首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for the full three-dimensional (3-D) reconstruction of the trajectories of coronal mass ejections (CMEs) using Solar TErrestrial RElations Observatory (STEREO) data is presented. Four CMEs that were simultaneously observed by the inner and outer coronagraphs (COR1 and 2) of the Ahead and Behind STEREO satellites were analysed. These observations were used to derive CME trajectories in 3-D out to ~?15?R . The reconstructions using COR1/2 data support a radial propagation model. Assuming pseudo-radial propagation at large distances from the Sun (15?–?240?R ), the CME positions were extrapolated into the Heliospheric Imager (HI) field-of-view. We estimated the CME velocities in the different fields-of-view. It was found that CMEs slower than the solar wind were accelerated, while CMEs faster than the solar wind were decelerated, with both tending to the solar wind velocity.  相似文献   

2.
We are investigating the geometric and kinematic characteristics of interplanetary coronal mass ejections (ICMEs) using data obtained by the LASCO coronagraphs, the Solar Mass Ejection Imager (SMEI), and the SECCHI imaging experiments on the STEREO spacecraft. The early evolution of CMEs can be tracked by the LASCO C2 and C3 and SECCHI COR1 and COR2 coronagraphs, and the HI and SMEI instruments can track their ICME counterparts through the inner heliosphere. The HI fields of view (4?–?90°) overlap with the SMEI field of view (>?20° to all sky) and, thus, both instrument sets can observe the same ICME. In this paper we present results for ICMEs observed on 24?–?29 January 2007, when the STEREO spacecraft were still near Earth so that both the SMEI and STEREO views of large ICMEs in the inner heliosphere coincided. These results include measurements of the structural and kinematic evolution of two ICMEs and comparisons with drive/drag kinematic, 3D tomographic reconstruction, the HAFv2 kinematic, and the ENLIL MHD models. We find it encouraging that the four model runs generally were in agreement on both the kinematic evolution and appearance of the events. Because it is essential to understand the effects of projection across large distances, that are not generally crucial for events observed closer to the Sun, we discuss our analysis procedure in some detail.  相似文献   

3.
STEREO A and B observations of the radial magnetic field between 1 January 2007 and 31 October 2008 show significant evidence that in the heliosphere, the ambient radial magnetic field component with any dynamic effects removed is uniformly distributed. Based on this monopolar nature of the ambient heliospheric field we find that the surface beyond which the magnetic fields are in the monopolar configuration must be spherical, and this spherical surface can be defined as the inner boundary of the heliosphere that separates the monopole-dominated heliospheric magnetic field from the multipole-dominated coronal magnetic field. By using the radial variation of the coronal helmet streamers belts and the horizontal current – current sheet – source surface model we find that the spherical inner boundary of the heliosphere should be located around 14 solar radii near solar minimum phase.  相似文献   

4.
We consider the problem of automatically (and robustly) isolating and extracting information about waves and oscillations observed in EUV image sequences of the solar corona with a view to near real-time application to data from the Atmospheric Imaging Array (AIA) on the Solar Dynamics Observatory (SDO). We find that a simple coherence/travel-time based approach detects and provides a wealth of information on transverse and longitudinal wave phenomena in the test sequences provided by the Transition Region and Coronal Explorer (TRACE). The results of the search are pruned (based on diagnostic errors) to minimize false-detections such that the remainder provides robust measurements of waves in the solar corona, with the calculated propagation speed allowing automated distinction between various wave modes. In this paper we discuss the technique, present results on the TRACE test sequences, and describe how our method can be used to automatically process the enormous flow of data (≈1 Tb day−1) that will be provided by SDO/AIA. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

5.
P. K. Manoharan 《Solar physics》2010,265(1-2):137-157
In this paper, I investigate the three-dimensional evolution of solar wind density and speed distributions associated with coronal mass ejections (CMEs). The primary solar wind data used in this study has been obtained from the interplanetary scintillation (IPS) measurements made at the Ooty Radio Telescope, which is capable of measuring scintillation of a large number of radio sources per day and solar wind estimates along different cuts of the heliosphere that allow the reconstruction of three-dimensional structures of propagating transients in the inner heliosphere. The results of this study are: i) three-dimensional IPS images possibly show evidence for the flux-rope structure associated with the CME and its radial size evolution; the overall size and features within the CME are largely determined by the magnetic energy carried by the CME. Such a magnetically energetic CME can cause an intense geomagnetic storm, even if the trailing part of the CME passes through the Earth; ii) IPS measurements along the radial direction of a CME at ~?120 R show density turbulence enhancements linked to the shock ahead of the CME and the core of the CME. The density of the core decreases with distance, suggesting the expansion of the CME. However, the density associated with the shock increases with distance from the Sun, indicating the development of a strong compression at the leading edge of the CME. The increase of stand-off distance between ~?120 R and 1 AU is consistent with the deceleration of the CME and the continued outward expansion of the shock. The key point in this study is that the magnetic energy possessed by the transient determines its radial evolution.  相似文献   

