首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Radio occultation experiment on board Mariner 9 has been used to demonstrate that the altitude of the main electron density peak in the Martian ionosphere is closely related to the height of Mars’ surface at the occultation point. This is direct evidence for topographic effects on the Martian ionosphere. Modeling indicates that topographic-induced modulations of the neutral density in the upper atmosphere can account for the observed ionospheric effects. The neutral density modulation is likely to be caused by nonmigrating tides in the Martian thermosphere.  相似文献   

2.
The MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) instrument on the Mars Express spacecraft provides both local and remote measurements of electron densities and measurements of magnetic fields in the martian ionosphere. The density measurements show a persistent level of large fluctuations, sometimes as much as a factor of three or more at high altitudes. Large magnetic field fluctuations are also observed in the same region. The power spectrums of both the density and magnetic field fluctuations have slopes on a log-log plot that are consistent with the Kolmogorov spectrum for isotropic fluid turbulence. The fractional density fluctuation, Δne/ne, of the turbulence increases with altitude, and reaches saturation, Δne/ne ∼ 1, at an altitude of about 400 km, near the nominal boundary between the ionosphere and the magnetosheath. The fluctuations are usually so large that a well-defined ionopause-like boundary between the ionosphere and the solar wind is seldom observed. Of mechanisms that could be generating this turbulence, we believe that the most likely are (1) solar wind pressure perturbations, (2) an instability in the magnetosheath plasma, such as the mirror-mode instability, or (3) the Kelvin-Helmholtz instability driven by velocity shear between the rapidly flowing magnetosheath and the ionosphere.  相似文献   

3.
The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) onboard the Mars Express spacecraft has occasionally displayed surprising features. One such feature is the occurrence of a series of broadband, low-frequency echoes at equally spaced delay times after the sounder transmitter pulse. The interval between the echoes has been shown to be at the cyclotron period of electrons orbiting in the local magnetic field. The electrons are believed to be accelerated by the large voltages applied to the antenna by the sounder transmitter. Measurements of the period of these “electron cyclotron echoes” provide a simple technique for determining the magnitude of the magnetic field near the spacecraft. These measurements are particularly useful because Mars Express carries no magnetometer, so this is the only method available for measuring the magnetic field magnitude. Using this technique, results are presented showing the large scale structure of the draped field inside the magnetic pile-up boundary. The magnitude of the draped field is shown to vary from about 40 nT at a solar zenith angle of about 25°, to about 25 nT at a solar zenith angle of 90°. The results compare favorably with similar results from the Mars Global Surveyor spacecraft. A fitting technique is developed to derive the vector direction and magnitude of the draped magnetic field in cases where the spacecraft passes through regions with significant variation in the crustal field. The magnetic field directions are consistent with current knowledge of the draping geometry of the magnetic field around Mars.  相似文献   

4.
The effect of the ionospheric scintillations on the performance of the dekameter wave band synthetic aperture radar (SAR) is considered. The numerical model for computer simulations, based on the multiple phase screen technique and accounting for diffraction, is formulated. The result of numerical simulations of the radar pulses is presented and analyzed. The role of the various features of the ionospheric disturbances and their influence on the radar pulse characteristic parameters is figured out and discussed. Both effects of anisotropy of the correlation function of plasma irregularities and their temporal variations are studied numerically.  相似文献   

5.
During the final three of the five consecutive and similar Cassini Titan flybys T55-T59 we observe a region characterized by high plasma densities (electron densities of 1-8 cm−3) in the tail/nightside of Titan. This region is observed progressively farther downtail from pass to pass and is interpreted as a plume of ionospheric plasma escaping Titan, which appears steady in both location and time. The ions in this plasma plume are moving in the direction away from Titan and are a mixture of both light and heavy ions with composition revealing that their origin are in Titan's ionosphere, while the electrons are more isotropically distributed. Magnetic field measurements indicate the presence of a current sheet at the inner edge of this region. We discuss the mechanisms behind this outflow, and suggest that it could be caused by ambipolar diffusion, magnetic moment pumping or dispersive Alfvén waves.  相似文献   

