首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new methodology for magnetic resonance sounding (MRS) data acquisition and interpretation was developed for locating water-filled karst cavities. This methodology was used to investigate the Ouysse karst system in the Poumeyssens shaft in the Causse de Gramat (France). A new 2D numerical MRS response model was designed for improved accuracy over the previous 1D MRS approach. A special survey performed by cave divers confirmed the accuracy of the MRS results. Field results demonstrated that in favourable conditions (a low EM noise environment and a relatively shallow, large target) the MRS method, used with a coincident transmitter/receiver loop, can be an effective tool for locating a water-filled karst conduit. It was shown numerically that because an a priori orientation of the MRS profile with the karst conduit is used in the inversion scheme (perpendicular for instance), any error in this assumption introduces an additional error in locating the karst. However, the resulting error is within acceptable limits when the deviation is less than 30°. The MRS results were compared with an electrical resistivity tomography (ERT) survey. It was found that in Poumeyssens, ERT is not able to locate the water-filled karst. On the other hand, ERT provides additional information about heterogeneities in the limestone.  相似文献   

2.
The use of electrical resistivity surveys to locate karst conduits has shown mixed success. However, time‐lapse electrical resistivity imaging combined with salt injection improves conduit detection and can yield valuable insight into solute transport behaviour. We present a proof of concept above a known karst conduit in the Kentucky Horse Park (Lexington, Kentucky). A salt tracer solution was injected into a karst window over a 45‐min interval, and repeat resistivity surveys were collected every 20 min along a 125‐m transect near a monitoring well approximately 750 m downgradient from the injection site. In situ fluid conductivity measurements in the well peaked at approximately 25% of the initial value about 3 h after salt injection. Time‐lapse electrical resistivity inversions show two broad zones at the approximate conduit depth where resistivity decreased and then recovered in general agreement with in situ measurements. Combined salt injection and electrical resistivity imaging are a promising tool for locating karst conduits. The method is also useful for gaining insight into conduit geometry and could be expanded to include multiple electrical resistivity transects. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Conduits serve as major pathways for groundwater flow in karst aquifers. Locating them from the surface, however, is one of the most challenging tasks in karst research. Geophysical methods are often deployed to help locate voids by mapping variations of physical properties of the subsurface. Conduits can cause significant contrasts of some physical properties that can be detected; other subsurface features such as water-bearing fractures often yield similar contrasts, which are difficult to distinguish from the effects of the conduits. This study used electrical resistivity method to search for an unmapped karst conduit that recharges Royal Spring in the Inner Bluegrass karst region, Kentucky, USA. Three types of resistivity techniques (surface 2D survey, quasi-3D survey, and time-lapse survey) were used to map and characterize resistivity anomalies. Some of the major anomalies were selected as drilling targets to verify the existence of the conduits. Drilling near an anomaly identified by an electrical resistivity profile resulted in successful penetration of a major water-filled conduit. The drilling results also suggest that, in this study area, low resistivity anomalies in general are associated with water-bearing features. However, differences in the anomaly signals between the water-filled conduit and other water-bearing features such as water-filled fracture zones were undistinguishable. The electrical resistivity method is useful in conduit detection by providing potential drilling targets. Knowledge of geology and hydrogeology about the site and professional judgment also played important roles in locating the major conduit.  相似文献   

4.
2D magnetic resonance tomography applied to karstic conduit imaging   总被引:1,自引:1,他引:1  
Karstic conduits play a crucial role for water supply in many parts of the world. However, the imaging of such targets is generally a difficult task for most geophysical methods. Magnetic Resonance Sounding (MRS) is a geophysical method designed for imaging of water bearing structures. Initially, MRS was developed for characterizing horizontally stratified aquifers. However, when applying a 1D MRS measuring setup to the imaging of 2D–3D targets, the size of which may be much smaller than the loop, the accuracy and the lateral resolution may not be sufficient. We have studied the possibility of simultaneously processing several MRS aligned along a profile to perform a Magnetic Resonance Tomography (MRT). This work emphasizes the gain of resolution for 2D–3D imagery of MRT versus the interpolation of 1D inversion results of MRS along the same profile. Numerical modelling results show that the MRT response is sensitive to the size and location of the 2D target in the subsurface. Sensitivity studies reveal that by using the coincident transmitting/receiving (TX/RX) setup and shifting the loop around the anomaly area, the depth, section and position of a single karstic conduit with a size smaller than the MRS loop size can be resolved. The accuracy of the results depends on the noise level and signal level, the latter parameter being linked to the depth and volume of the karstic conduit and the water content in the limestone matrix. It was shown that when applying MRT to the localization of 2D anomalies such as karstic conduits, the inclination of the geomagnetic field, the orientation of the MRT profile and the angle of crossover of the conduit by the MRT profile must be taken into account. Otherwise additional errors in interpretation should be expected. A 2D inversion scheme was developed and tested. Both numerical and experimental results confirm the efficiency of the developed approach.  相似文献   