6.
D. Oberoi  L. Benkevitch 《Solar physics》2010,265(1-2):293-307
The Murchison Widefield Array (MWA) is one of the new technology low frequency radio interferometers currently under construction at an extremely radio-quiet location in Western Australia. The MWA design brings to bear the recent availability of powerful high-speed computational and digital signal processing capabilities on the problem of low frequency high-fidelity imaging with a rapid cadence and high spectral resolution. Solar and heliosphere science are among the key science objectives of the MWA and have guided the array design from its very conception. We present here a brief overview of the design and capabilities of the MWA with emphasis on its suitability for solar physics and remote-sensing of the heliosphere. We discuss the solar imaging and interplanetary scintillation (IPS) science capabilities of the MWA and also describe a new software framework. This software, referred to as Haystack InterPlanetary Software System (HIPSS), aims to provide a common data repository, interface, and analysis tools for IPS data from all observatories across the world.  相似文献   

7.
Measurements of the composition and spatial distribution of pick-up ions inside the heliosphere are reviewed. The first interstellar 4He+pick-up ions were detected with the SULEICA instrument on the AMPTE spacecraft near Earth's orbit. Most data on pick-up ions were taken in the solar-wind and suprathermal energy range of SWICS on Ulysses while the spacecraft cruised from 1.4 to 5.4 AU and explored the high-latitude heliosphere and solar wind from the ecliptic to ± 80° heliolatitude. This includes the discovery of H+, 4He++, 3He+, N+,O+, and Ne+ pick-up ions that originate from the interstellar neutralgas penetrating the heliosphere. From their fluxes properties of the interaction region between the heliosphere and the Local Interstellar Cloud such as the limits on filtration and the strength of the interstellar magnetic field have been revealed. Detailed analysis of the velocity distributions of pick-up ions led to 1) the discovery of a new distinct source, the so-called Inner Source, consisting of atoms released from interstellar and interplanetary dust inside the heliosphere, 2) the determination of pick-up ion transport parameters such as the long mean free path for pitch-angle scattering of order1 AU, and 3) detailed knowledge on the very preferential injection and acceleration of pick-up ions during interplanetary energetic particle events such as Co-rotating Interaction Regions and Coronal Mass Ejections. SWICS measurements have fully confirmed the theory of Fisk, Koslovsky, and Ramaty that pick-up ions derived from the interstellar gas are the dominant source of the Anomalous Cosmic Rays; they are pre-accelerated inside the heliosphere and re-accelerated at the solar-wind Termination Shock according to Pesses, Eichler, and Jokipii. The data indicate that the Inner Source of pick-up ionsis largely responsible for the occurence of C+ in the Anomalous Cosmic Rays. The abundances of recently discovered Inner-Source Mg+ and Si+ are solar-wind like and consistent with their abundances in the energetic particles associated with Co-rotating Interaction Regions. Knowledge on the injection and acceleration processes in Co-rotating Interaction Regions is applied to discuss the current observational evidence for the Interplanetary Focusing Cone of the interstellar neutral gas due to the Sun's gravitational force. The 25–150 keV/amu suprathermal 4He+ pick-up ion fluxes measured by CELIAS/STOF on board SOHO over 360° of ecliptic longitude represent a `local' ionization and acceleration of interstellar atoms at 1 AU or smaller heliocentric distances. Completing the first limited data set of SULEICA/AMPTE on 4He+ pick-up ions they indicate a density enhancement in the Interplanetary Focusing Cone which is confirmed by recent SWICS/ACE data. Clear evidence for signatures in ecliptic longitude are found in the data on energetic neutral H fluxes observed with the CELIAS/HSTOF sensor on board SOHO. These fluxes are enhanced in the upstream and downstream directions of the interstellar wind. Detection of energetic H atoms, which propagate unaffected by the Heliospheric Magnetic Field, provided for the first time a diagnostic tool for observations near Earth to analyze the structure in ecliptic longitude of the interface region between the heliosphere and the Local Interstellar Cloud. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Alfvén ion cyclotron waves(ACWs) and kinetic Alfvén waves(KAWs) are found to exist at <0.3 au observed by Parker Solar Probe in Alfvénic slow solar winds. To examine the statistical properties of the background parameters for ACWs and KAWs and related wave disturbances, both wave events observed by Parker Solar Probe are selected and analyzed. The results show that there are obvious differences in the background and disturbance parameters between ACWs and KAWs. ACW events have a relatively hi...  相似文献   

