首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The orbital evolutions of the asteroid 3040 Kozai and model asteroids with similar orbits have been investigated. Their osculating orbits for an epoch 1991 December 10 were numerically integrated forward within the interval of 20,000 years, using a dynamical model of the solar system consisting of all inner planets, Jupiter, and Saturn.The orbit of the asteroid Kozai is stable. Its motion is affected only by long-period perturbations of planets. With change of the argument of perihelion of the asteroid Kozai, the evolution of the model asteroid orbits changes essentially, too. The model orbits with the argument of perihelion changed by the order of 10% show that asteroids with such orbital parameters may approach the Earth orbit, while asteroids with larger changes may even cross it, at least after 10,000 years. Long-term orbital evolution of asteroids with these orbital parameters is very sensitive on their angular elements.  相似文献   

2.
共轨运动天体与摄动天体的半长径相同,处于1:1平运动共振中.太阳系内多个行星的特洛伊天体即为处于蝌蚪形轨道的共轨运动天体,其中一些高轨道倾角特洛伊天体的轨道运动与来源仍未被完全理解.利用一个新发展的适用于处理1:1平运动共振的摄动函数展开方式,对三维空间中的共轨运动进行考察,计算不同初始轨道根数情况下共轨轨道的共振中心、共振宽度,分析轨道类型与初始轨道根数的关系.并将分析方法所得结果与数值方法的结果相互比较验证,得到了广阔初始轨道根数空间内共轨运动的全局图景.  相似文献   

3.
An obstacle to the asteroid mass determination lies in the difficulty in isolating the gravitational perturbation exerted by a single asteroid on the planets, being strongly correlated and mixed up with those of many other asteroids. This hindrance may be avoided by the method of analysis presented here: an asteroid mass is estimated in correspondence with its close encounters with Mars where the acceleration it induces on the planet can be sufficiently disentangled from those generated by the remaining asteroid masses to calculate. We test this technique in the analysis of range observations to Mars Global Surveyor and Mars Express performed from 1999 to 2007. For this purpose, we adopt the dynamical model of the planetary ephemeris INPOP06 (Fienga et al., 2008), which includes the gravitational influences of the 300 most perturbing asteroids of the Martian orbit. We obtain the solutions of 10 asteroid masses that have the largest effects on this orbit over the period examined: they are generally in good agreement with determinations recently published.  相似文献   

4.
We identified the family of the binary asteroid 423 Diotima consisting of 411 members in the phase space of orbital elements—semimajor axes a (or mean motions n), eccentricities e, and inclinations i—by using an electronic version of the ephemerides of minor planets EMP-2003 containing osculating orbital elements for 34992 asteroids of the main belt. The 9/4 resonance with Jupiter clearly separates the family of 423 Diotima from the family of Eos, which, according to EMP for 2003, contains 1204 asteroids.  相似文献   

5.
Our investigation is motivated by the recent discovery of asteroids orbiting the Sun and simultaneously staying near one of the Solar System planets for a long time. This regime of motion is usually called the quasi-satellite regime, since even at the times of the closest approaches the distance between the asteroid and the planet is significantly larger than the region of space (the Hill’s sphere) in which the planet can hold its satellites. We explore the properties of the quasi-satellite regimes in the context of the spatial restricted circular three-body problem “Sun–planet–asteroid”. Via double numerical averaging, we construct evolutionary equations which describe the long-term behaviour of the orbital elements of an asteroid. Special attention is paid to possible transitions between the motion in a quasi-satellite orbit and the one in another type of orbits available in the 1:1 resonance. A rough classification of the corresponding evolutionary paths is given for an asteroid’s motion with a sufficiently small eccentricity and inclination.  相似文献   