5.
Karstic conduits play a crucial role for water supply in many parts of the world. However, the imaging of such targets is generally a difficult task for most geophysical methods. Magnetic Resonance Sounding (MRS) is a geophysical method designed for imaging of water bearing structures. Initially, MRS was developed for characterizing horizontally stratified aquifers. However, when applying a 1D MRS measuring setup to the imaging of 2D–3D targets, the size of which may be much smaller than the loop, the accuracy and the lateral resolution may not be sufficient. We have studied the possibility of simultaneously processing several MRS aligned along a profile to perform a Magnetic Resonance Tomography (MRT). This work emphasizes the gain of resolution for 2D–3D imagery of MRT versus the interpolation of 1D inversion results of MRS along the same profile. Numerical modelling results show that the MRT response is sensitive to the size and location of the 2D target in the subsurface. Sensitivity studies reveal that by using the coincident transmitting/receiving (TX/RX) setup and shifting the loop around the anomaly area, the depth, section and position of a single karstic conduit with a size smaller than the MRS loop size can be resolved. The accuracy of the results depends on the noise level and signal level, the latter parameter being linked to the depth and volume of the karstic conduit and the water content in the limestone matrix. It was shown that when applying MRT to the localization of 2D anomalies such as karstic conduits, the inclination of the geomagnetic field, the orientation of the MRT profile and the angle of crossover of the conduit by the MRT profile must be taken into account. Otherwise additional errors in interpretation should be expected. A 2D inversion scheme was developed and tested. Both numerical and experimental results confirm the efficiency of the developed approach.  相似文献   

6.
White WB 《Ground water》2012,50(2):180-186
The very diverse types of ground‐water behavior in carbonate terrains can be classified by relating the flow type to a particular hydrogeologic environment each exhibiting a characteristic cave morphology. The ground water may move by diffuse flow, by retarded flow, or by free flow. Diffuse flow occurs in less soluble rocks such as extremely shaley limestones or crystalline dolomites. Integrated conduits are rare. Caves tend to be small, irregular, and often little more than solutionally widened joints. Retarded flows occur in artesian environments and in situations where unfavorable stratigraphy forces ground water to be confined to relatively thin beds. Network cave patterns are characteristic since hydrodynamic forces are damped by the external controls. Solution occurs along many available joints. Free flowing aquifers are those in which solution has developed a subsurface drainage system logically regarded as an underground extension of surface streams. These streams may have fully developed surface tributaries as well as recharge from sinkholes and general infiltration. Characteristic cave patterns are those of integrated conduit systems which are often truncated into linear, angulate, and branchwork caves. Free Flow aquifers may be further subdivided into Open aquifers lying beneath karst plains and Capped aquifers in which significant parts of the drainage net lie beneath an insoluble cap rock. Other geologic factors such as structure, detailed lithology, relief, and locations of major streams, control the details of cave morphology and orientation of the drainage network.  相似文献   

7.
Extreme heterogeneity of karst systems makes them very challenging to study. Various processes within the system affect its global response, usually measured at karst springs. Research conducted in caves provides a unique opportunity for in situ analysis of separate processes in karst underground. The aim of the present study was to research the water and air dynamics within a deep karst system. Air and water basic physical parameters across the Lukina jama–Trojama cave system (?1,431 m) were continuously monitored during a 1‐year period. Recorded hydrograph of the siphon lake at the bottom of the cave was used to interpret the characteristics of an unexplored phreatic/epiphreatic conduit network. Water origin in the siphon was determined based on temperature and electrical conductivity. Air temperature and humidity monitoring revealed a strong inflow of air of sub‐zero temperature into the upper portion of the cave during winter. Cave passage morphology was interpreted as the main determinant of air dynamics, which caused ice to accumulate extensively in the upper portions of the cave and caused the temperature on the top of the homothermic zone to be significantly below the mean outside temperature. Air dynamics also lowered the temperature of water flowing through the cave vadose zone and feeding the phreatic zone of the massif. The pronounced temperature difference between the phreatic zone and the top of the homothermic zone probably contributed to the thermal gradient observed in the cave, which is steeper than in ice‐free caves in the area. Our results enabled the development of a conceptual model that describes coupling between air and water dynamics in the cave system and its surroundings.  相似文献   

