共查询到20条相似文献,搜索用时 0 毫秒
1.
M. Helten W. Pätz M. Trainer H. Fark E. Klein D. H. Ehhalt 《Journal of Atmospheric Chemistry》1984,2(2):191-202
Vertical profiles of stratospheric HO2 and NO2 concentrations were determined using matrix isolation and ESR. Up to 10 different samples per flight were collected in situ by a balloon borne cryosampler. Free radicals and trace constituents which are condensable at 68 K are trapped in a polycristalline H2O or D2O matrix. After collection, the samples are stored at a temperature below 83 K until they are analysed in the laboratory by X-band ESR spectroscopy at 4 K. The HO2 and NO2 were identified and calibrated by comparison with standard samples collected in the laboratory under typical stratospheric sampling conditions. From several flights over Southern France (44°N) we obtained two profiles of the stratospheric NO2 mixing ratio. One, from 21 October 1982, agrees well with previous measurements. The other, from 8 October 1981, is lower by one order of magnitude. The few HO2 data obtained around 35 km altitude agree with previous measurements. An isolated measurement at 17 km altitude is one order of magnitude higher than the model predicted HO2 concentration. 相似文献
2.
A detector for the chemiluminescent measurement of NO in background air is described. A large reduction of interferences is achieved by using a stabilized ozone generator which allows operation of the instrument at lower O3 concentrations. Purification and humidification of the O3 stream further reduces interferences and shortens the instrumental clean-up time, which is important for aircraft missions. From a series of laboratory tests and from measurements performed aboard an aircraft it is demonstrated that the remaining interferences are acceptable for measurements in the undisturbed troposphere. In particular, no remnant NO signal is observed in clean air at night. During flight, a detection limit (2) of 20 ppt is achieved for a 1 min integration time. 相似文献
3.
S. Madronich D. R. Hastie H. I. Schiff B. A. Ridley 《Journal of Atmospheric Chemistry》1985,3(2):233-245
The photodissociation coefficient of NO2, J
NO
2, has been measured from a balloon platform in the stratosphere. Results from two balloon flights are reported. High Sun values of J
NO
2 measured were 10.5±0.3 and 10.3±0.3×10-3 s-1 at 24 and 32 km respectively. The decrease in J
NO
2 at sunset was monitored in both flights. The measurements are found to be in good agreement with calculations of J
NO
2 using a simplified isotropic multiple scattering computer routine. 相似文献
4.
G. T. Amanatidis A. F. Bais A. G. Kelessis C S. Zerefos I. C. Ziomas 《Journal of Atmospheric Chemistry》1989,9(4):435-446
A programme of ground-based stratospheric and total NO2 column measurements was instituted at the Laboratory of Atmospheric Physics (40.5° N, 22.9° E) in August 1985. We present here the results of the first two years of measurements with a modified Canterbury filter photometer, details of which are given in the text. The stratospheric NO2 column, obtained at twilight during low local NO2 levels, shows the seasonal variation with monthly mean values of about 6×10-15 molec. cm-2 in the summertime to about 2.2×10-15 molec. cm-2 in the wintertime. These measurements compare well with measurements obtained with different instruments by other groups at similar latitudes (about 40° N) but in different places. Also, the asymmetry of the evening-to-morning stratospheric NO2 over Thessaloniki was found to be on the average equal to 1.58. Total NO2 column over Thessaloniki has a pronounced seasonal variation with amplitude of 0.68 matm. cm which can be explained partly from measured local NO2 sources which discharge in the mixing layer and partly from photolysis of the NO2 reservoir species. 相似文献
5.
Recent observations suggest that the abundance of ozone between 2 and 8 km in the Northern Hemisphere mid-latitudes has increased by about 12% during the period from 1970 to 1981. Earlier estimates were somewhat more conservative suggesting increases at the rate of 7% per decade since the start of regular observations in 1967. Previous photochemical model studies have indicated that tropospheric ozone concentrations would increase with increases in emissions of CO, CH4 and NO
x
. This paper presents an analysis of tropospheric ozone which suggests that a significant portion of its increase may be attributed to the increase in global anthropogenic NO
x
emissions during this period while the contribution of CH4 to the increase is quite small. Two statistical models are presented for estimating annual global anthropogenic emissions of NO
x
and are used to derive the trend in the emissions for the years 1966–1980. These show steady increase in the emissions during this interval except for brief periods of leveling off after 1973 and 1978. The impact of this increase in emissions on ozone is estimated by calculations with a onedimensional (latitudinal) model which includes coupled tropospheric photochemistry and diffusive meridional transport. Steady-state photochemical calculations with prescribed NO
x
emissions appropriate for 1966 and 1980 indicate an ozone increase of 8–11% in the Northern Hemisphere, a result which is compatible with the rise in ozone suggested by the observations. 相似文献
6.
