensing data is always difficult to acquire high-frequency time series data which contains temporal features for improving classification accuracy. This paper proposed a method of land cover classification with finer resolution remote sensing data integrating temporal features extracted from time series coarser resolution data. The coarser resolution vegetation index data is first fused with finer resolution data to obtain time series finer resolution data. Temporal features are extracted from the fused data and added to improve classification accuracy. The result indicates that temporal features extracted from coarser resolution data have significant effect on improving classification accuracy of finer resolution data, especially for vegetation types. The overall classification accuracy is significantly improved approximately 4% from 90.4% to 94.6% and 89.0% to 93.7% for using Landsat 8 and Landsat 5 data, respectively. The user and producer accuracies for all land cover types have been improved.  相似文献   

5.
A study was conducted in Lakshadweep islands to determine the feasibility of using Indian Remote Sensing (IRS) satellites for detecting changes in the seagrass from other coastal features. IRS ID and IRS P6 LISS III having spatial resolution of 23.5 m with lower cost compared to all other contemporary satellites with the same spatial resolution have not been widely used for monitoring the changes in seagrass cover. In this context, the present study attempted to explore the effectiveness of LISS III data for mapping seagrasses and to inform the international community about the usefulness of these low-cost imageries for coastal resource monitoring. Supervised classification and change detection studies found a significant decrease in seagrass cover of 73.03 ha in the Lakshadweep group of islands. An overall accuracy of 67.5% was obtained for the change maps, and seagrass cover and its changes vary at different islands.  相似文献   

6.
Integrating multiple images with artificial neural networks (ANN) improves classification accuracy. ANN performance is sensitive to training datasets. Complexity and errors compound when merging multiple data, pointing to needs for new techniques. Kohonen's self-organizing mapping (KSOM) neural network was adapted as an automated data selector (ADS) to replace manual training data processes. The multilayer perceptron (MLP) network was then trained using automatically extracted datasets and used for classification. Two hypotheses were tested: ADS adapted from the KSOM network provides adequate and reliable training datasets, improving MLP classification performance; and fusion of Landsat thematic mapper (TM) and SPOT images using the modified ANN approach increases accuracy. ADS adapted from the KSOM network improved training data quality and increased classification accuracy and efficiency. Fusion of compatible multiple data can improve performance if appropriate training datasets are collected. This proved to be a viable classification scheme particularly where acquiring sufficient and reliable training datasets is difficult.  相似文献   

7.
A genetic algorithm based approach is used in this paper for the selection of a subset from the combination of Wavelet Packet Statistical and Wavelet Packet Co-occurrence textural feature sets to classify the LISS IV satellite images using neural networks. Generally, adding a new feature increases the complexity of training and classification. Hence there is a need to differentiate between those features that contribute ample information and others. Many current feature reduction techniques such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) involve linear transformations of the original pattern vectors to new vectors of lower dimensions. Hence a multi-objective Genetic Algorithm has been employed to reduce the complexity and increase the accuracy of classification. Four indices - user’s accuracy, producer’s accuracy, overall accuracy and kappa co-efficient are used to assess the accuracy of the classified data. Experimental results show that the proposed Genetic Algorithm approach with lesser number of optimal features produces comparable results with that of our earlier approach using more features.  相似文献   

8.
This study investigates the potential of multi-temporal signature analysis of satellite imagery to map rice area in South 24 Paraganas district of West Bengal. Two optical data (IRS ID LISS III) and three RADARSAT SAR data of different dates were acquired during 2001. Multi-temporal SAR backscatter signatures of different landcovers were incorporated into knowledge based decision rules and kharif landcover map was generated. Based on the spectral variation in signature, the optical data acquired during rabi (January) and summer (March) season were classified using supervised maximum likelihood classifier. A co-incidence matrix was generated using logical approach for a combined “rabi-summer” and “kharif-rabi-summer” landcover mapping. The major landcovers obtained in South 24 Paraganas using remote sensing data are rice, water, aquaculture ponds, homestead, mangrove, and urban area. The classification accuracy of rice area was 98.2% using SAR data. However, while generating combined “kharif-rabi-summer” landcovers, the classification accuracy of rice area was improved from 81.6% (optical data) to 96.6% (combined SAR-Optical). The primary aim of the study is to achieve better accuracy in classifying rice area using the synergy between the two kinds of remotely sensed data.  相似文献   

