首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The elastic properties of coexisting natural 3T and 2M 1 phengite samples (Cima Pal, Sesia Zone; Val Savenca; Western Alps, Italy) with similar chemical compositions have been studied by room temperature–high pressure powder diffraction, using synchrotron radiation on the ID9A beam-line at ESRF (Grenoble, France). The PV curves have been modelled by the Birch–Murnaghan model; a third-order expansion fitted to the experimental data yields for 3T and 2M 1 K 0=60.4(±0.7) GPa, K′=5.79(±0.11) at V 0=703.8851 Å3, and K 0=57.3(±1.0) GPa, K′=6.97(±0.24) at V 0=938.8815 Å3, respectively. The relative stability of 3T vs. 2M 1 has been explored as a function of pressure and temperature in terms of configuration and deformation contributions to the Gibbs energy, using the elastic properties determined here and other thermodynamic parameters from earlier investigations. The results presented agree with the hypothesis of stability of the 3T polytype in the high pressure regime.  相似文献   

2.
Ultrasonic longitudinal acoustic velocities in oxidized silicate liquids indicate that the pressure derivative of the partial-molar volume of Fe2O3 is the same in iron-rich alkali-, alkaline earth- and natural silicate melt compositions at 1 bar. The dV/dP for multicomponent silicate liquids can be expressed as a linear combination of partial-molar constants plus a positive excess term for Na2O−Al2O3 mixing. Partial-molar properties for FeO and Fe2O3 components allow extension of the empirical expression of Sack et al. (1980) to permit the calculation of Fe-redox equilibrium in a natural silicate liquid as a function of composition, temperature, fo2 and pressure; a more formal thermodynamic expression is presented in the Appendix. The predicted equilibrium fo2 of natural silicate melts, of fixed oxygen content, closely parallels that defined by the metastable assemblage fayalite+magnetite+β-quartz (FMQ), in pressure-temperature space. A silicate melt initially equilibrated at 3 GPa and FMQ, will remain within approximately 0.5 log10 units of FMQ during its closed-system ascent. Thus, for magmas closed to oxygen, iron-redox equilibrium in crystal-poor pristine glassy lavas represents an excellent probe of the relative oxidation state of their source regions.  相似文献   

3.
The equilibrium partitioning of Fe2+ and Mg between olivine and liquid along a liquid line of descent has been determined for a calc-alkaline system, ranging in composition from picritic to andesitic. Experiments were conducted between 1000–1450° C and 1 bar to 30 kbar. Within the compositional range investigated and , the compositional dependence of the Fe2+ and Mg partitioning is a function of the Mg-content of the liquid. The Mg-content of the liquid correlates strongly with temperature. The variation of the Fe2+ and Mg partitioning were therefore evaluated individualy as functions of composition and temperature alone. The composition dependence of the cation-partitioning coefficients (Kd) is given by the following two equations:
  相似文献   