8.
Aquifers found in glacial buried valleys are a major source of good-quality ground water in northeastern Kansas. The extent and character of many of these deposits are not precisely known, so a detailed study of the buried valleys was undertaken. Test drilling, Landsat imagery, shallow-earth temperature measurements, seismic refraction, surface electrical resistivity, and gravity data were used to evaluate two sites in Nemaha and Jefferson Counties. Tonal patterns on springtime Landsat imagery and winter/summer anomalies in shallow-earth temperatures were quick and inexpensive methods for locating some glacial buried aquifers and suggested areas for more intensive field studies. Reversed seismic refraction and resistivity surveys were generally reliable indicators of the presence or absence of glacial buried valleys, with most depth determinations being within 25% of test-drilling results. The effectiveness of expensive test-hole drilling was greatly increased by integrating remote sensing, shallow-earth temperature, seismic, and resistivity techniques in the two buried valley test areas. A gravity profile allowed precise definition of the extent of one of the channels after the other techniques had been used for general information.  相似文献   

9.
The study site at Lamalou karst spring (Hortus karst plateau) is situated 40 km north of Montpellier in France. It consists of a limestone plateau, drained by a karst conduit discharging as a spring. This conduit extends for a few dozen meters in fractured and karstified limestone rocks, 15 to 70 m below the surface. The conduit is accessible from the surface. The main goal of this study is to analyze the surface part of the karst and to highlight the karstic features and among them the conduit, and to test the performances of ground penetrating radar (GPR) in a karstic environment. This method thus appears particularly well adapted to the analysis of the near-surface (<30 m in depth) structure of a karst, especially when clayey coating or soil that absorbs and attenuates the radar is rare and discontinuous. A GPR pulseEKKO 100 (Sensors and Software) was used on the site with a 50-MHz antenna frequency. The results highlight structures characterizing the karstic environment: the epikarst, bedding planes, fractured and karstified zones, compact and massive rock and karrens, a typical karst landform. One of the sections revealed in detail the main conduit located at a depth of 20 m, and made it possible to determine its geometry. This site offers possibilities of validation of the GPR data by giving direct access to the karstic conduits and through two cored boreholes. These direct observations confirm the interpretation of all the GPR sections.  相似文献   

10.
Application of a Discrete-Continuum Model to Karst Aquifers in North China   总被引:7,自引:0,他引:7  
A generalized discrete-continuum model is developed to simulate ground water flow in the karst aquifers of North China. The model is a hybrid numerical flow model, which takes into account both quick conduit flow and diffusive fissure flow. The conduit flow is represented by a discrete network model, and the fissure flow is modeled by a continuum approach. The developed model strongly emphasizes the function of the conduits in the flow fields. They control the general drainage pattern, as demonstrated in the simulation of a complex karst aquifer in North China. The model reproduces reasonably well the flow field in response to an unanticipated discharge of ground water from the karst aquifer into an underground mine based on the aquifer parameters that are manually calibrated from a multiple-well pumping test. Sensitivity of the model to the aquifer parameters was evaluated in the context of the case study.  相似文献   

11.
The productivity and the water quality of coastal aquifers can be highly heterogeneous in a complex environment. The characterization of these aquifers can be improved by hydrogeological and complementary geophysical surveys. Such an integrated approach is developed in a non-consolidated coastal aquifer in Myanmar (previously named Burma).A preliminary hydrogeological survey is conducted to know better the targeted aquifers. Then, 25 sites are selected to characterize aquifers through borehole drillings and pumping tests implementation. In the same sites, magnetic resonance soundings (MRS) and vertical electrical soundings (VES) are carried out. Geophysical results are compared to hydrogeological data, and geophysical parameters are used to characterize aquifers using conversion equations. Finally, combining the analysis of technical and economical impacts of geophysics, a methodology is proposed to characterize non-consolidated coastal aquifers.Depth and thickness of saturated zone is determined by means of MRS in 68% of the sites (evaluated with 34 soundings). The average accuracy of confined storativity estimated with MRS is ± 6% (evaluated over 7 pumping tests) whereas the average accuracy of transmissivity estimation with MRS is ± 45% (evaluated using 15 pumping tests). To reduce uncertainty in VES interpretation, the aquifer geometry estimated with MRS is used as a fixed parameter in VES inversion. The accuracy of groundwater electrical conductivity evaluation from 15 VES is enough to estimate the risk of water salinity. In addition, the maximum depth of penetration of the MRS depends on the rocks' electrical resistivity and is between 20 and 80 m at the study area.  相似文献   