D. Mihelcic A. Volz-Thomas H. W. Pätz D. Kley M. Mihelcic 《Journal of Atmospheric Chemistry》1990,11(3):271-297
Improvements of the matrix isolation/electron spin resonance technique for the measurement of NO2, NO3, and RO2 radicals in the atmosphere are described. The use of D2O instead of H2O as the matrix yields a better spectral resolution and, as a consequence, larger a signal-to-noise ratio as well as better identification of the different species. Reference spectra of the different radicals in H2O and D2O matrices are compared. While a large degree of correlation exists amongst the spectra of the different (unsubstituted and substituted) alkylperoxy radicals, the spectra of HO2, CH3C(O)O2, and NO3 show significant differences that allow their distinction in atmospheric samples.A numerical procedure for the analysis of the composite ESR spectra obtained from atmospheric samples was developed. Subtraction of the dominant NO2 signal is performed by matching a reference NO2 spectrum with respect to amplitude, spectral position, and line width to the sample spectrum. The manipulations are performed with the virtually noise-free reference spectrum and are based on physical information. The residual spectrum is then analyzed for RO2 (and/or NO3) by simultaneously fitting up to six different reference spectra.The method was applied to laboratory samples as well as to atmospheric samples in order to demonstrate the ability of retrieving small amounts of HO2 in the presence of large amounts of NO2 and other peroxy radicals. The new algorithm allowed, for the first time, the identification of the HO2 and CH3C(O)O2 radical in tropospheric air at concentrations ranging up to 40 ppt. 相似文献
7.
H. K. Roscoe B. J. Kerridge S. Pollitt N. Louisnard J. M. Flaud C. Camy-Peyret C. Alamichel J-P. Pommereau T. Ogawa N. Iwagami M. T. Coffey W. Mankin W. F. J. Evans C. T. McElroy J. Kerr 《Journal of Atmospheric Chemistry》1990,10(2):111-144
During the 1982 and 1983 Balloon Intercomparison Campaigns, the vertical profile of stratospheric NO2 was measured remotely by nine instruments and that of NO by two. Total overhead columns were measured by two more instruments. Between 30 and 35km, where measurements overlapped, agreement between NO profiles was within ±30%, which is better than the accuracies claimed by the experimenters. Between 35 and 40km there was similarly good agreement between NO2 profiles, but below 30km, differences of greater than a factor three were found. In the second Campaign, NO2 values from most instruments agreed within their quoted errors, except that the Oxford radiometer gave much lower values; but the first Campaign and the column measurements show a more uniform spread of results.These differences below 30km could not be resolved, but new laboratory measurements are planned which should do so. 相似文献
8.
Measurements of stratospheric NO2 by ground-based visible spectrometers rely on laboratory measurements of absorption cross-sections. We review low-temperature laboratory measurements, which disagree by amounts claimed to be significant. Our recalculation of their errors shows that in general disagreements are not significant and that errors in the ratios of cross-sections at low to room temperature are between ±3% and ±8.8%. Of these errors, up to ±3.5% was contributed by errors in the equilibrium constant,K
p, in those measurements where the pressure was above 0.1 mbar.We review measurements and calculations ofK
p, which were accurate to ±5% from 300 to 233 K. Each method was potentially flawed. For example, infrared measurements of the partial pressure of NO2 ignored the dependence of absorption on total pressure. From thermodynamic theory, formulae forK
pcan be derived from expressions for the variation of heat capacity with temperature. Contrary to common belief, coefficients in the formulae used by spectroscopists were not derived from the thermodynamic quantities. Rather, they were fitted to measurements or to calculations. Hence, they are empirical and it is dangerous to extrapolate below 233 K, the lowest temperature of the measurements.There are no measurements of NO2 cross-sections below 230 K. Extrapolation of these cross-sections to analysis of measurements of NO2 at the low temperatures of the Arctic and Antarctic stratosphere is also dangerous. For satisfactory analysis of polar spectra, the NO2 cross-sections should be measured at temperatures down to 190 K with a relative accuracy of ±1%. This difficult experiment would need a cell of minimum length 32 m whose length can be adjusted. Because their effects are circular, many errors cannot be removed simply. Although circular errors also arise in the measurements ofK
pand of the infrared spectrum, their weights differ from those in the visible spectrum. The optimum experiment might therefore simultaneously measure the visible and infrared spectra andK
p. 相似文献
9.