4.
The kinematic approach in combination with numerical simulation is used to examine the effect of pore water pressure on tunnel face stability. Pore water pressure distribution obtained by numerical calculations using FLAC3D is used to interpolate the pore water pressure on a 3D rotational collapse mechanism. Comparisons are made to check the present approach against other solutions, showing that the present approach improves the existing upper bound solutions. Results obtained indicate that critical effective face pressure increases with water table elevation. Several normalized charts are also presented for quick evaluation of tunnel face stability. At the end of the paper, the influence of anisotropic permeability on tunnel face stability is also discussed, showing that the isotropic model leads to an overestimation of the necessary tunnel face pressure for anisotropic soils. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
6.
The exhumation mechanism of high‐pressure (HP) and ultrahigh‐pressure (UHP) eclogites formed by the subduction of oceanic crust (hereafter referred to as oceanic eclogites) is one of the primary uncertainties associated with the subduction factory. The phase relations and densities of eclogites with MORB compositions are modelled using thermodynamic calculations over a P–T range of 1–4 GPa and 400–800 °C, respectively, in the NCKFMASHTO (Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3) system. Our modelling suggests that the mineral assemblages, mineral proportions and density of oceanic crust subducted along a cold P–T path are quite different from those of crust subducted along a warm P–T path, and that the density of oceanic eclogites is largely controlled by the stability of low‐density hydrous minerals, such as lawsonite, chlorite, glaucophane and talc. Along a cold subduction P–T path with a geotherm of ~6 °C km?1, lawsonite is always present at 1.1 to >4.0 GPa, and chlorite, glaucophane and talc can be stable at pressures of up to 2.3, 2.6 and 3.6 GPa respectively. Along such a P–T path, the density of subducted oceanic crust is always lower than that of the surrounding mantle at depths shallower than 110–120 km (< 3.3–3.6 GPa). However, along a warm subduction P–T path with a geotherm of ~10 °C km?1, the P–T path is outside the stability field of lawsonite, and the hydrous minerals of chlorite, epidote and amphibole break down completely into dry dense minerals at relatively lower pressures of 1.5, 1.85 and 1.9 GPa respectively. Along such a warm subduction P–T path, the subducted oceanic crust becomes denser than the surrounding mantle at depths >60 km (>1.8 GPa). Oceanic eclogites with high H2O content, oxygen fugacity, bulk‐rock XMg [ = MgO/(MgO + FeO)], XAl [ = Al2O3/(Al2O3 + MgO + FeO)] and low XCa [ = CaO/(CaO + MgO + FeO + Na2O)] are likely suitable for exhumation, which is consistent with the bulk‐rock compositions of the natural oceanic eclogites on the Earth's surface. On the basis of natural observations and our calculations, it is suggested that beyond depths around 110–120 km oceanic eclogites are not light enough and/or there are no blueschists to compensate the negative buoyancy of the oceanic crust, therefore explaining the lack of oceanic eclogites returned from ultradeep mantle (>120 km) to the Earth's surface. The exhumed light–cold–hydrous oceanic eclogites may have decoupled from the top part of the sinking slab at shallow depths in the forearc region and are exhumed inside the serpentinized subduction channel, whereas the dense–hot–dry eclogites may be retained in the sinking slab and recycled into deeper mantle.  相似文献   

7.
Constraints on density as a function of pressure, temperature, and composition are crucial to understand isostatic movements during geodynamic processes. Here, we provide a systematic series of density diagrams extracted from thermodynamic calculations for a variety of crustal compositions within a wide PT range. We quantify systematic density changes in collisional settings for relevant compositional variations and attempt to simplify the density–composition relationships. Rock densities depend strongly on pressure, temperature, and composition. Densities at some selected pressure–temperature conditions increase linearly with increasing Al2O3 as well as MgO/FeO contents in pelitic rocks. Al- and Fe-rich pelites yield the highest densities, which is mostly due to the formation of garnet but also depends on other minerals and changes of reactions. The effect of loading on densities is investigated, and we show that for deep burial, a meta-pelite rich in Fe and Mg yields much larger density changes than a dry basalt and that the burial of such a rock with a composition close to typical lower crust may result in significant negative buoyancy. Metamorphism of hydrous lower crust due to pressurization and heating thus leads to densification of thickened lower crust, while heating of dry crust leads to a decrease in density. Hence, water-loaded isostatic subsidence due to metamorphism of water-saturated lower crust is substantial and increases with the thickness and depth of the reacting layer, while dry compositions show much less or only transient densification and subsidence. The density change due to thermal expansion, an extensively used concept in geodynamic models, predicts uplift under the same PT conditions and is an order of magnitude smaller than the density variation calculated from petrologically consistent diagrams.  相似文献   

8.
The abundances of 19 chemical elements in the atmospheres of five stars belonging to three globular clusters have been determined by applying the model-atmospheremethod to 430.0–790.0 nm spectra obtained with the échelle spectrometer of the 6-m telescope of the Special Astrophysical Observatory. The abundances of silicon, calcium, iron-peak elements, copper, zinc, and neutron-capture elements follow the abundance patterns for halo stars. The abundance of sodium in M 10 giants provides evidence that different mixing mechanisms operate in halo and cluster stars or that light elements are enriched in different ways in the pre-stellar matter from which some globular clusters and halo stars were formed.  相似文献   