12.
This article presents the results of mapping a karst cave by the passive seismic standing waves method. Barsukovskaya cave is located about 100 km southeast of the city of Novosibirsk (Russia). The total length of the cave's passages and grottoes is estimated at about 200 m, the maximum depth from the earth's surface is about 19 m. The method for studying underground cavities used is based on the effect of the generation of standing waves by microtremor in the space between the earth's surface and the cave roof. The accumulation of amplitude spectra of a large number of microtremor records makes it possible to determine the frequencies of the first few modes of these waves. Areal passive seismic survey on the earth's surface above the cave made it possible to construct a map of the lowest mode frequency distribution over the cave roof. Since no standing waves were observed at other points, this map reflects the cave structure in plan, which confirms the comparison with the cave diagram drawn up earlier by one of the speleologists. A schematic map of the depth of the cave roof was constructed using the longitudinal wave velocity Vp = 3120 m/s determined by the rock samples selected near the entrance to the cave. This map at a qualitative level also agrees with the data of speleologists, which indicate that the cave, on average, gradually becomes deeper from the entrance to its dead‐end branches. The shallower depths in comparison with the data of speleologists are apparently explained by a very low estimate of the velocity determined from a rock sample taken near the entrance to the cave. The reliability of the obtained cave mapping results is confirmed by the numerical simulation results using the finite‐element method.  相似文献   

13.
Conventional electrical prospecting can be extended to the search for deep-seated hydrocarbon deposits, by using the steel casings of drill-holes as vertical line sources. These sources produce at depth a density of current higher than the density created by point sources located at the ground surface. Several tests have shown that the contrast of conductivity between resistive hydrocarbon deposits and the surrounding salt water produces relevant anomalies on a resistivity map obtained with vertical line sources, especially where there exists a superficial masking effect caused by a highly resistive layer. In a survey carried out in the USSR, combined measurements were performed, both with line source and with surface point sources. The detected residual resistivity anomaly roughly delineates the contours of the known hydrocarbon deposit.  相似文献   

14.
Hydrological and biogeochemical processes in karst environments are strongly controlled by heterogeneous fracture-conduit networks. Quantifying the spatio-temporal variability of water transit time and young water fractions in such heterogeneous hydrogeological systems is fundamental to linking discharge and water quality dynamics in the karst critical zone. We used a tracer-aided conceptual hydrological model to track the fate of each hour of rain input individually. Using this approach, the variability of transit time distributions and young water fraction were estimated in the main landscape units in a karst catchment of Chenqi in Guizhou Province, Southwest China. The model predicted that the mean young water (i.e., <~2 months old) fraction of ground conduit flow is 0.31. Marked seasonal variabilities in water storage and hydrological connectivity between the conduit network and fractured matrix, as well as between hillslopes and topographic depression, drive the dynamics of young water fraction and travel time distributions in each landscape unit. Especially, the strong hydrological connectivity between the land surface and underground conduits caused by the direct infiltration through large fractures and sinkholes, leads the drastic increasement in young water fraction of runoff after heavy rain. Even though the contribution of young water to runoff is greater, the strong mixing and drainage of small fractures accelerate the old water release during high flows during the wet season. It is notable that the young water may sometimes be the most contaminated component contributing to the underground conduit network in karst catchments, because of the direct transfer of contaminants from the ground surface with rain water via large fractures and sinkholes.  相似文献   

15.
二维阵列线圈核磁共振地下水探测理论研究   总被引:8,自引:4,他引:4       下载免费PDF全文
核磁共振法(Magnetic Resonance Sounding,MRS)是一种直接探测地下水的地球物理方法,目前只能对水平层状的含水层进行一维测深,对于尺寸小于线圈直径的二维或三维含水构造成像时,其灵敏度和横向分辨率很低.本文从研究二维阵列线圈核磁共振地下水探测方式的可行性出发,推导了地面发射线圈产生的椭圆极化激发...  相似文献   