6.
V. Carruba  J.A. Burns  W. Bottke 《Icarus》2003,162(2):308-327
Asteroid families are groupings of minor planets identified by clustering in their proper orbital elements; these objects have spectral signatures consistent with an origin in the break-up of a common parent body. From the current values of proper semimajor axes a of family members one might hope to estimate the ejection velocities with which the fragments left the putative break-up event (assuming that the pieces were ejected isotropically). However, the ejection velocities so inferred are consistently higher than N-body and hydro-code simulations, as well as laboratory experiments, suggest. To explain this discrepancy between today’s orbital distribution of asteroid family members and their supposed launch velocities, we study whether asteroid family members might have been ejected from the collision at low speeds and then slowly drifted to their current positions, via one or more dynamical processes. Studies show that the proper a of asteroid family members can be altered by two mechanisms: (i) close encounters with massive asteroids, and (ii) the Yarkovsky non-gravitational effect. Because the Yarkovsky effect for kilometer-sized bodies decreases with asteroid diameter D, it is unlikely to have appreciably moved large asteroids (say those with D > 15 km) over the typical family age (1-2 Gyr).For this reason, we numerically studied the mobility of family members produced by close encounters with main-belt, non-family asteroids that were thought massive enough to significantly change their orbits over long timescales. Our goal was to learn the degree to which perturbations might modify the proper a values of all family members, including those too large to be influenced by the Yarkovsky effect. Our initial simulations demonstrated immediately that very few asteroids were massive enough to significantly alter relative orbits among family members. Thus, to maximize gravitational perturbations in our 500-Myr integrations, we investigated the effect of close encounters on two families, Gefion and Adeona, that have high encounter probabilities with 1 Ceres, by far the largest asteroid in the main belt. Our results show that members of these families spreads in a of less than 5% since their formation. Thus gravitational interactions cannot account for the large inferred escape velocities.The effect of close encounters with massive asteroids is, however, not entirely negligible. For about 10% of the simulated bodies, close encounters increased the “inferred” ejection velocities from sub-100 m/s to values greater than 100 m/s, beyond what hydro-code and N-body simulations suggest are the maximum possible initial ejection velocity for members of Adeona and Gefion with D > 15 km. Thus this mechanism of mobility may be responsible for the unusually high inferred ejection speeds of a few of the largest members of these two families.To understand the orbital evolution of the entire family, including smaller members, we also performed simulations to account for the drift of smaller asteroids caused by the Yarkovsky effect. Our two sets of simulations suggest that the two families we investigated are relatively young compared to larger families like Koronis and Themis, which have estimated ages of about 2 Byr. The Adeona and Gefion families seems to be no more than 600 and 850 Myr old, respectively.  相似文献   

7.
Data are presented for the 182 asteroids whose rotational properties are available in the literature. Plots are provided for the asteroid rotational frequency f and lightcurve amplitude Δm versus asteroid size; the latter is determined using standard methods if data are available but otherwise is estimated from asteroid albedos, selected depending on taxonomic type or orbital position. A linear least-squares fit to all the data shows that f increases with decreasing size, confirming McAdoo and Burns' (1973) result; this is demonstrated to be primarily caused by relatively more small non-C than C asteroids in our sample, coupled with a slower mean rotation rate for C asteroids (P ≈ 11 hr) than non-C asteroids (P ≈ 9 hr). In terms of the collisional theory of Harris (1979a), this means that the C's are less dense than the other minor planets. Any slight tendency for smaller asteroids to spin faster, even within a taxonomic type, could be due to selection effects; our data are not extensive enough to determine whether the very smallest (? 10-km diameter) spin especially fast. The minor planets of our survey become more irregular at smaller sizes, disputing the conclusions of Bowell (1977b), Degewij (1977), and Degewij et al. (1978), based on other, perhaps more complete, data; selection effects may account for this disagreement. Shapes do not appear to depend on taxonomic type. The dispersion of asteroid rotation rates from the mean is found to be in excellent agreement with a three-dimensional Maxwellian distribution, such as would be developed in a collisionally evolved system. The rotation axes, therefore, appear to be randomly oriented in space. Rotation pole positions are also tabulated and calculated to likely be constant in space over the extent of past observation. Observers are encouraged to measure the rotational properties of faint objects and asteroids of unusual taxonomic types, and to carry out long-time studies of asteroids which over short periods do not seem to vary.  相似文献   

8.
The Dawn spacecraft of the NASA space mission to asteroids 1 Ceres and 4 Vesta was launched in September 2007. The choice of these two asteroids is deeply grounded: they are the largest and most massive objects of the main belt that are completely different in material composition, evolution history, and internal structure. Recently, the results of observations and numerical modeling have shown their amazing uniqueness: they both have experienced the complex process of thermal evolution and differentiation of their internal mineral resources, but have a completely different internal structure. Being the largest bodies, have they managed to resist the process of collisional evolution in the asteroid belt and have survived in their “primitive form.” Because of this, their study is very important from the point of view of cosmogonic problems regarding the asteroid belt and the Solar System as a whole. The present paper shortly reviews the recent progress in the study of Ceres and Vesta achieved due to observations performed on the Earth (including the polarimetric observations made by the authors) and from the Hubble Space Telescope (HST) before the long-term orbital investigations performed by the Dawn spacecraft.  相似文献   