9.
The effects of composition and of temperature on the orthorhombic, Pca2 1 to cubic, F4ˉ3m transition of the stuffed cristobalite structure are reported. A distorton index which measures the departure of the orthorhombic unit cell from a metrically cubic cell shows that at room temperature, distortion increases in the progression K2CdSiO4 <K2MgSiO4 <K2ZnSiO4≈K2CoSiO4. High temperature X-ray powder measurements document an apparently discontinuous transition to a structure of F4ˉ3m symmetry. Differential scanning calorimetry shows a sharp, reversible, first order transition to the high temperature phase at about 500–600 °C for these compounds. Measured transformation enthalpies in the range of 7 to 16 J/g correlate roughly with the distortion index. The transformation involves tetrahedral rotation to an orientationally disordered cubic structure which retains an ordered M2+/Si distribution. Received: 8 November 1996 / Revised, accepted: 14 October 1997  相似文献   

10.
The effects on the ferric-ferrous ratio of varying individual components in a dry basaltic liquid have been determined at atmospheric pressure and constant oxygen fugacity (fO2). Experiments were conducted by suspending 100 mg samples from pt loops at 1200°C (fO2 = 10?8atm) and 1360°C (fO2 = 10?6atm) in an atmosphere controlled by mixtures of CO2 and H2. A microanalytical wetchemical technique and the electron microprobe were used to determine the composition of the resulting basaltic glasses. In order of decreasing significance, the addition of oxides of K, Na, Si, Al, or Ca produces an increase in the ferric-ferrous ratio of the melt at 1200°C. The change in the ferric-ferrous ratio produced by component addition is less at 1360°C than at 1200°C.  相似文献   

11.
The experiments on amphibolite and sandstone samples pressurized by gas (‘dry conditions’), pure water and water solutions of different composition under temperatures up to 850 °C at equal confining and pore pressure of 300 MPa revealed the different Vp behavior. On heating under gas pressure Vp decreases within all the temperature range, on heating under pressure of water and water solutions Vp at first decreases, but reaching a minimum value at temperature of about 650 °C increases. In order to interpret these data Vp, porosity, permeability and pore size distributions were measured on quenched samples. Microstructure and microprobe investigations also were carried out. The results obtained revealed porosity and permeability changes due to the rock microstructure changes with Vp trends synchronously. These microstructure changes initiating Vp changes were associated with rock thermal decompaction and geochemical transformation caused by the effects of water fluids of different composition, metasomatic and hydration-dehydration reactions, silicification and phase transitions (α-β quartz transition and partial melting).The experimental data demonstrated that the presence of fluids with different composition might lead to occurrence of different Vp values in the rock of the same type. Hence, seismic boundaries may occur in the rocks of the same chemical composition.  相似文献   

12.
雷家蔚 《地质与勘探》2020,56(5):1080-1086
科学钻探深井结晶岩处在高地应力、高地层压力和高地温的“三高”环境中,自身的结构特征和物化特性会发生根本性变化,因温度变化引起的应力变化极易导致井壁失稳。本文依据温压耦合影响下坍塌压力和破裂压力计算模式,确定不同井壁温度下的安全钻井液密度窗口,通过FLAC3D开展温压耦合影响下井壁稳定数值模拟,分析在不同钻井液密度下井眼打开后不同时间的井壁周边温度和井壁稳定变化情况。结果表明:地层弹性参数对地层破裂压力的影响较大,对于花岗岩此类弹性模量较大的结晶岩,温度变化对破裂压力影响更大;井壁处附加应力受温度变化的影响程度:附加周向应力>附加径向应力>附加垂向应力;在最小主应力方向的井壁周边地层等效应力与钻井液密度呈正比关系,在最大主应力方向呈反比关系。  相似文献   

