首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Benevolenskaya  Elena E. 《Solar physics》2003,216(1-2):325-341
Extreme-ultraviolet data from EIT/SOHO (1996–2002), soft X-ray data from Yohkoh (1991–2001), and magnetic field data from MDI/SOHO (1996–2002) and Kitt Peak Observatory, NSO/NOAO (1991–2002) are analyzed together in the form of synoptic maps for the investigation of solar cycle variations of the corona and their relation to the magnetic field. These results show new interesting relations between the evolution of the topological structure of the corona, coronal heating and the large-scale magnetic field. The long-lived coronal structures are related to complexes of solar activity and display quasi-periodic behavior (in the form of impulses of coronal activity) with periods of 1.0–1.5 year, in the axisymmetric distribution of EUV and X-ray fluxes during the current solar cycle 23. In particular, during the second maximum of this cycle the solar corona became somewhat hotter than it was in the period of the first maximum.  相似文献   

2.
Initial studies of the Sun's corona using a solar radar were done in the 1960s and provided measurements of the Sun's radar cross-section at about 38 MHz. These initial measurements were done at a time when the large-scale phenomenon known as a coronal mass ejection was unknown; however, these data suggest that coronal mass ejections (CMEs) may have been detected but were unrecognized. That solar radar facility, which was located at El Campo, TX, no longer exists. New solar radar investigations are motivated by our modern understanding of CMEs and their effects on the Earth. A radar echo from an Earthward-directed coronal mass ejection may be expected to have a frequency shift proportional to velocity; thus providing a good estimate of arrival time at Earth and the possible occurrence of geomagnetic storms. Solar radar measurements may also provide new information on electron densities in the corona. The frequencies of interest for solar radars fall in the range of about 10–100 MHz, corresponding to the lower range planned for the low-frequency array. In combination with existing or new high-power transmitters, it is possible to use the low-frequency array to re-initiate radar studies of the Sun's corona. In this report, we review the basic requirements of solar radars, as developed in past studies and as proposed for future investigations.  相似文献   

3.
Very Large Array (VLA) observations at wavelengths of 20 and 91 cm have been combined with data from the SOHO and RHESSI solar missions to study the evolution of transequatorial loops connecting active regions on the solar surface. The radio observations provide information about the acceleration and propagation of energetic electrons in these large-scale coronal magnetic structures where energy release and transport take place. On one day, a long-lasting Type I noise storm at 91 cm was seen to intensify and shift position above the northern hemisphere region following an impulsive hard X-ray burst in the southern hemisphere footpoint region. VLA 20-cm observations as well as SOHO EIT EUV images showed evolving coronal plasma that appeared to move across the solar equator during this time period. This suggests that the transequatorial loop acted as a conduit for energetic particles or fields that may have triggered magnetic changes in the corona where the northern noise storm region was seen. On another day, a hard X-ray burst detected at the limb was accompanied by impulsive 20- and 91-cm burst emission along a loop connecting to an active region in the same hemisphere but about 5′ away, again suggesting particle propagation and remote flare triggering across interconnecting loops.  相似文献   

4.
The paper reviews observations and the most important results obtained with the CORONAS-F satellite over more than three years of its orbiting in 2001–2004. The observations and the related new results concern global oscillations of the Sun, active regions and solar flares, the lower corona, ultraviolet and X-ray solar radiation, and solar cosmic rays.  相似文献   

5.
The origin of relativistic solar protons during large flare/CME events has not been uniquely identified so far. We perform a detailed comparative analysis of the time profiles of relativistic protons detected by the worldwide network of neutron monitors at Earth with electromagnetic signatures of particle acceleration in the solar corona during the large particle event of 20 January 2005. The intensity – time profile of the relativistic protons derived from the neutron monitor data indicates two successive peaks. We show that microwave, hard X-ray, and γ-ray emissions display several episodes of particle acceleration within the impulsive flare phase. The first relativistic protons detected at Earth are accelerated together with relativistic electrons and with protons that produce pion-decay γ rays during the second episode. The second peak in the relativistic proton profile at Earth is accompanied by new signatures of particle acceleration in the corona within ≈1R above the photosphere, revealed by hard X-ray and microwave emissions of low intensity and by the renewed radio emission of electron beams and of a coronal shock wave. We discuss the observations in terms of different scenarios of particle acceleration in the corona.  相似文献   