D. Mihelcic D. Klemp P. Müsgen H. W. Pätz A. Volz-Thomas 《Journal of Atmospheric Chemistry》1993,16(4):313-335
We present simultaneous field measurements of NO3 and peroxy radicals made at night in a forested area (Schauinsland, Black Forest, 48° N, 8° N, 1150 ASL), together with measurements of CO, O3, NO
x
, NO
y
, and hydrocarbons, as well as meteorological parameters. NO2, NO3, HO2, and (RO2) radicals are detected with matrix isolation/electron spin resonance (MIESR). NO3 and HO2 were found to be present in the range of 0–10 ppt, whilst organic peroxy radicals reached concentrations of 40 ppt. NO3, RO2, and HO2 exhibited strong variations, in contrast to the almost constant values of the longer lived trace gases. The data suggest anticorrelation between NO3 and RO2 radical concentrations at night.The measured trace gas set allows the calculation of NO3 and peroxy radical concentrations, using a chemical box model. From these simulations, it is concluded that the observed anthropogenic hydrocarbons are not sufficient to explain the observed RO2 concentrations. The chemical budget of both NO3 and RO2 radicals can be understood if emissions of monoterpenes are included. The measured HO2 can only be explained by the model, when NO concentrations at night of around 5 ppt are assumed to be present. The presence of HO2 radicals implies the presence of hydroxyl radicals at night in concentrations of up to 105 cm–3. 相似文献
10.
F. H. Adema J. R. Ybema P. Heeres H. C. P. Wegh 《Journal of Atmospheric Chemistry》1990,11(3):255-269
In a nighttime system and under relatively dry conditions (about 15 ppm H2O), the reaction mixture of NO2, O3, and NH3 in purified air turns out to result in the formation of nitrous oxide (N2O). The experiments were performed in a continuous stirred flow reactor, in the concentration region of 0.02–2 ppm.N2O is thought to arise through the heterogeneous reaction of gaseous N2O5 and absorbed NH3 at the wall of the reaction vessel % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9sq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9pue9Fve9% Ffc8meGabaqaciGacaGaaeqabaWaaeaaeaaakeaatCvAUfKttLeary% qr1ngBPrgaiuaacqWFOaakcqWFobGtcqWFibasdaWgaaWcbaGae83m% amdabeaakiab-LcaPmaaBaaaleaacqWFHbqyaeqaaOGaey4kaSIaai% ikaiab-5eaonaaBaaaleaacqWFYaGmaeqaaOGae83ta80aaSbaaSqa% aiab-vda1aqabaGccaGGPaWaaSbaaSqaaiaadEgaaeqaaOGaeyOKH4% Qae8Nta40aaSbaaSqaaiab-jdaYaqabaGccqWFpbWtcqGHRaWkcqWF% ibascqWFobGtcqWFpbWtdaWgaaWcbaGae83mamdabeaakiabgUcaRi% ab-HeainaaBaaaleaacqWFYaGmaeqaaOGae83ta8eaaa!59AC!\[(NH_3 )_a + (N_2 O_5 )_g \to N_2 O + HNO_3 + H_2 O\]In principle, there is competition between this reaction and that of adsorbed H2O with N2O5, resulting in the formation of HNO3. At high water concentrations (RH>75%), no formation of N2O was found. Although the rate constant of adsorbed NH3 with gaseous N2O5 is much larger than that of the reaction of adsorbed H2O with gaseous N2O5, the significance of the observed N2O formation for the outside atmosphere is thought to be dependent on the adsorption properties of H2O and NH3 on a surface. A number of NH3 and H2O adsorption measurements on several materials are discussed. 相似文献
11.