13.
The stability relations of lawsonite, CaAl2Si2O7(OH)2H2O, have been investigated at pressures of 6 to 14 GPa and temperatures of 740 to 1150°C in a multi-anvil apparatus. Experiments used the bulk composition lawsonite+H2O to determine the maximum stability of lawsonite. Lawsonite is stable on its own bulk composition to a pressure of 13.5 GPa at 800°C, and between 6.5 and 12 GPa at 1000°C. Its composition does not change with pressure or temperature. All lawsonite reactions have grossular, vapour and two other phases in the system Al2O3-SiO2-H2O (ASH) on their high-temperature side. A Schreinemakers analysis of the ASH phases was used to relate the reactions to each other. At the lowest pressures studied lawsonite breaks down to grossular+kyanite+coesite+vapour in a reaction passing through 980°C at 6 GPa and 1070°C at 9 GPa. Above 9 GPa the reactions coesite=stishovite and kyanite+vapour=topaz-OH are crossed. The maximum thermal stability of lawsonite is at 1080°C, at 9.4 GPa. At higher pressures the lawsonite breakdown reactions have negative slopes. The reaction lawsonite=grossular+topaz-OH+stishovite+vapour passes through 1070°C at 10 GPa and 1010°C at 12 GPa. At 14 GPa, 740–840°C, lawsonite is unstable relative to the assemblage grossular+diaspore+vapour+a hydrous phase with an Al:Si ratio of 1:1. Oxide totals in electron microprobe analyses suggest that the composition of this phase is AlSiO3(OH). Two experiments on the bulk composition lawsonite+pyrope [Mg3Al2Si3O12] show that at 10 GPa the reaction lawsonite=Gr-Pyss+topaz-OH+stishovite+vapour is displaced down temperature from the end-member reaction by 200°C for a garnet composition of Gr20Py80. Calculations suggest similar temperature displacements for reaction between lawsonite and Gr-Py-Alm garnets of compositions likely to occur in high-pressure eclogites. Temperatures in subduction zones remain relatively low to considerable depth, and therefore slab P-T paths can be within the stability field of lawsonite from the conditions of its crystallisation in blueschists and eclogites, up to pressures of at least 10 GPa. Lawsonite contains 11.5 wt% H2O, which when released may trigger partial melting of the slab or mantle, or be incorporated in hydrous phases such as the aluminosilicates synthesised here. These phases may then transport H2O to an even greater depth in the mantle.  相似文献   

14.
We propose a thermodynamic approach to model the stepwise dehydration with increasing temperature or decreasing H2O activity of K, Na, Ca and Mg-smectite. The approach relies on the relative stability of the different solid-solutions that describe the hydration of di- or trioctahedral-smectites containing 0, 1, 2 or 3 interlayer water layers. The inclusion of anhydrous mica end-members makes it possible to cover, with the same solid-solution model, the entire range of composition from low-charge smectite to mica, through high-charge smectite and illite. Non-ideal Margules parameters were used to describe the non-ideality of the solid solutions between the hydrated and dehydrated smectite end-members. Standard state properties of all smectite end-members as well as Ca- and Mg-muscovite and -phlogopite were initially estimated by oxide summation. These values were then refined and the other non-ideal interactions were estimated on the basis of different experimental data. The stepwise dehydration of smectite, and its stability and compatibility relations were calculated by Gibbs free energy minimising. Our results account for the progressive evolution of smectite to interlayered illite/smectite and then to mica, as observed in nature and experiments, and our model provides an explanation for the thermodynamic stability of smectite and illite/smectite compared to mica + kaolinite or pyrophyllite assemblages. The results suggest that the enthalpic contribution of interlayer water is a function of the ionic potential of the interlayer cation and the number of interlayer water molecules. This evolution makes possible to estimate the standard-state thermodynamic parameters and hydration-temperature behaviour of smectite of virtually all possible compositions. For the four-interlayer cations considered in the study, our model reproduces the 3 → 2 → 1 water-layer transitions that accompany a reduction of water activity or an increase of temperature at ambient pressure. The range of water content and interlayer distance calculated for the 3w, 2w and 1w states are also in fair agreement with the experimental values at ambient pressure.  相似文献   