6.
Kocharov  L.  Torsti  J. 《Solar physics》2002,207(1):149-157
We summarize ERNE/SOHO observations of solar energetic particle events associated with impulsive soft X-ray flares and LASCO coronal mass ejections (CMEs). The new observational data support an idea that the >10 MeV proton acceleration may be initiated at different coronal sources, operating in the flaring active region and on the global coronal scale, in concert with CME development. However, the particle acceleration continues beyond the coronal scales and may culminate at the interplanetary CME well after the flare. We emphasize the importance of CME liftoff/aftermath processes in the solar corona and the possible role of seed particle re-acceleration, which may explain the existence of hybrid solar energetic particle events.  相似文献   

7.
The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona—that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations.  相似文献   

8.
Evolutions of the cool component of the inner solar corona have animportant part in the equilibria and energy transport processes in thesun atmosphere. Since 1994, a numerical daily survey of the entirelimb in the Hydrogen H line is performed with the HACOcoronagraph at Pic-du-Midi observatory. This experiment is includedin the general ground based support programs for the SOHO mission.Real and differed time data are available within the solar data baseBASS2000. A statistical study using the data set obtained during thefirst four years of this program shows some important properties ofthe distribution of the polar ejection and surge events. An asymmetrybetween North and South polar regions is well established. Its signreverseal near the time of the apparition of the new solar magneticactivity cycle is discussed.  相似文献   

9.
Imaging and spectroscopy of the solar corona, coupled with polarimetry, are the only tools available at present to capture signatures of physical processes responsible for coronal heating and solar wind acceleration within the first few solar radii above the solar limb. With the recent advent of improved detector technology and image processing techniques, broad-band white light and narrow-band multi-wavelength observations of coronal forbidden lines, made during total solar eclipses, have started to yield new views about the thermodynamic and magnetic properties of coronal structures. This paper outlines these unique capabilities, which until present, have been feasible primarily with observations during natural total solar eclipses. This work also draws attention to the exciting possibility of greatly increasing the frequency and duration of solar eclipse observations with Moon orbiting observatories utilizing lunar limb occultation of the solar disk for coronal measurements.  相似文献   

10.
We applied advanced image enhancement techniques to explore in detail the characteristics of the small-scale structures and/or the low contrast structures in several Coronal Mass Ejections (CMEs) observed by SOHO. We highlight here the results from our studies of the morphology and dynamical evolution of CME structures in the solar corona using two instruments on board SOHO: LASCO and EIT.  相似文献   

11.
《Planetary and Space Science》2007,55(9):1135-1189
During the last few years our knowledge about the X-ray emission from bodies within the solar system has significantly improved. Several new solar system objects are now known to shine in X-rays at energies below 2 keV. Apart from the Sun, the known X-ray emitters now include planets (Venus, Earth, Mars, Jupiter, and Saturn), planetary satellites (Moon, Io, Europa, and Ganymede), all active comets, the Io plasma torus (IPT), the rings of Saturn, the coronae (exospheres) of Earth and Mars, and the heliosphere. The advent of higher-resolution X-ray spectroscopy with the Chandra and XMM-Newton X-ray observatories has been of great benefit in advancing the field of planetary X-ray astronomy. Progress in modeling X-ray emission, laboratory studies of X-ray production, and theoretical calculations of cross-sections, have all contributed to our understanding of processes that produce X-rays from the solar system bodies.At Jupiter and Earth, both auroral and non-auroral disk X-ray emissions have been observed. X-rays have been detected from Saturn's disk, but no convincing evidence of an X-ray aurora has been observed. The first soft (0.1–2 keV) X-ray observation of Earth's aurora by Chandra shows that it is highly variable. The non-auroral X-ray emissions from Jupiter, Saturn, and Earth, those from the disk of Mars, Venus, and Moon, and from the rings of Saturn, are mainly produced by scattering of solar X-rays. The spectral characteristics of X-ray emission from comets, the heliosphere, the geocorona, and the Martian halo are quite similar, but they appear to be quite different from those of Jovian auroral X-rays. X-rays from the Galilean satellites and the IPT are mostly driven by impact of Jovian magnetospheric particles.This paper reviews studies of the soft X-ray emission from the solar system bodies, excluding the Sun. Processes of production of solar system X-rays are discussed and an overview is provided of the main source mechanisms of X-ray production at each object. A brief account on recent development in the area of laboratory studies of X-ray production is also provided.  相似文献   