Field measurements of NO and NO2 emissions from soils have been performed in Finthen near Mainz (F.R.G.) and in Utrera near Seville (Spain). The applied method employed a flow box coupled with a chemiluminescent NO
x
detector allowing the determination of minimum flux rates of 2 g N m-2 h-1 for NO and 3 g m-2 h-1 for NO2.The NO and NO2 flux rates were found to be strongly dependent on soil surface temperatures and showed strong daily variations with maximum values during the early afternoon and minimum values during the early morning. Between the daily variation patterns of NO and NO2, there was a time lag of about 2 h which seem to be due to the different physico-chemical properties of NO and NO2. The apparent activation energy of NO emission calculated from the Arrhenius equation ranged between 44 and 103 kJ per mole. The NO and NO2 emission rates were positively correlated with soil moisture in the upper soil layer.The measurements carried out in August in Finthen clearly indicate the establishment of NO and NO2 equilibrium mixing ratios which appeared to be on the order of 20 ppbv for NO and 10 ppbv for NO2. The soil acted as a net sink for ambient air NO and NO2 mixing ratios higher than the equilibrium values and a net source for NO and NO2 mixing ratios lower than the equilibrium values. This behaviour as well as the observation of equilibrium mixing ratios clearly indicate that NO and NO2 are formed and destroyed concurrently in the soil.Average flux rates measured on bare unfertilized soils were about 10 g N m-2 h-1 for NO2 and 8 g N m-2 h-1 for NO. The NO and NO2 flux rates were significantly reduced on plant covered soil plots. In some cases, the flux rates of both gases became negative indicating that the vegetation may act as a sink for atmospheric NO and NO2.Application of mineral fertilizers increased the NO and NO2 emission rates. Highest emission rates were observed for urea followed by NH4Cl, NH4NO3 and NaNO3. The fertilizer loss rates ranged from 0.1% for NaNO3 to 5.4% for urea. Vegetation cover substantially reduced the fertilizer loss rate.The total NO
x
emission from soil is estimated to be 11 Tg N yr-1. This figure is an upper limit and includes the emission of 7 Tg N yr-1 from natural unfertilized soils, 2 Tg N yr-1 from fertilized soils as well as 2 Tg N yr-1 from animal excreta. Despite its speculative character, this estimation indicates that NO
x
emission by soil is important for tropospheric chemistry especially in remote areas where the NO
x
production by other sources is comparatively small. 相似文献
12.
When all balloon-borne measurements of NO2 in the stratosphere are reviewed, the profiles show a wide spread. Measurements of the total amount in a vertical column suggest that variability should be low when only profiles measured at mid-latitudes close to equinox are selected. With this selection, the standard deviation of the profiles measured by each technique is often less than ±20%, but the mean profiles measured by each technique differ by up to a factor 2. Despite the profiles not being measured simultaneously, these differences are identical to those revealed by the simultaneous measurements of the Balloon Intercomparison Campaigns of 1982 and 1983-a comparison can be made from the historic data alone. This suggests that measurements of other gases should be similarly reviewed and appropriate selection criteria be found that reduces the standard deviations of the measurements by any one technique. The techniques can then be intercompared without new simultaneous flights. 相似文献
13.
Emmanuel Damien Rivière Michel Pirre Gwenaël Berthet Jean-Baptiste Renard Franck Lefèvre 《Journal of Atmospheric Chemistry》2004,48(3):261-282
Two cases of simultaneous nighttime measurements of NO2 and OClO in the winter polar stratosphere are analyzed in order to test our present knowledge of halogen chemistry in the presence of high amount of NO2 at low temperature. Comparisons with Lagrangian model calculations using several hypotheses are performed. First simulations, using the admitted constant rates of chemical reaction, strongly underestimate the measured OClO while the NO2 profiles are correctly reproduced. If uncertainties in actinic fluxes calculations are taken into account, simulation results do not show a significant reduction of the underestimation. A better agreement can be achieved if the formation of unstable isomers of ClONO2 and of BrONO2 occurs in the cold conditions of the polar stratosphere. An approximate value of the branching ratios of the channels leading to ClONO2 and ClOONO, and to BrONO2 and BrOONO, necessary to reproduce both OClO and NO2 is given and discussed. 相似文献
14.