9.
Mutual quasi-periodicities near the solar-rotation period appear in time series based on the Earth’s magnetic field, the interplanetary magnetic field, and signed solar-magnetic fields. Dominant among these is one at 27.03±0.02 days that has been highlighted by Neugebauer et al. (J. Geophys. Res. 105, 2315, 2000). Extension of their study in time and to different data reveals decadal epochs during which the ≈ 27.0 days, or a ≈ 28.3 days, or other quasi-periods dominate the signal. Space-time eigenvalue analyses of time series in 30 solar latitude bands, based on synoptic maps of unsigned photospheric fields, lead to two maximally independent modes that account for almost 30% of the data variance. One mode spans 45° of latitude in the northern hemisphere and the other one in the southern. The modes rotate around the Sun rigidly, not differentially, suggesting connection with the subsurface dynamo. Spectral analyses yield familiar dominant quasi-periods 27.04±0.03 days in the North and at 28.24±0.03 days in the South. These are replaced during cycle 23 by one at 26.45±0.03 days in the North. The modes show no tendency for preferred longitudes separated by ≈ 180°.  相似文献   

10.
We study the effect of localized sound-speed perturbations on global mode frequencies by applying techniques of global helioseismology to numerical simulations of the solar acoustic wave field. Extending the method of realization-noise subtraction (e.g., Hanasoge, Duvall, and Couvidat, Astrophys. J. 664, 1234, 2007) to global modes and exploiting the luxury of full spherical coverage, we are able to achieve very highly resolved frequency differences that are then used to study sensitivities and the signatures of the thermal asphericities. We find that i) global modes are almost twice as sensitive to sound-speed perturbations at the bottom of the convection zone in comparison to anomalies well inside the radiative interior (r?0.55R ), ii) the m degeneracy is lifted ever so slightly, as seen in the a coefficients, and iii) modes that propagate in the vicinity of the perturbations show small amplitude shifts. Through comparisons with error estimates obtained from Michelson Doppler Imager (MDI; Scherrer et al., Solar Phys. 162, 129, 1995) observations, we find that the frequency differences are detectable with a sufficiently long time series (70?–?642 days).  相似文献   

11.
We present initial 3D tomographic reconstructions of the inner heliosphere during the Whole Heliosphere Interval (WHI) – Carrington Rotation 2068 (CR2068) – using Solar-Terrestrial Environment Laboratory (STELab) Interplanetary Scintillation (IPS) observations. Such observations have been used for over a decade to visualise and investigate the structure of the solar wind and to study in detail its various features. These features include co-rotating structures as well as transient structures moving out from the Sun. We present global reconstructions of the structure of the inner heliosphere during this time, and compare density and radial velocity with multi-point in situ spacecraft measurements in the ecliptic; namely STEREO and Wind data, as the interplanetary medium passes over the spacecraft locations.  相似文献   

12.
O. White  G. Kopp  M. Snow  K. Tapping 《Solar physics》2011,274(1-2):159-162
Given the numerous ground-based and space-based experiments producing the database for the Cycle 23??C?24 Minimum epoch from September 2008 to May 2009, we have an extraordinary opportunity to understand its effects throughout the heliosphere. We use solar radiative output in this period to obtain minimum values for three measures of the Sun??s radiative output: the total solar irradiance, the Mg ii index, and the 10.7 cm solar radio flux. The derived values are included in the research summaries as a means to exchange ideas and data for this long minimum in solar activity.  相似文献   