9.
The ESA astrometric mission Gaia, due for a launch in late 2011, will observe a huge number of asteroids (∼350,000 brighter than V<20) with an unprecedented positional precision (at the sub-milliarcsecond level). This precision will play an important role for the mass determination of about hundred minor planets with a relative precision better than 50%. Presently, due primarily to their perturbations on Mars, the uncertainty in the masses of the largest asteroids is the limiting factor in the accuracy of the solar system ephemerides. Besides, such high precision astrometry will enable to derive direct measurements of the masses of the largest asteroids which are of utmost significance for the knowledge of their physical properties. The method for computing the masses is based on the analysis of orbital perturbations during close encounters between massive asteroids (perturbers) and several smaller minor planets (targets). From given criteria of close approaches selection, we give the list of asteroids for which the mass can be determined, and the expected precision of these masses at mission completion. We next study the possible contribution of the ground-based observations for the mass determination in some special observation cases of close approaches.  相似文献   

10.
The dynamics of near-Earth asteroids near mean motion resonances with the Earth or other planets is considered. The probability domains of the motion of some near-Earth asteroids close to low-order resonances are presented. The investigations have been carried out by means of a numerical integration of differential equations, taking into account the perturbations from the major planets and the Moon. For each investigated object an ensemble of 100 test particles with orbital elements nearby those of the nominal orbit has been constructed and its evolution has been retraced over the time interval (–3000, +3000 years). The initial set of orbits has been generated on the basis of probable variations of the initial orbital elements obtained from the least square analysis of observations.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

11.
J.G. Williams 《Icarus》1984,57(1):1-13
The orbit of Mars is perturbed more than 5 m, a value compatible with the accuracy of the Viking lander ranging data, by about three dozen asteroids. In addition to larger asteroids throughout the belt, significant perturbations of long period are generated by smaller objects near commensurabilities with Mars. The largest periodic terms induced by 1 Ceres and 2 Pallas have amplitudes of 0.8 and 0.2 km, respectively, both with 10-year periods. Due to a near commensurability, 4 Vesta causes a 5-km, 52-year term. While the Viking ranges will yield significant mass determinations for the largest three asteroids, and some of the smaller bodies should be detectable, it will be difficult to seperate the smaller bodies with useful accuracies. Accurate discrimination must await range data from future missions to Mars or other bodies in the neighborhood of the asteroid belt. The Viking ranges can also yield improved masses for the outer planets (except Pluto), an application which is being exploited by groups analyzing these data. Uncertainties in the asteroid masses limit the ultimate accuracy of the Viking determinations of both the long time scale motion of the system the inner four planets with respect to an inertial frame and the rate of change of the gravitational constant.  相似文献   

12.
When the precessional rate of the orbital plane of an asteroid is nearly equal to that of Jupiter, the orbital inclination of the asteroid changes quite largely due to this near equality of their precessional rates, which is called a secular resonance. In the vicinity of the exact resonance the difference of their longitudes of nodes librates with quite a long period of order of 1×106 yr. In this paper we treat this secular resonance by a method of semianalytical secular perturbations with use of numerical averaging for both non-resonant and resonant asteroids and show that the results by the semi-analytical treatment agrees qualitatively with those obtained by direct numerical integrations of asteroid's orbits.  相似文献   

13.
A simple method for numerical integration of the equations of motion of small bodies of the Solar System is proposed, which is especially efficient in studying the orbits with small perihelion distances. The evolution of orbits of 121 numbered asteroids with perihelion distances q < 1.2 AU is investigated over the time interval of years 2000–2100 with allowance made for the gravitational influence of nine planets and three largest asteroids. The circumstances of close encounters of asteroids with the Earth and other terrestrial planets are presented.  相似文献   