6.
Photochemical Chapman theory predicts that the square of peak electron density, Nm, in the dayside ionosphere of Mars is proportional to the cosine of solar zenith angle. We use Mars Global Surveyor Radio Science profiles of electron density to demonstrate that this relationship is generally satisfied and that positive or negative residuals between observed and predicted values of are caused by periods of relatively high or low solar flux, respectively.Understanding the response of the martian ionosphere to changes in solar flux requires simultaneous observations of the martian ionosphere and of solar flux at Mars, but solar flux measurements are only available at Earth. Since the Sun's output varies both in time and with solar latitude and longitude, solar flux at Mars is not simply related to solar flux at Earth by an inverse-square law. We hypothesize that, when corrected for differing distances from the Sun, solar fluxes at Mars and Earth are identical when shifted in time by the interval necessary for the Sun to rotate through the Earth–Sun–Mars angle.We perform four case studies that quantitatively compare time series of Nm at Mars to time series of solar flux at Earth and find that our hypothesis is satisfied in the three of them that used ionospheric data from the northern hemisphere. We define a solar flux proxy at Mars based upon the E10.7 proxy for solar flux at Earth and use our best case study to derive an equation that relates Nm to this proxy. We discuss how the ionosphere of Mars can be used to infer the presence of solar active regions not facing the Earth.Our fourth case study uses ionospheric observations from the southern hemisphere at latitudes where there are strong crustal magnetic anomalies. These profiles do not have Chapman-like shapes, unlike those of the other three case studies. We split this set of measurements into two subsets, corresponding to whether or not they were made at longitudes with strong crustal magnetic anomalies. Neither subset shows Nm responding to changes in solar flux in the manner that we observe in the three other case studies.We find many similarities in ionospheric responses to short-term and long-term changes in solar flux for Venus, Earth, and Mars. We consider the implications of our results for different parametric equations that have been published describing this response.  相似文献   

7.
The NEtlander Ionosphere and Geodesy Experiment (NEIGE) of the Netlander mission to Mars will measure Doppler shifts affecting the radio links between ground stations and an orbiter. The experiment has two complementary scientific objectives which are the monitoring of the structure and dynamics of the ionosphere of Mars and the precise determination of Mars orientation parameters. The horizontal variation of the Total Electron Content (TEC) of the ionosphere will be derived from the so-called “geometric-free” combination of the Doppler shifts which affect radio links at two frequencies (in the UHF and S bands) between the Netlander microstations on the Mars surface and the data-relay orbiter. We describe a new method for retrieving the horizontal profile of the absolute value of the TEC. Simulations have allowed to evaluate the precision in the determination of the TEC using this method. We show that the daytime TEC can be retrieved with a precision of for a nominal accuracy of on the orbital pseudo-velocity, which represents a relative precision of a few percent. A preliminary analysis of the sensitivity of the TEC to the physical parameters which control the ionosphere has been performed. For this purpose, we have used a new one-dimensional ionospheric model based on the solution of coupled kinetic, fluid and MHD equations. This model describes the suprathermal electron component, the thermal plasma component as well as the induced horizontal magnetic field. The code which provides the vertical electron density profile has been used to study the variation of the TEC with the solar zenith angle and with the induced magnetic field at the top of the ionosphere. In particular, we show that NEIGE will allow to diagnose the penetration into the daytime ionosphere of an induced magnetic field.  相似文献   