13.
Subdwarf B stars (sdBs) can significantly change the ultraviolet spectra of populations at age t~1 Gyr, and have been even included in the evolutionary population synthesis (EPS) models by Han et al. (Mon. Not. R. Astron. Soc. 380:1098, 2007). In this study we present the spectral energy distributions (SEDs) of binary stellar populations (BSPs) by combining the EPS models of Han et al. (Mon. Not. R. Astron. Soc. 380:1098, 2007) and those of the Yunnan group (Zhang et al. in Astron. Astrophys. 415:117, 2004; Mon. Not. R. Astron. Soc. 357:1088, 2005), which have included various binary interactions (except sdBs) in EPS models. This set of SEDs is available upon request from the authors. Using this set of SEDs of BSPs we build the spectra of Burst, E, S0–Sd and Irr types of galaxies by using the package of Bruzual and Charlot (Mon. Not. R. Astron. Soc. 344:1000, 2003). Combined with the photometric data (filters and magnitudes), we obtain the photometric redshifts and morphologies of 1502 galaxies by using the Hyperz code of Bolzonella et al. (Astron. Astrophys. 363:476, 2000). This sample of galaxies is obtained by removing those objects, mismatched with the SDSS/DR7 and GALEX/DR4, from the catalogue of Fukugita et al. (Astron. J. 134:579, 2007). By comparison the results with the SDSS spectroscopic redshifts and the morphological index of Fukugita et al. (Astron. J. 134:579, 2007), we find that the photo-z fluctuate with the SDSS spectroscopic redshifts, while the Sa–Sc galaxies in the catalogue of Fukugita et al. (Astron. J. 134:579, 2007) are classified earlier as Burst-E galaxies.  相似文献   

14.
The north – south asymmetries (NSA) of three solar activity indices are derived and mutually compared over a period of more than five solar cycles (1945 – 2001). A catalogue of the hemispheric sunspot numbers, the data set of the coronal green line brightness developed by us, and the magnetic flux derived from the NSO/KP data (1975 – 2001) are treated separately within the discrete low- and mid-latitude zones (5° – 30°, 35° – 60°). The calculated autocorrelations, cross-correlations, and regressions between the long-term NSA data sets reveal regularities in the solar activity phenomenon. Namely, the appearance of a distinct quasi-biennial oscillation (QBO) is evident in all selected activity indices. Nevertheless, a smooth behavior of QBO is derived only when sufficient temporal averaging is performed over solar cycles. The variation in the significance and periodicity of QBO allows us to conclude that the QBO is not persistent over the whole solar cycle. A similarity in the photospheric and coronal manifestations of the NSA implies that their mutual relation will also show the QBO. A roughly two-year periodicity is actually obtained, but again only after significant averaging over solar cycles. The derived cross-correlations are in fact variable in degree of correlation as well as in changing periodicity. A clear and significant temporal shift of 1 – 2 months in the coronal manifestation of the magnetic flux asymmetry relative to the photospheric manifestation is revealed as a main property of their mutual correlation. This shift can be explained by the delayed large-scale coronal manifestation in responding to the emergence of the magnetic flux in the photosphere. The reliability of the derived results was confirmed by numerical tests performed by selecting different numerical values of the used parameters.  相似文献   

15.
We present a statistical analysis of the relationship between the kinematics of the leading edge and the eruptive prominence in coronal mass ejections (CMEs). We study the acceleration phase of 18 CMEs in which kinematics was measured from the pre-eruption stage up to the post-acceleration phase. In all CMEs, the three part structure (the leading edge, the cavity, and the prominence) was clearly recognizable from early stages of the eruption. The data show a distinct correlation between the duration of the leading edge (LE) acceleration and eruptive prominence (EP) acceleration. In the majority of events (78%) the acceleration phase onset of the LE is very closely synchronized (within ± 20 min) with the acceleration of EP. However, in two events the LE acceleration started significantly earlier than the EP acceleration (> 50 min), and in two events the EP acceleration started earlier than the LE acceleration (> 40 min). The average peak acceleration of LEs (281 m s−2) is about two times larger than the average peak acceleration of EPs (136 m s−2). For the first time, our results quantitatively demonstrate the level of synchronization of the acceleration phase of LE and EP in a rather large sample of events, i.e., we quantify how often the eruption develops in a “self-similar” manner.  相似文献   

16.
In a density-stratified turbulent medium, the cross helicity 〈u′⋅B′〉 is considered as a result of the interaction of the velocity fluctuations and a large-scale magnetic field. By means of a quasilinear theory and by numerical simulations, we find the cross helicity and the mean vertical magnetic field to be anti-correlated. In the high-conductivity limit the ratio of the helicity and the mean magnetic field equals the ratio of the magnetic eddy diffusivity and the (known) density scale height. The result can be used to predict that the cross helicity at the solar surface will exceed the value of 1 gauss km s−1. Its sign is anti-correlated to that of the radial mean magnetic field. Alternatively, we can use our result to determine the value of the turbulent magnetic diffusivity from observations of the cross helicity.  相似文献   