12.
This paper will review the input of 65 years of radio observations to our understanding of solar and solar–terrestrial physics. It is focussed on the radio observations of phenomena linked to solar activity in the period going from the first discovery of the radio emissions to present days. We shall present first an overview of solar radio physics focussed on the active Sun and on the premices of solar–terrestrial relationships from the discovery to the 1980s. We shall then discuss the input of radioastronomy both at metric/decimetric wavelengths and at centimetric/millimetric and submillimetric wavelengths to our understanding of flares. We shall also review some of the radio, X-ray and white-light signatures bringing new evidence for reconnection and current sheets in eruptive events. The input of radio images (obtained with a high temporal cadence) to the understanding of the initiation and fast development in the low corona of coronal mass ejections (CMEs) as well as the radio observations of shocks in the corona and in the interplanetary medium will be reviewed. The input of radio observations to our knowledge of the interplanetary magnetic structures (ICMEs) will be summarized; we shall show how radio observations linked to the propagation of electron beams allow to identify small scale structures in the heliosphere and to trace the connection between the Sun and interplanetary structures as far as 4AU. We shall also describe how the radio observations bring useful information on the relationship and connections between the energetic electrons in the corona and the electrons measured in-situ. The input of radio observations on the forecasting of the arrival time of shocks at the Earth as well as on Space Weather studies will be described. In the last section, we shall summarize the key results that have contributed to transform our knowledge of solar activity and its link with the interplanetary medium. In conclusion, we shall indicate the instrumental radio developments at Earth and in space, which are from our point of view, necessary for the future of solar and interplanetary physics.  相似文献   

13.
14.
The goals and construction details of a new design Polish-led X-ray spectrophotometer are described. The instrument is aimed to observe emission from entire solar corona and is placed as a separate block within the Russian TESIS X- and EUV complex aboard the CORONAS-PHOTON solar orbiting observatory. SphinX uses silicon PIN diode detectors for high time resolution measurements of the solar spectra in the range 0.8–15 keV. Its spectral resolution allows for discerning more than hundred separate energy bands in this range. The instrument dynamic range extends two orders of magnitude below and above these representative for GOES. The relative and absolute accuracy of spectral measurements is expected to be better than few percent, as follows from extensive ground laboratory calibrations.  相似文献   

15.
We examine solar sources for 20 interplanetary coronal mass ejections (ICMEs) observed in 2009 in the near-Earth solar wind. We performed a detailed analysis of coronagraph and extreme ultraviolet (EUV) observations from the Solar Terrestrial Relations Observatory (STEREO) and Solar and Heliospheric Observatory (SOHO). Our study shows that the coronagraph observations from viewpoints away from the Sun–Earth line are paramount to locate the solar sources of Earth-bound ICMEs during solar minimum. SOHO/LASCO detected only six CMEs in our sample, and only one of these CMEs was wider than 120°. This demonstrates that observing a full or partial halo CME is not necessary to observe the ICME arrival. Although the two STEREO spacecraft had the best possible configuration for observing Earth-bound CMEs in 2009, we failed to find the associated CME for four ICMEs, and identifying the correct CME was not straightforward even for some clear ICMEs. Ten out of 16 (63 %) of the associated CMEs in our study were “stealth” CMEs, i.e. no obvious EUV on-disk activity was associated with them. Most of our stealth CMEs also lacked on-limb EUV signatures. We found that stealth CMEs generally lack the leading bright front in coronagraph images. This is in accordance with previous studies that argued that stealth CMEs form more slowly and at higher coronal altitudes than non-stealth CMEs. We suggest that at solar minimum the slow-rising CMEs do not draw enough coronal plasma around them. These CMEs are hence difficult to discern in the coronagraphic data, even when viewed close to the plane of the sky. The weak ICMEs in our study were related to both intrinsically narrow CMEs and the non-central encounters of larger CMEs. We also demonstrate that narrow CMEs (angular widths ≤?20°) can arrive at Earth and that an unstructured CME may result in a flux rope-type ICME.  相似文献   