8.
9.
We report observations of Icelandic hillside gully systems that are near duplicates of gullies observed on high-latitude martian hillsides. The best Icelandic analogs involve basaltic talus slopes at the angle of repose, with gully formation by debris flows initiated by ground water saturation, and/or by drainage of water from upslope cliffs. We report not only the existence of Mars analog gullies, but also an erosional sequence of morphologic forms, found both on Mars and in Iceland. The observations support hypotheses calling for creation of martian gullies by aqueous processes. Issues remain whether the water in each case comes only from surficial sources, such as melting of ground ice or snow, or from underground sources such as aquifers that gain surface access in hillsides. Iceland has many examples of the former, but the latter mechanism is not ruled out. Our observations are consistent with the martian debris flow mechanism of F. Costard et al. (2001c, Science295, 110-113), except that classic debris flows begin at midslope more frequently than on Mars. From morphologic observations, we suggest that some martian hillside gully systems not only involve significant evolution by extended erosive activity, but gully formation may occur in episodes, and the time interval since the last episode is considerably less than the time interval needed to erase the gully through normal martian obliteration processes.  相似文献   

10.
We compare the electron densities of two martian ionospheric layers, which we call M1 and M2, measured by Mars Global Surveyor during 9-27 March 1999, with the electron densities of the terrestrial E and F1 layers derived from ionosonde data at six sites. The day-to-day variations are all linked to changes in solar activity, and provide the opportunity of making the first simultaneous study of four photochemical layers in the solar system. The ‘ionospheric layer index’, which we introduce to characterize ionospheric layers in general, varies between layers because different atmospheric chemistry and solar radiations are involved. The M2 and F1 layer peaks occur at similar atmospheric pressure levels, and the same applies to the M1 and E layers.  相似文献   

11.
We simulate the evolution of post-impact hydrothermal systems within 45 km and 90 km diameter craters on Mars. We focus on the effects of freezing, which alters the permeability structure and fluid flow compared with unfrozen cases. Discharge rates, total discharge and water-rock ratios increase with permeability. Systems with permeabilities of 10−10 m2 or higher exhibit convection in the hydrosphere, allowing them to derive heat from greater depths. Surface discharges persist for ∼103-105 years under freezing surface conditions, with higher permeabilities permitting longer lifetimes. Maximum discharge rates and total discharges range from 0.1 to 10 m3 s−1 and 109 to 1012 m3, respectively, for systems with permeabilities between 10−14 and 10−12 m2. Near-surface water-rock ratios range from <1 for low permeability, frozen cases to ∼103 for high permeabilities and/or unfrozen cases. Propagation of the freezing front radially inwards focuses flow towards the center of the crater resulting in a diagnostic increase in water-rock ratios there. This process may explain the phyllosilicate assemblages observed at some crater central peaks.  相似文献   

12.
13.
Based on the single-fluid MHD model of Mars space simulation, this paper has studied the magnetic field structure in the near-Mars space and investigated the influence of Martian crustal magnetic anomalies on the magnetic field structure. In the process of the solar wind interaction with Mars, the bow shock and magnetic pile-up region are produced. The interplanetary magnetic lines are curved and deformed while they are towed toward the two poles by the solar wind. The majority of magnetic lines bypass the two poles, then leave behind a ‘V-shaped’ structure in the magnetotail behind Mars. In the crust of Mars, the local magnetic anomalies have a noticeable influence on the magnetic field structure. The magnetic anomalies at different positions and in different intensities interact with the solar wind to form the mini-magnetospheres of different structures and morphologies, such as the towed mini-magnetosphere and the mini-magnetosphere with open magnetic lines. The local magnetic anomalies have changed the near-Mars magnetic field structure, and probably changed the plasma distribution as well.  相似文献   

14.
We present an application of a multivariate analyses technique on data returned by the Planetary Fourier Spectrometer (PFS) instrument on board the ESA’s Mars Express (MEX) spacecraft in order to separate the atmospheric contribution from the observed radiation. We observe that Thermal/Far Infrared spectra returned from Mars, covering almost a whole martian year, can be represented by a linear model using a limited set of end-member spectra. We identify the end-members as the suspended mineral dust and water ice clouds, but no surface signature was found. We improve previous studies performed with data from the Thermal Emission Spectrometer (TES) thanks to the higher spectral resolution of PFS. This allows for distinguishing narrow gaseous bands present in the martian atmosphere. Furthermore, the comparison of results from PFS and TES with data collected in 1971 by the Mariner 9 Infrared Interferometer Spectrometer (IRIS) shows an atmospheric dust component with similar spectral behavior. This might indicate homogeneity of the dust source regions over a time period of more than 30 years.  相似文献   