14.
Abstract— Various hypotheses of the origin of asteroids and comets are briefly discussed. Interaction of planetesimals in the asteroid zone (AZ) with the gas, their perturbations by proto-Jupiter, and sweeping them out by more massive Jupiter zone bodies when they penetrated the AZ are considered. If the gas was turbulent, it could prevent a settling of dust particles to the equatorial plane of the disk and formation of dust condensations due to gravitational instability. Then particles grew by sticking upon collision. Gas moved radially due to turbulent viscosity and its dissipation. Small particles moved more-or-less together with the gas. As a result of gas drag, larger particles and bodies moved relative to the gas in the direction of increasing gas pressure. Gas would remove much of the solid material from the AZ if most bodies larger than a few km disintegrated by collisions into fragments smaller than a few tens of meters. Most of these fragments would then move into the Martian zone, and the small mass of Mars would have no explanation. Resonant perturbations of asteroids by Jupiter are discussed. In the model of a small mass disk they could scan through the asteroid belt due to changes in Jupiter's distance from the Sun that occurred when this planet accreted the gas and ejected the bodies from the solar system. Such a scanning considerably accelerated the removal of asteroids from the AZ. Massive Jupiter zone bodies with large orbital eccentricities that crossed the AZ were probably efficient at sweeping out bodies. Larger bodies increased the random velocities of the remaining asteroids at close encounters to the present values ~ 5 km/s. Restrictions on the runaway growth of giant planets, on the relative velocities of bodies and the disk surface density that follow from the consideration of the origin of the asteroid belt and the cometary cloud are considered.  相似文献   

15.
We model the reflectance spectra of SI–SVII-subtype asteroids. The spectra of minor planets contain little information as regards the abundance of free metal and the form of its existence on the asteroid surfaces. We investigate the properties of a set of probable spectra for the surface pyroxene and olivine of minor planets. Clinopyroxene with high calcium and iron contents and orthopyroxene with a ferrosilite molecular content of about 40% are typical of the S-type asteroids. The subtype number of S-type asteroids can be correlated with the bulk pyroxene composition. The forsterite molecular content in asteroid olivine lies within the probable range 40–74%. The prevalence of pyroxene over olivine and feldspar in the computed compositions of S-type asteroids suggests the probable presence of basalts on their surfaces.  相似文献   

16.
At present, approximately 1500 asteroids are known to evolve inside or sticked to the exterior 1:2 resonance with Mars at a ? 2.418 AU, being (142) Polana the largest member of this group. The effect of the forced secular modes superposed to the resonance gives rise to a complex dynamical evolution. Chaotic diffusion, collisions, close encounters with massive asteroids and mainly orbital migration due to the Yarkovsky effect generate continuous captures to and losses from the resonance, with a fraction of asteroids remaining captured over long time scales and generating a concentration in the semimajor axis distribution that exceeds by 20% the population of background asteroids. The Yarkovsky effect induces different dynamics according to the asteroid size, producing an excess of small asteroids inside the resonance. The evolution in the resonance generates a signature on the orbits, mainly in eccentricity, that depends on the time the asteroid remains captured inside the resonance and on the magnitude of the Yarkovsky effect. The greater the asteroids, the larger the time they remain captured in the resonance, allowing greater diffusion in eccentricity and inclination. The resonance generates a discontinuity and mixing in the space of proper elements producing misidentification of dynamical family members, mainly for Vesta and Nysa-Polana families. The half-life of resonant asteroids large enough for not being affected by the Yarkovsky effect is about 1 Gyr. From the point of view of taxonomic classes, the resonant population does not differ from the background population and the excess of small asteroids is confirmed.  相似文献   