15.
A coarse-grained, colourless lepidolite from a pegmatite of the Elba Island (Italy) has been examined. X-ray powder-diffraction and single-crystal patterns reveal the presence of the 1M and 2M2 polymorphs, for wich cell parameters are given. On the basis of the optical and X-ray data the same composition for both the polymorphs is inferred. From the chemical analysis data of the whole micaceous material the following formula has been computed: (Ca0,01Na0,06K0,92Rb0,06) (Al1,27Mg0,01Li1,75) (Si3,36Al0,64)O10 (F1,53OH0,47). The crystal structure of this mica has been studied by means of one-dimensional Fourier projections on c* and several interesting structural parameters were derived. Among them the mean tetrahedral rotation results to be about 11° for both the polymorphs: a value (quite similar to those of the other trioctahedral micas with K+ as interlayer cation) wich does not confirm Radoslovich's hypothesis that lepidolites should have a symmetry of the tetrahedral layers very close to the perfect hexagonality. Finally a new hypothesis on the structure of the 2M2 polymorph consistent with such a proved ditrigonal symmetry of the basal oxygens arrangement in the lepidolites is pointed out.Notations Obas basal oxygen atoms of the (Al, Si)O4 tetrahedra. - Oap apical oxygen atoms of the (Al, Si)O4 tetrahedra. - b tetr b dimension which the tetrahedral sheet would assume if unconstrained. - b obs observed value of b. - c oct * thickness of the octahedral sheet. - c tetr * thickness of the tetrahedral sheet. - average tetrahedral rotation from ideal hexagonal symmetry. - separation of two Obas sheets in contact with the interlayer cation. - Oap-Si-Obas angle. This research was supported by Consiglio Nazionale delle Ricerche, Roma.  相似文献   

16.
Reaction textures and chemographic relations in sapphirine-bearing basic granulites at Finero, Italy, suggest that sapphirine and aluminous diopside were formed in mutual equilibrium from an inferred early spinel-bearing assemblage. Finero appears to be the only known locality where this association has been found in situ, although it is also known from kimberlite and breccia pipe nodules elsewhere. The reactions deduced to have occurred in these rocks suggest the existence of stable invariant points involving the phases sapphirine-spinel-orthopyroxene-clinopyroxene-garnet-anorthite and sapphirine-two pyroxenes-garnetanorthite-kyanite (or sillimanite) in the CMAS end-member system. P-T estimates for the relevant rocks, and the available experimental data, suggest that these points lie at around 800°–900° C, 9–11 kbar. A semi-quantitative petrogenetic grid, incorporating these invariant points with previously determined univariant reactions, is proposed. It is inferred that sapphirine+diopside are stable relative to spinel-bearing assemblages below 900° C. The relatively low temperature explains why sapphirine has not to date been reported from experimental work on the CMAS system. It also suggests that sapphirine may be an important aluminous phase in Mg-rich metagabbros under conditions corresponding to the base of the continental crust, despite the observed rarity of such rocks at the surface.  相似文献   

17.
MORB suites display variations in their chemical differentiation trends which are closely related to the incompatible element enrichment of the basalts. We examine suites of primitive to evolved basalts from the Pacific-Nazca Ridge at 28° S (mostly depleted); from the Juan Fernandez microplate region (depleted) and from the Explorer Ridge, northeast Pacific (mostly enriched). Trends for incompatible element enriched MORBs consistently show less depletion of Al2O3 and less enrichment of FeO when plotted on MgO variation diagrams.Least squares modeling indicates that enriched basalts have undergone less plagioclase crystallization than depleted basalts especially in the early stages of differentiation. Using thermodynamic modelling, we show that variations between MORB differentiation trends result largely from differences in the major element chemistry and H2O content of primary magmas. Our chosen enriched and depleted near-primary magmas are similar in major element chemistry but the enriched near-primary magma has higher H2O and lower Al2O3 than the depleted near-primary magma. The MORB crystallization sequence is: olivineolivine+plagioclase olivine+plagioclase+high-Ca pyroxene; and the separate and combined effects of lower Al2O3 and higher H2O are to cause plagioclase to crystallize later (lower temperature), and to make the interval of olivine+plagioclase crystallization shorter. As a result, enriched differentiates have higher Al2O3 and lower FeO than depleted MORBs at a given MgO content, even though their parents' Al2O3 is lower. Crystallization of enriched basalts at higher pressure than depleted basalts is not able to account for differences between the differentiation trends because the proportion of plagioclase is higher during three-phase crystallization at high pressure.The variations in trends do not depend on geographic location and thus are superimposed on any regional variations in MORB chemistry or mantle source. Nor are they related to spreading rate. Depleted basalts from the fast-spreading 28° S and Juan Fernandez ridges have differentiation trends similar to depleted basalts from the medium-spreading Galapagos Spreading Center, whereas differentiation trends for enriched basalts from the medium-spreading Explorer Ridge are quite different. Fe3+/Fetotal is similar (and quite low) for enriched and depleted basalts, indicating that neither oxidation state nor early magnetite crystallization are important.  相似文献   