Gerhard Kramm Hans Müller David Fowler Klaus D. Höfken Franz X. Meixner Eberhard Schaller 《Journal of Atmospheric Chemistry》1991,13(3):265-288
A modified profile method for determining the vertical deposition (or/and exhalation) fluxes of NO, NO2, ozone, and HNO3 in the atmospheric surface layer is presented. This method is based on the generally accepted micrometeorological ideas of the transfer of momentum, sensible heat and matter near the Earth's surface and the chemical reactions among these trace gases. The analysis (aerodynamic profile method) includes a detailed determination of the micrometeorological quantities (such as the friction velocity, the fluxes of sensible and latent heat, the roughness length and the zero plane displacement), and of the height-invariant fluxes of the composed chemically conservative trace gases with group concentrations c
1=[NO]+[NO2]+[HNO3], c
2=[NO2]+[O3]+3/2·[HNO3], and c
3=[NO]–[O3]–1/2·[HNO3]. The fluxes of the individual species are finally determined by the numerical solution of a system of coupled nonlinear ordinary differential equations for the concentrations of ozone and HNO3 (decoding method). The parameterization of the fluxes is based on the flux-gradient relationships in the turbulent region of the atmospheric surface layer. The model requires only the vertical profile data of wind velocity, temperature and humidity and concentrations of NO, NO2, ozone, and HNO3.The method has been applied to vertical profile data obtained at Jülich (September 1984) and collected in the BIATEX joint field experiment LOVENOX (Halvergate, U.K., September 1989). 相似文献
15.
We present here experimental determinations of mass accommodation coefficients using a low pressure tube reactor in which monodispersed droplets, generated by a vibrating orifice, are brought into contact with known amounts of trace gases. The uptake of the gases and the accommodation coefficient are determined by chemical analysis of the aqueous phase.We report in this article measurements of exp=(6.0±0.8)×10–2 at 298 K and with a total pressure of 38 Torr for SO2, (5.0±1.0)×10–2 at 297 K and total pressure of 52 Torr for HNO3, (1.5±0.6)×10–3 at 298 K and total pressure of 50 Torr for NO2, (2.4±1.0)×10–2 at 290 K and total pressure of 70 Torr for NH3.These values are corrected for mass transport limitations in the gas phase leading to =(1.3±0.1)×10–1 (298 K) for SO2, (1.1±0.1)×10–1 (298 K) for HNO3, (9.7±0.9)×10–2 (290 K) for NH3, (1.5±0.8)×10–3 (298 K) for NO2 but this last value should not be considered as the true value of for NO2 because of possible chemical interferences.Results are discussed in terms of experimental conditions which determine the presence of limitations on the mass transport rates of gaseous species into an aqueous phase, which permits the correction of the experimental values. 相似文献
16.
The kinetics of the reaction of nitrous acid (HONO) with nitric acid (HNO3), nitrate radicals (NO3) and dinitrogen pentoxide (N2O5) have been studied using Fourier transform infrared spectroscopy. Experiments were performed at 700 torr total pressure using synthetic air or argon as diluents. From the observed decay of HONO in the presence of HNO3 a rate constant of k<7×10-19 cm3 molecule-1 s-1 was derived for the reaction of HONO with HNO3. From the observed decay of HONO in the presence of mixtures of N2O5 and NO2 we have also derived upper limits for the rate constants of the reactions of HONO with NO3 and N2O5 of 2×10-15 and 7×10-19 cm3 molecule-1 s-1, respectively. These results are discussed with respect to previous studies and to the atmospheric chemistry of HONO. 相似文献
17.