17.
Spectroscopic observations of Asteroid (4) Vesta and numerous members of the Vesta family located in the inner asteroid belt have determined that these objects have reflectance properties of basaltic material. A plausible hypothesis is that the surface of Vesta was punctured by large impacts in the past which dispersed fragments of its basaltic crust into space and produced one of the most prominent asteroid families ever created in the belt. Until recently, Vesta was the only known object in the asteroid belt which underwent differentiation and survived to the present epoch. Since 2000, many new small basaltic asteroids have been discovered in the inner and outer parts of the asteroid belt, possibly representing fragments from distinct differentiated bodies. These discoveries may help us to better understand the number and nature of objects in the inner Solar System that underwent geological differentiation. To investigate these issues we performed extensive numerical simulations whose aim was to reproduce, as precisely as possible, the dynamical evolution of Vesta's ejected fragments over timescales comparable to the family's age. Specifically, we numerically integrated the orbital evolution of 6600 test bodies with orbits that started within the Vesta family and dynamically evolved over 2 Gy. Our model included gravitational perturbation of all planets (except Mercury) and the Yarkovsky effect. The results show that a relatively large fraction of the original Vesta family members may have evolved out of the family borders defined by clustering algorithms and are now dispersed over the inner asteroid belt. We compared the orbital distribution of our model fragments with the orbital locations of known basaltic asteroids in various parts of the inner main belt to find that: (i) Most basaltic asteroids with semimajor axis located outside the Vesta family's borders in the inner main belt, including (809) Lundia and (956) Elisa, are most likely fugitives from the Vesta family that have evolved to their current orbits via various identified dynamical pathways. Our results also suggest that the Vesta family is at least ∼1 Gy old. (ii) Interestingly, orbits of many basaltic asteroids with , like those of (4796) Lewis and (5379) Abehiroshi, are displaced from the Vesta family to low inclinations and are not obtained in our simulations with sufficient efficiency. We propose that: (i) these small basaltic asteroids may be fragments of differentiated bodies other than (4) Vesta; or (ii) they were liberated from the Vesta's surface before (or during) the Late Heavy Bombardment epoch ∼3.8 Gy ago and their orbital inclinations separated from that of Vesta when secular resonances swept through the region.  相似文献   

18.
《Planetary and Space Science》1999,47(6-7):873-881
The ROSETTA spacecraft will fly-by a few asteroids during its course to the final cometary target. The candidate asteroids presently are 3840 Ministrobel (S-type), 2703 Siwa and 140 (C-type).With the limited data presently available on these bodies we calculated some approximate quantities which may be useful to select the fly-by trajectories of the ROSETTA probe. In particular we derived the zones in which particles could stably orbit by analyzing Hills problem of three hierarchical masses—the sun, the asteroid and the orbiting particle. Then, following the approach of Hamilton and Burns, the effects of solar radiation pressure and of the ellipticity of the orbits were also taken into account. In this way for each asteroid we could calculate not only a classical quantity like the radius of the Hill sphere, but also the critical starting orbital distance (as a function of orbital inclination) within which most orbits remain bound to the asteroid, and outside which most escape as a consequence of perturbations. Moreover we determined the orbital stability zone, defined as the union of all the numerically integrated orbits showing long-term stability, for each of the target asteroids. The particular shape of these zones would suggest to have the spacecrafts close approach out of the orbital plane of the asteroids.To further investigate this problem and, in particular, to take into account the irregular shape of the asteroids, we developed a model using a polyhedral representation of the central rotating body, following a theory developed by Werner and Scheeres. This model is described here and the first orbital integration results are presented. © 1999 Elsevier Science Ltd. All rights reserved.  相似文献   

19.
Thermal inertia determines the temperature distribution over the surface of an asteroid and therefore governs the magnitude the Yarkovsky effect. The latter causes gradual drifting of the orbits of km-sized asteroids and plays an important role in the delivery of near-Earth asteroids (NEAs) from the main belt and in the dynamical spreading of asteroid families. At present, very little is known about the thermal inertia of asteroids in the km size range. Here we show that the average thermal inertia of a sample of NEAs in the km-size range is . Furthermore, we identify a trend of increasing thermal inertia with decreasing asteroid diameter, D. This indicates that the dependence of the drift rate of the orbital semimajor axis on the size of asteroids due to the Yarkovsky effect is a more complex function than the generally adopted D−1 dependence, and that the size distribution of objects injected by Yarkovsky-driven orbital mobility into the NEA source regions is less skewed to smaller sizes than generally assumed. We discuss how this fact may help to explain the small difference in the slope of the size distribution of km-sized NEAs and main-belt asteroids.  相似文献   

20.
There are obtained upper limits for the relative velocity at infinity of accreting planetesimals for a nearly constant mass of the largest accreting planetesimal and also in the case of variable mass. We conclude, that while the larger planets cannot be brought to the stage of rotational instability by stochastic collisions, the asteroids could be brought. provided that the relative velocities in the asteroid belt were larger than about 2 km s–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号