9.
Scalar wavelet based contourlet frame based features are used for improving the classification of remote sensing images. Multiwavelet an extension to scalar wavelets provides higher degree of freedom, which possess two or more scaling function and wavelet function. Unlike scalar wavelets, which has single scaling and wavelet function. Multiwavelet satisfies several mathematical properties simultaneously such as orthogonality, compact support, linear phase symmetry and higher order approximation. The multiwavelets considered here are Geronimo-Hardin-Massopust (GHM) and Chui Lian (CL). In this paper the performance of GHM and CL multiwavelet is compared. Finally CL based multicontourlet frame based features are used for improving the classification accuracy of remote sensing images as it has directional filter banks. Principal component analysis based feature reduction is performed and Gaussian Kernel Fuzzy C means classifiers are used to improve the classification accuracy. The experimental results shows that the CL based multicontourlet overall accuracy is improved to 5.3% (for LISS-IV(i)), 2.09% (for LISS IV(ii)) 4.17% (for LISS IV(iii)) and 4.2% (for LISS IV-(iv)) the kappa coefficient is improved to 0.04 (for LISS IV-(i)), 0.029 (for LISS IV-(ii)), 0.031 (for LISS IV-(iii)) and 0.05 (for LISS IV-(iv)) compared to Wavelet based Contourlet transform.  相似文献   

10.
Very high spatial and temporal resolution remote sensing data facilitate mapping highly complex and diverse urban environments. This study analyzed and demonstrated the usefulness of combined high-resolution aerial digital images and elevation data, and its processing using object-based image analysis for mapping urban land covers and quantifying buildings. It is observed that mapping heterogeneous features across large urban areas is time consuming and challenging. This study presents and demonstrates an approach for formulating an optimal land cover classification rule set over small representative training urban area image, and its subsequent transfer to the multisensor, multitemporal images. The classification results over the training area showed an overall accuracy of 96%, and the application of rule set to different sensor images of other test areas resulted in reduced accuracies of 91% for the same sensor, 90% and 86% for the different sensors temporal data. The comparison of reference and classified buildings showed ±4% detection errors. Classification through a transferred rule set reduced the classification accuracy by about 5%–10%. However, the trade-off for this accuracy drop was about a 75% reduction in processing time for performing classification in the training area. The factors influencing the classification accuracies were mainly the shadow and temporal changes in the class characteristics.  相似文献   

11.
基于不同分辨率遥感影像的分类方法对比研究   总被引:2,自引:0,他引:2  
基于4种不同分辨率的遥感影像数据,分别为30 m分辨率的Landsat-8数据,融合Landsat-8多光谱波段和全色波段的15 m分辨率数据,5.8 m分辨率的资源3号卫星数据以及融合后2.1 m分辨率的资源3号卫星数据。采用ISO-DATA、最大似然分类法和面向对象分类法对影像进行分类,对分类方法的效果以及分辨率变化对面向对象分类方法的精度影响进行分析。结果显示在低分辨率影像中,面向对象方法受到限制,分类效果相比传统方法没有太大改善;而在高分辨率影像中,面向对象方法分类效果很好,并且随着分辨率提高分类精度也相应的提高。  相似文献   