R. N. Colvile T. W. Choularton J. N. Cape B. J. Bandy K. N. Bower R. A. Burgess T. J. Davies G. J. Dollard M. W. Gallagher K. J. Hargreaves B. M. R. Jones S. A. Penkett R. L. Storeton-West 《Journal of Atmospheric Chemistry》1996,24(3):211-239
Four case studies are described, from a three-site field experiment in October/November 1991 using the Great Dun Fell flow-through reactor hill cap cloud in rural Northern England. Measurements of total odd-nitrogen nitrogen oxides (NO
y
) made on either side of the hill, before and after the air flowed through the cloud, showed that 10 to 50% of the NO
y
, called NO
z
, was neither NO nor NO2. This NO
z
failed to exhibit a diurnal variation and was often higher after passage through cloud than before. No evidence of conversion of NO
z
to NO3
- in cloud was found. A simple box model of gas-phase chemistry in air before it reached the cloud, including scavenging of NO3 and N2O5 by aerosol of surface area proportional to the NO2 mixing ratio, shows that NO3 and N2O5 may build up in the boundary layer by night only if stable stratification insulates the air from emissions of NO. This may explain the lack of evidence for N2O5 forming NO3
- in cloud under well-mixed conditions in 1991, in contrast with observations under stably stratified conditions during previous experiments when evidence of N2O5 was found. Inside the cloud, some variations in the calculated total atmospheric loading of HNO2 and the cloud liquid water content were related to each other. Also, indications of conversion of NO
x
to NO
z
were found. To explain these observations, scavenging of NO
x
and HNO2 by cloud droplets and/or aqueous-phase oxidation of NO2
- by nitrate radicals are considered. When cloud acidity was being produced by aqueous-phase oxidation of NO
x
or SO2, NO3
- which had entered the cloud as aerosol particles was liberated as HNO3 vapour. When no aqueous-phase production of acidity was occurring, the reverse, conversion of scavenged HNO3 to particulate NO3
-, was observed. 相似文献
18.
Compact two-channel IR radiometers for solar occultation experiments have been constructed in order to measure concentration profiles of stratospheric trace gases. The instruments can be used as filter-or gas correlation-type radiometers depending on the trace gas under investigation. Within the LIMS correlative measurement program, balloon flights were performed with a payload of up to four of these two-channel radiometers. From the gas correlation-type measurements, profiles of the trace gas NO2 are inferred for the altitude region between about 20 km and the balloon float level. The data evaluation also includes a comprehensive analysis of the error sources and their effect on the accuracy of the NO2 profiles. The derived profiles are compared among themselves and are assessed against the observations of other authors by accounting for the diurnal, latitudinal and seasonal changes of NO2. As a by-product of our measurements, the mean absorption of the O2 collision-induced band at 6.4 m was determined within the range of the interference filter used and compared with calculations based on known absorption coefficients. 相似文献
19.
对临安大气本底站2003-2004年冬、夏季二氧化氮(NO2)、二氧化硫(SO2)、臭氧(O3)进行了分析.结果表明:冬季NO2和SO2平均体积分数分别为19.48×10-9和35.74 x10-9,而夏季的平均体积分数分别为4.81×10-9和8.12×10-9,冬季高于夏季;O3在夏季的平均体积分数为33.55×10-9,略高于冬季的25.44×10-9;夜间NO2和SO2体积分数比白天高,并且NO2呈明显的单峰单谷型分布,O3也呈单峰型但峰值出现在白天.NO2、SO2体积分数存在着明显的“假日效应”,假日比非假日低,周五高于假日和非假日;但O3体积分数没有明显的假日效应.降水对SO2有明显的清除作用,但对NO2的清除作用不明显.与风向对比发现,夏季高体积分数的NO2、SO2都受到NW、WNW风的影响,冬季则分别受NE和SW、SSW风的影响;而O3受风向的影响较复杂,与局地光化学反应有关. 相似文献
20.
A. C. Vandaele C. Hermans P. C. Simon M. Van Roozendael J. M. Guilmot M. Carleer R. Colin 《Journal of Atmospheric Chemistry》1996,25(3):289-305
New laboratory measurements of NO2 absorption cross-section were performed using a Fourier transform spectrometer at 2 and 16 cm-1 (0.03 and 0.26 nm at 400 nm) in the visible range (380–830 nm) and at room temperature. The use of a Fourier transform spectrometer leads to a very accurate wavenumber scale (0.005 cm-1, 8×10-5 nm at 400 nm). The uncertainty on the new measurements is better than 4%. Absolute and differential cross-sections are compared with published data, giving an agreement ranging from 2 to 5% for the absolute values. The discrepancies in the differential cross-sections can however reach 18%. The influence of the cross-sections on the ground-based measurement of the stratospheric NO2 total amount is also investigated. 相似文献