18.
Quartz and rutile were synthesized from silica-saturated aqueous fluids between 5 and 20 kbar and from 700 to 940°C in a piston-cylinder apparatus to explore the potential pressure effect on Ti solubility in quartz. A systematic decrease in Ti-in-quartz solubility occurs between 5 and 20 kbar. Titanium K-edge X-ray absorption near-edge structure (XANES) measurements demonstrate that Ti4+ substitutes for Si4+ on fourfold tetrahedral sites in quartz at all conditions studied. Molecular dynamic simulations support XANES measurements and demonstrate that Ti incorporation onto fourfold sites is favored over interstitial solubility mechanisms. To account for the PT dependence of Ti-in-quartz solubility, a least-squares method was used to fit Ti concentrations in quartz from all experiments to the simple expression
RTlnX\textTiO 2 \textquartz = - 60952 + 1.520 ·T(K) - 1741 ·P(kbar) + RTlna\textTiO 2 RT\ln X_{{{\text{TiO}}_{ 2} }}^{\text{quartz}} = - 60952 + 1.520 \cdot T(K) - 1741 \cdot P(kbar) + RT\ln a_{{{\text{TiO}}_{ 2} }}  相似文献   

19.
The coefficient for iron and magnesium exchange between olivine and liquid is modelled as a function of temperature in the simple system MgO-FeO-SiO2, and is found to be temperature insensitive in the range 1,200–1,400° C, but temperature sensitive at higher temperatures. In natural systems silica and the alkalis have a strong effect on the exchange coefficient. This effect is approximated by a simple mixture model for the silicate liquid.The influence of pressure is theoretically estimated by the Clapeyron equation, and accord between predicted and observed values is found in experimental melts formed at 20 to 30 kbar. The equation for the exchange coefficient as a function of temperature, pressure and composition is used to test models for the reversal in the normal fractionation trend in the eastern and western Bushveld Complex. Multiple magma intrusion is the only satisfactory hypothesis for this feature.  相似文献   

20.
 In order to clarify Al2O3 content and phase stability of aluminous CaSiO3-perovskite, high-pressure and high-temperature transformations of Ca3Al2Si3O12 garnet (grossular) were studied using a MA8-type high-pressure apparatus combined with synchrotron radiation. Recovered samples were examined by analytical transmission electron microscopy. At pressures of 23–25 GPa and temperatures of 1000–1600 K, grossular garnet decomposed into a mixture of aluminum-bearing Ca-perovskite and corundum, although a metastable perovskite with grossular composition was formed when the heating duration was not long enough at 1000 K. On release of pressure, this aluminum-bearing CaSiO3-perovskite transformed to the “LiNbO3-type phase” and/or amorphous phase depending on its Al2O3 content. The structure of this LiNbO3-type phase is very similar to that of LiNbO3 but is not identical. CaSiO3-perovskite with 8 to 25 mol% Al2O3 was quenched to alternating lamellae of amorphous layer and LiNbO3-type phase. On the other hand, a quenched product from CaSiO3-perovskite with less than 6 mol% consisted only of amorphous phase. Most of the inconsistencies amongst previous studies could be explained by the formation of perovskite with grossular composition, amorphous phase, and the LiNbO3-type phase. Received: 11 April 2001 / Accepted: 5 July 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号