17.
In this paper we extend the idea suggested previously by Pétri (Astron. Astrophys. 439:L27, 2005a; 443:777, 2005b) (papers I and II) that the high frequency quasi-periodic oscillations (HF-QPOs) observed in low-mass X-ray binaries (LMXBs) may be explained as a resonant oscillation of the accretion disk with a rotating asymmetric background (gravitational or magnetic) field imposed by the compact object. Here, we apply this general idea to black hole binaries. It is assumed that a test particle experiences a similar parametric resonance mechanism such as the one described in paper I and II but now the resonance is induced by the interaction between a spiral density wave in the accretion disk, excited close to the innermost stable circular orbit, and vertical epicyclic oscillations. We use the Kerr spacetime geometry to deduce the characteristic frequencies of this test particle. The response of the test particle is maximal when the frequency ratio of the two strongest resonances is equal to 3:2 as observed in black hole candidates. Finally, applying our model to the microquasar GRS 1915+105, we reproduce the correct value of several HF-QPOs. Indeed the presence of the 168/113/56/42/28 Hz features in the power spectrum time analysis is predicted. Moreover, based only on the two HF-QPO frequencies, our model is able to constrain the mass M BH and angular momentum a BH of the accreting black hole. We show the relation between M BH and a BH for several black hole binaries. For instance, assuming a black hole weakly or mildly rotating, i.e. a BH≤0.5?G? M BH/c 2, we find that for GRS 1915+105 its mass satisfies 13?M M BH≤20?M . The same model applied to two other well-known BHCs gives for GRO J1655-40 a mass 5?M M BH≤7?M and for XTE J1550-564 a mass 8?M M BH≤11?M . This is consistent with other independent estimations of the black hole mass. Finally for H1743-322, we found the following bounds, 9?M M BH≤13?M .  相似文献   

18.
In the paper by Kliem, Karlický, and Benz (Astron. Astrophys. 360, 715, 2000) it was suggested, that plasmoids formed during the bursty regime of solar flare reconnection can be “visualised” in the radio spectra as drifting pulsating structures via accelerated particles trapped inside the plasmoid. In the present paper we investigate this idea in detail. First, simple statistical analysis supporting this hypothesis is presented. Then, by using the 2.5-D MHD (including gravity) model solar flare reconnection in the inhomogeneous, stratified atmosphere is simulated and the formation and subsequent ejection of the plasmoid is demonstrated. The ejected plasmoid, which is considered to be a trap for accelerated electrons, is traced and its plasma parameters are computed. To estimate the associated plasma radio emission we need to know locations of accelerated electrons and corresponding plasma frequencies. General considerations predict that these electrons should be distributed mainly along the magnetic separatrix surfaces and this was confirmed by using a particle-in-cell simulation. Finally, under some simplifying assumptions the model dynamic radio spectrum is constructed. The relation between the global frequency drift and the plasmoid motion in the inhomogeneous ambient atmosphere is studied. The results are discussed with respect to the observed drifting pulsation structures and their possible utilisation for flare magnetic field diagnostics.  相似文献   

19.
We investigate coronal transients associated with a GOES M6.7 class flare and a coronal mass ejection (CME) on 13 July 2004. During the rising phase of the flare, a filament eruption, loop expansion, a Moreton wave, and an ejecta were observed. An EIT wave was detected later on. The main features in the radio dynamic spectrum were a frequency-drifting continuum and two type II bursts. Our analysis shows that if the first type II burst was formed in the low corona, the burst heights and speed are close to the projected distances and speed of the Moreton wave (a chromospheric shock wave signature). The frequency-drifting radio continuum, starting above 1 GHz, was formed almost two minutes prior to any shock features becoming visible, and a fast-expanding piston (visible as the continuum) could have launched another shock wave. A possible scenario is that a flare blast overtook the earlier transient and ignited the first type II burst. The second type II burst may have been formed by the same shock, but only if the shock was propagating at a constant speed. This interpretation also requires that the shock-producing regions were located at different parts of the propagating structure or that the shock was passing through regions with highly different atmospheric densities. This complex event, with a multitude of radio features and transients at other wavelengths, presents evidence for both blast-wave-related and CME-related radio emissions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号