12.
Two band simulad WiFS data for five dates correspfonding to rabi sorghun growing season of 1993-94 has been generated for Aurangabad district of Maharashtra. Ground truth data has been used for supervised classificatioa of one date raw image and five date NDVI of simulated WiFS data and the results were compared with those derived from single date IRS LISS I data. Analysis of classification accuracies indicate that single date WIFS data gives slightly lower accuracy of 79 per cent against 81 per cent obtained for single date LISS I data. Overall accuracy for 5-date WiFS data is 96 per cent which shows that classification performance of five date WiFS NDVI data is far superior to the single date data of the IRS-IC WiFS as well as the IRS LISS I. The study thus shows the importance of temporal domain of data acquisition in sorghum crop discrimination, Growth profile for sorghum and other crop classes were generated from multidate WiFS derived NDVI data. Differences in growth profiles of sorghum vigour classes as well as amongst different crop types and forests corroborate the premise of better discrimination of crop types and their vigour on multidate remotely sensed data.  相似文献   

13.
多波段遥感数据的自组织神经网络降维分类研究   总被引:5,自引:0,他引:5  
介绍了基于聚类分析的自组织特征映射神经网络分类方法,神经网络的输出层结构选用了3D结构,可以更好地保持多波段遥感数据中的内在拓扑结构;并选择天津大港地区的AsTER数据中的9个波段作为试验数据,通过对验证点的统计,分类精度达到了94%以上。  相似文献   

14.
The accuracy of three classification techniques namely Maximum likelihood, contextual and neural network for landuse/landcover with special emphasis on forest type mapping was evaluated in Jaldapara Wildlife Sanctuary area using IRS-1B LISS II data of Dec. 1994. The area was segregated into ten categories by using all the three classification techniques taking same set of training areas. The classification accuracy was evaluated from the error matrix of same set of training and validating pixels. The analysis showed that the neural net work achieved maximum accuracy of 95 percent, maximum likelihood algorithm with 91.06 percent and contextual classifier with 87.42 percent. It is concluded that the neural network classifier works better in heterogeneous and contextual in homogenous forestlands whereas the maximum likelihood is the best in both the conditions.  相似文献   

15.
Abstract

Three spatial resolutions of airborne remote sensing imagery (60 cm, 1 m, and 2 m) collected over multi‐layer aspen, pine, spruce, and mixedwood forest stands in Alberta on July 18th, 1998 were tested for their ability to provide a statistical stand discrimination based on spatial co‐occurrence texture analysis. As spatial resolution increased, classification accuracies increased. The highest classification accuracy of 86.7% was obtained using the highest image spatial resolution data (60 cm), with spatial co‐occurrence texture and spectral signatures combined, and a thirteen‐class multi‐layer stand stratification. The texture of the highest spatial resolution imagery (60 cm pixel resolution) was interpreted to contain information on the crown architecture of individual trees. In larger windows, the texture was interpreted to contain information on stand structure. Texture of lower spatial resolution imagery (1 m and 2 m pixel resolution) could not detect individual tree crown architecture and was determined to be related primarily to stand structure characteristics. The use of texture channels improved the per‐plot classification accuracies by 15.7%, compared to the use of the spectral data alone.  相似文献   

16.
Abstract

This paper investigates the contribution of multi-temporal enhanced vegetation index (EVI) data to the improvement of object-based classification accuracy using multi-spectral moderate resolution imaging spectral-radiometer (MODIS) imagery. In object-oriented classification, similar pixels are firstly grouped together and then classified; the produced result does not suffer the speckled appearance and closer to human vision. EVI data are from the MODIS sensor aboard Terra spacecraft. 69 EVI data (scenes) were collected during the period of three years (2001–2003) in a mountainous vegetated area. These data sets were used to study the phenology of the land cover types. Different land cover types show distinct fluctuations over time in EVI values and this information might be used to improve object-oriented land cover classification. Two experiments were carried out: one was only with single date MODIS multispectral data, and the other one including also the 69 EVI images. Eight classes were distinguished: temperate forest, tropical dry forest, grassland, irrigated agriculture, rain-fed agriculture, orchards, lava flows and human settlement. The two classifications were evaluated with independent verification data, and the results showed that with multi-temporal EVI data, the classification accuracy was improved 5.2%. Evaluated by McNemar's test, this improved was significant, with significance level p=0.01.  相似文献   