16.
Conduit properties and karstification in the unconfined Floridan aquifer   总被引:3,自引:0,他引:3  
Exchange of water between conduits and matrix is an important control on regional chemical compositions, karstification, and quality of ground water resources in karst aquifers. A sinking stream (Santa Fe River Sink) and its resurgence (River Rise) in the unconfined portion of the Floridan Aquifer provide the opportunity to monitor conduit inflow and outflow. The use of temperature as a tracer allows determination of residence times and velocities through the conduit system. Based on temperature records from two high water events, flow is reasonably represented as pipe flow with a cross-sectional area of 380 m2, although this model may be complicated by losses of water from the conduit system at higher discharge rates. Over the course of the study year, the River Rise discharged a total of 1.9 x 10(7) m3 more water than entered the River Sink, reflecting net contribution of ground water from the matrix into the conduit system. However, as River Sink discharge rates peaked following three rainfall events during the study period, the conduit system lost water, presumably into the matrix. Surface water in high flow events is typically undersaturated with respect to calcite and thus may lead to dissolution, depending on its residence time in the matrix. A calculation of local denudation is larger than other regional estimates, perhaps reflecting return of water to conduits before calcite equilibrium is reached. The exchange of matrix and conduit water is an important variable in karst hydrology that should be considered in management of these water resources.  相似文献   

17.
Discharge from karst springs contains a mixture of conduit and matrix water, but the variations in groundwater mixing are poorly known. Storm events present an opportunity to try to map flow components because water entering during storms is more dilute and provides a tracer as it mixes with pre‐event water along the flowpath from the recharge area to discharge at a spring. We used hysteresis plots of Mg/Ca ratios in a spring in the Cumberland Valley of Pennsylvania to map conduit (higher Ca) vs. diffuse (higher Mg) sources of recharge. We observed two types of temporal heterogeneity: within a storm event and from storm to storm. The timing of the variation in Mg/Ca suggested sources of mixing waters. An increase in the Mg/Ca ratio at the beginning of some storms while conductivity declined suggested diffuse recharge through the epikarst. The rapid changes in Mg/Ca ratios for low‐intensity events probably occurred as the rainfall waxed and waned and illustrate that a variety of flowpaths are available at this spring because additional flushing of Mg occurred. In contrast, the conductivity hysteresis began with dilute water initially and rotation was similar from storm to storm. Hysteresis plots of the Mg/Ca ratio have the potential of revealing more of the complexity in discharge than conductivity alone. A better understanding of flow components in karst is needed to protect these aquifers as a groundwater resource.  相似文献   

18.
Improved surface-based geophysical technologies that are commercially available provide a new level of detail that can be used to guide ground water remediation. Surface-based multielectrode resistivity methods and tomographic seismic refraction techniques were used to image to a depth of approximately 30 m below the surface at the Natural and Accelerated Bioremediation Research Field Research Center. The U.S. Department of Energy (DOE) established the research center on the DOE Oak Ridge Reservation in Oak Ridge, Tennessee, to conduct in situ field-scale studies on bioremediation of metals and radionuclides. Bioremediation studies are being conducted on the saprolite, shale bedrock, and ground water at the site that have been contaminated with nitrate, uranium, technetium, tetrachloroethylene, and other contaminants (U.S. DOE 1997). Geophysical methods were effective in imaging the high-ionic strength plume and in defining the transition zone between saprolite and bedrock zones that appears to have a significant influence on contaminant transport. The geophysical data were used to help select the location and depth of investigation for field research plots. Drilling, borehole geophysics, and ground water sampling were used to verify the surface geophysical studies.  相似文献   

19.
重力测井技术若干进展   总被引:1,自引:0,他引:1       下载免费PDF全文
重力测井是一种常规的地球物理方法,具有较大探测深度,对以生物礁及溶孔溶洞为储层的密度异常体的探测具有重要的意义。本文论述了重力测井的研究进展,分析了重力测井的基本原理以及面临的问题和急需解决的科学问题,讨论了今后需要研究的方向及基本课题.认为重力测井在解决复杂储层勘探难题和油气藏动态监测方面具有其它常规测井所不具有的优势,重力测井技术在理论和实践两方面都是可行的,具有广阔的发展前景.  相似文献   

20.
A benchmark test for flow in karstic aquifers is presented in the form of an exact solution of the harmonic variations of water flux and head within a karst conduit that is imbedded within a three-dimensional porous matrix having a free surface. The variations are driven by a prescribed variation of head applied at one end of the conduit. The benchmark consists of expressions for the spring discharge as a function of time and the conduit head and flux as functions of distance along the conduit and time. These expressions contain three dimensionless parameters, permitting development of a wide range of specific benchmark tests. The expressions are particularly simple in the case of an infinitely deep aquifer. This limiting solution should provide the most severe test for two-dimensional models of karst aquifer flow. Another limiting case of interest is that in which the conduit diameter is equal to the water depth. This limiting solution should provide the easiest test for two-dimensional models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号