16.
The first results obtained with the Solar EUV Monitor (SEM), part of the Charge, Element, and Isotope Analysis System (CELIAS) instrument, aboard the SOlar and Heliospheric Observatory (SOHO) satellite are presented. The instrument monitors the full-disk absolute value of the solar Heii irradiance at 30.4 nm, and the full-disk absolute solar irradiance integrated between 0.1 nm and 77 nm. The SEM was first turned on December 15, 1995 and obtained ‘first light’ on December 16, 1995. At this time the SOHO spacecraft was close to the L-1 Lagrange point, 1.5 × 106 km from the Earth towards the Sun. The data obtained by the SEM during the first four and a half months of operation will be presented. Although the period of observation is near solar minimum, the SEM data reveal strong short-term solar irradiance variations in the broad-band, central image channel, which includes solar X-ray emissions.  相似文献   

17.
The declining phases of solar cycles are known for their high speed solar wind streams that dominate the geomagnetic responses during this period. Outstanding questions about these streams, which can provide the fastest winds of the solar cycle, concern their solar origins, persistence, and predictability. The declining phase of cycle 23 has lasted significantly longer than the corresponding phases of the previous two cycles. Solar magnetograph observations suggest that the solar polar magnetic field is also ~?2?–?3 times weaker. The launch of STEREO in late 2006 provided additional incentive to examine the origins of what is observed at 1 AU in the recent cycle, with the OMNI data base at the NSSDC available as an Earth/L1 baseline for comparisons. Here we focus on the year 2007 when the solar corona exhibited large, long-lived mid-to-low latitude coronal holes and polar hole extensions observed by both SOHO and STEREO imagers. STEREO provides in situ measurements consistent with rigidly corotating solar wind stream structure at up to ~?45° heliolongitude separation by late 2007. This stability justifies the use of magnetogram-based steady 3D solar wind models to map the observed high speed winds back to their coronal sources. We apply the WSA solar wind model currently running at the NOAA Space Weather Prediction Center with the expectation that it should perform its best at this quiet time. The model comparisons confirm the origins of the observed high speed streams expected from the solar images, but also reveal uncertainties in the solar wind source mapping associated with this cycle’s weaker solar polar fields. Overall, the results illustrate the importance of having accurate polar fields in synoptic maps used in solar wind forecast models. At the most fundamental level, they demonstrate the control of the solar polar fields over the high speed wind sources, and thus one specific connection between the solar dynamo and the solar wind character.  相似文献   

18.
One of the fundamental questions in solar physics is how the solar corona maintains its high temperature of several million Kelvin above photosphere with a temperature of 6000 K. Observations show that solar coronal heating problem is highly complex with many different facts. It is likely that different heating mechanisms are at work in the solar corona. The separate kinds of coronal loops may also be heated by different mechanisms. Using data from instruments onboard the Solar and Heliospheric Observatory (SOHO) and from the more recent Transition Region and Coronal Explorer (TRACE) scientists have identified small regions of mixed polarity, termed magnetic carpet contributing to solar activity on a short time scale. Magnetic loops of all sizes rise into the solar corona, arising from regions of opposite magnetic polarity in the photosphere. Energy released when oppositely directed magnetic fields meet in the corona is one likely cause for coronal heating. There is enough energy coming up from the loops of the “magnetic carpet” to heat the corona to its known temperature.  相似文献   

19.
We present observations of the extended solar cycle activity in white-light coronagraphs, and compare them with the more familiar features seen in the Fe?xiv green-line corona. We show that the coronal activity zones seen in the emission corona can be tracked high into the corona. The peak latitude of the activity, which occurs near solar maximum, is found to be very similar at all heights. But we find that the equatorward drift of the activity zones is faster at greater heights, and that during the declining phase of the solar cycle, the lower branch of activity (that associated with the current cycle) disappears at about 3R ??. This implies that during the declining phase of the cycle, the solar wind detected near Earth is likely to be dominated by the next cycle. The so-called ??rush to the poles?? is also seen in the higher corona. In the higher corona it is found to start at a similar time but at lower latitudes than in the green-line corona. The structure is found to be similar to that of the equatorward drift.  相似文献   

20.
The problem of how the corona is heated is of central importance in solar physics research. Here it is assumed that the heating occurs in a regular time-dependent manner and the response of the plasma is investigated. If the magnetic field is strong then the dynamics reduces to a one-dimensional problem along the field. In addition if the radiative time in the corona is much longer than the sound travel time then the plasma evolvesisobarically. The frequency with which heat is deposited in the corona is investigated and it is shown that there is a critical frequency above which a hot corona can be maintained and below which the plasma temperature cools to chromospheric values. An evaluation of the isobaric assumption to the solar corona and the implications of time-dependent heating upon the forthcoming SOHO observations are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号