17.
Abstract

The purpose of this study was to investigate the use of color infrared‐digital orthophoto quadrangle (CIR‐DOQ) data to generate land use/land cover (LULC) maps and to incorporate them as data layers in geographic information systems (GIS) involving various resource management scenarios. The Danville 7.5‐minute quadrangle located in the southern part of Limestone and Morgan counties, Alabama, was used as the study site. Data for the special CIR‐DOQ were generated by scanning four 9x9 inch CIR aerial photographs at a uniform pixel sample grid of 25 microns resulting in 2 meters ground sample resolution. One‐half of the quadrangle was used to identify training sites for performing a supervised classification of the data and the other half to verify the accuracy of the classification. The CIR‐DOQ data were found to be adequate for using a supervised classification algorithm to differentiate major LULC classes, resulting in a classification accuracy of 93 percent. The superior spatial quality of the data over commençai satellite data affords resource managers an opportunity to more effectively study land cover and surface hydrological properties of an area, soil moisture and surface soil textures, as well as differentiate among vegetation species, using remote sensing techniques. However, caution must be exercised when using multispectral classification techniques to classify mosaicked CIRDOQ data because of the image enhancements used to generate the final product. In its present form, there are some limitations to the use of the data for performing spectral classifications. Hozvever, the high spatial resolution of the data enables even the novice resource planner to effectively use the data in visual interpretations of major LULC classes.  相似文献   

18.
In order to evaluate the potentials of IRS‐1A Linear Imaging Self‐scanning Sensor (LISS‐I) data for geological and geomorphological applications and also to compare the IRS‐1A LISS‐I data with Landsat Thematic Mapper (TM) data, a study has been attempted for parts of Uttar Pradesh and Madhya Pradesh in Northern India. The first four spectral bands of Landsat TM sensor data which are similar and close to IRS‐1A LISS‐I senor have been utilised for the comparative evaluation. Various techniques employed for both the data set to derive the required geology and geomorphology related information include (i) band combination (ii) spectral response analysis (iii) principal component analysis (iv) supervised classification techniques and (v) visual observation of various outputs generated by the above methods. The Optimum Index Factor (OIF) method adopted for selecting suitable band combinations showed similar OIF rankings for IRS‐1A LISS‐I data and Landsat TM data. It has been visually observed that the band combination 1, 3 & 4 offers relatively better feature display. The spectral responses derived for various major geologic rock units such as Deccan Trap, Vindhyan Formation, Bundelkhand Granite and for a few landcovers such as surface water bodies and black soil show striking similarity in pattern for both LISS‐I and TM. The Principal Component (PC) analysis of both data sets suggested that the total scene brightness tends to dominate in the first PC. The percentage information contributed by PCs 1&2 as also by PCs 1,2 & 3 in both the LISS‐I and TM are comparable. It was observed from the classified image generated by performing supervised classification with a maximum likelihood algorithm that major geomorphic landforms were clearly distinguishable. Thus the qualitative and quantitative evaluation of both IRS‐1A LISS‐I and Landsat TM data showed that significant similarities exist between them. The study also revealed that IRS‐1A LISS‐I data can be effectively used for deriving geology and geomorphology related details.  相似文献   

19.
20.
辅以纹理特征的高分辨率遥感影像分类   总被引:4,自引:2,他引:2  
为了提高对高分辨率影像的分类精度,通过灰度差矢量法快速提取纹理特征,利用BP神经网络并辅以纹理特征,对一幅江西某地0.2m分辨率的航空影像进行分类。结果显示,对比度纹理特征能较好地反映该影像的纹理信息;对光谱特征不典型、纹理特征明显的人工树林,分类精度可达到90%以上;增加纹理特征后,影像分类的总精度也由55%提高到94%。表明这种结合纹理特征和BP神经网络的分类方法,能提高对高分辨率影像分类的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号