15.
A novel design of a wind sensor for the surface of Mars is described. This sensor is to be included in the Rover Environment Monitoring Station (REMS) to be launched as a part of the Mars Science Laboratory in 2009. A 2D hot film anemometer composed of four hot points and a reference point has been conceived and implemented in the preliminary design model. It uses a closed thermal feedback loop based on thermal sigma-delta modulation. In this paper, the first results obtained in a Mars-like environment are shown, and indicate that sensitivities are expected to be in the range of 0.5 m/s and 10° in wind speed and direction.  相似文献   

16.
William K. Hartmann 《Icarus》2007,189(1):274-278
The Malin et al. [Malin, M.C., Edgett, K., Posiolova, L., McColley, S., Noe Dobrea, E., 2006. Science 314, 1573-1577] report of ongoing production of decameter scale primary craters matches within an order of magnitude the crater production curves of Hartmann [Hartmann, W.K., 2005. Icarus 174, 294-320], and appears to contradict models that say our curves grossly overpredict primary production. Nonetheless, such models may still predict correct order-of-magnitude secondary production. The new observations, if correct, require geologically recent martian surface modification in some areas, on timescales comparable to the cycles of obliquity changes, suggesting episodic martian climatic/environmental change driven by the obliquity cycles.  相似文献   

17.
Recently aurora-type UV emissions were discovered on the nightside of Mars [Bertaux, J.-L., Leblanc, F., Witasse, O., et al., 2005. Discovery of an aurora on Mars. Nature 439, doi:10.1038/nature03603]. It was suggested that these emissions are produced by suprathermal electrons with energies of tens of eV, rather than by the electrons with spectra peaked above 100 eV [Leblanc, F., Witasse, O., Winningham J., et al., 2006. Origin of the martian aurora observed by spectroscopy for investigation of characteristics of the atmosphere of Mars (SPICAM) onboard Mars Express. J. Geophys. Res. 111, A09313, doi:10.1029/2006JA011763]. In this paper we present observations of fluxes of suprathermal electrons (Ee≈30-100 eV) on the Martian nightside by the ASPERA-3 experiment onboard the Mars Express spacecraft. Narrow spikes of suprathermal electrons are often observed in energy-time spectrograms of electron fluxes at altitudes between 250 and 600 km. These spikes are spatially organized and form narrow strips in regions with strong upward or downward crustal magnetic field. The values of electron fluxes in such events generally could explain the observed auroral UV emissions although a question of their origin (transport from the dayside or local precipitation) remains open.  相似文献   

18.
Meteoric ions in the atmosphere of Mars   总被引:1,自引:0,他引:1  
  相似文献   

19.
Ridges that resemble terrestrial moraines are commonly visible at the foot of many mid-latitude crater walls in Mars Global Surveyor Mars Orbiter Camera images. These moraine-like ridges are often associated with hillside gullies, mantling material, and glacier-like flows, and are usually in contact with crater fill, suggesting possible interrelationships. We consider terrestrial glacier systems that may be analogs of martian moraine-like ridges and glacier-like flows and suggest that the formation of some gullies and crater fill is intimately tied to ice deposition, ice flow, and rock-glacier processes. Upper limits on age suggest the possibility that many of these features formed during the last, or last few, high obliquity cycles.  相似文献   

20.
The author puts forward the proposal in this paper that all the terrestrial planets (Venus, the Earth, and Mars) as well as the Moon deviate from hydrostatic equilibrium to some degree. The Earth's level of deviation of these four celestial bodies is minimum, and that of Mars is maximum. Moreover, the author estimates Martian nonhydrostatic components of the principal moments-of-inertia using five models for the interior of Mars. Comparison with other terrestrial planets shows that setting the range of mean moment-of-inertia ratio, I/MR2, in 0.345 ~ 0.355for Mars is reasonable. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号