首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The altitudinal/latitudinal profile of the lunar atmospheric composition on the sunlit side was unraveled for the first time by the Chandra’s Altitudinal Composition Explorer (CHACE) on the Moon Impact Probe, a standalone micro-satellite that impacted at the lunar south pole, as a part of the first Indian mission to Moon, Chandrayaan-1. Systematic measurements were carried out during the descent phase of the impactor with an altitude resolution of ∼250 m and a latitudinal resolution of ∼0.1°. The overall pressure on the dayside and the neutral composition in the mass range 1-100 amu have been measured by identifying 44 and 18 amu as the dominant constituents. Significant amounts of heavier (>50 amu) species also have been detected, the details of which are presented and discussed.  相似文献   

2.
We report here on a survey of distal fine-grained ejecta deposits on the Moon, Mars, and Venus. On all three planets, fine-grained ejecta form circular haloes that extend beyond the continuous ejecta and other types of distal deposits such as run-out lobes or ramparts. Using Earth-based radar images, we find that lunar fine-grained ejecta haloes represent meters-thick deposits with abrupt margins, and are depleted in rocks ?1 cm in diameter. Martian haloes show low nighttime thermal IR temperatures and thermal inertia, indicating the presence of fine particles estimated to range from ∼10 μm to 10 mm. Using the large sample sizes afforded by global datasets for Venus and Mars, and a complete nearside radar map for the Moon, we establish statistically robust scaling relationships between crater radius R and fine-grained ejecta run-out r* for all three planets. On the Moon, r* ∼ R−0.18 for craters 5-640 km in diameter. For Venus, radar-dark haloes are larger than those on the Moon, but scale as r* ∼ R−0.49, consistent with ejecta entrainment in Venus’ dense atmosphere. On Mars, fine-ejecta haloes are larger than lunar haloes for a given crater size, indicating entrainment of ejecta by the atmosphere or vaporized subsurface volatiles, but scale as R−0.13, similar to the ballistic lunar scaling. Ejecta suspension in vortices generated by passage of the ejecta curtain is predicted to result in ejecta run-out that scales with crater size as R1/2, and the wind speeds so generated may be insufficient to transport particles at the larger end of the calculated range. The observed scaling and morphology of the low-temperature haloes leads us rather to favor winds generated by early-stage vapor plume expansion as the emplacement mechanism for low-temperature halo materials.  相似文献   

3.
The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft will orbit the Moon at an altitude of ≈50 km with a payload that includes the Ultraviolet Spectrometer (UVS) instrument, which will obtain high spectral resolution measurements at near-ultraviolet and visible wavelengths (≈231-826 nm). When LADEE/UVS observes the lunar limb from within the shadow of the Moon it is anticipated that it will detect a lunar horizon glow (LHG) due to sunlight scattered from submicron exospheric dust, as well as emission lines from exospheric gases (particularly sodium), in the presence of the bright coronal and zodiacal light (CZL) background. A modularized code has been developed at NMSU for simulations of scattered light sources as observed by orbiting instruments in lunar shadow. Predictions for the LADEE UVS and star tracker cameras indicate that LHG, sodium (Na) emission lines, and CZL can be distinguished based on spatial morphology and spectral characteristics, with LHG dominant at blue wavelengths (∼250-450 nm) and small tangent heights. If present, LHG should be readily detected by LADEE/UVS and distinguishable from other sources of optical scattering. Observations from UVS and the other instruments aboard LADEE will significantly advance our understanding of how the Moon interacts with the surrounding space environment; these new insights will be applicable to the many other airless bodies in the solar system.  相似文献   

4.
Vesta, the second largest Main-Belt Asteroid, will be the first to be explored in 2011 by NASA’s Dawn mission. It is a dry, likely differentiated body with spectrum suggesting that is has been resurfaced by basaltic lava flows, not too different from the lunar maria.Here we present the first disk-resolved spectroscopic observations of an asteroid from the ground. We observed (4) Vesta with the ESO-VLT adaptive optics equipped integral-field near-infrared spectrograph SINFONI, as part of its science verification campaign. The highest spatial resolution of ∼90 km on Vesta’s surface was obtained during excellent seeing conditions (0.5) in October 2004.We observe spectral variations across Vesta’ surface that can be interpreted as variations of either the pyroxene composition, or the effect of surface aging. We compare Vesta’s 2 μm absorption band to that of howardite-eucrite-diogenite (HED) meteorites that are thought to originate from Vesta, and establish particular links between specific regions and HED subclasses. The overall composition is found to be mostly compatible with howardite meteorites, although a small area around 180°E longitude could be attributed to a diogenite-rich spot. We finally focus our spectral analysis on the characteristics of Vesta’s bright and dark regions as seen from Hubble Space Telescope’s visible and Keck-II’s near-infrared images.  相似文献   

5.
The solid planets assembled 4.57 Gyr ago during a period of less than 100 Myr, but the bulk of the impact craters we see on the inner planets formed much later, in a narrow time interval between 3.8 and 3.9 Gyr ago, during the so-called late heavy bombardment (LHB). It is not certain what caused the LHB, and it has not been well known whether the impactors were comets or asteroids, but our present study lend support to the idea that it was comets. Due to the Earth’s higher gravity, the impactors will have hit the Earth with ∼twice the energy density that they hit the Moon, and the bombardment will have continued on Earth longer than on the Moon. All solid surface of the Earth will have been completely covered with craters by the end of the LHB.However, almost nothing of the Earth’s crust from even the end of this epoch, is preserved today. One of the very few remnants, though, is exposed as the Isua greenstone belt (IGB) and nearby areas in Western Greenland. During a field expedition to Isua, we sampled three types of metasedimentary rocks, deposited ∼3.8 billion years ago, that contain information about the sedimentary river load from larger areas of surrounding land surfaces (mica-schist and turbidites) and of the contemporaneous seawater (BIF). Our samples show evidence of the LHB impacts that took place on Earth, by an average of a seven times enrichment (150 ppt) in iridium compared to present-day ocean crust (20 ppt). The clastic sediments show slightly higher enrichment than the chemical sediments, which may be due to contamination from admixtures of mafic (proto-crustal) sources.We show that this enrichment is in agreement with the lunar cratering rate and a corresponding extraterrestrial LHB contribution to the Earth’s Hadean-Eoarchean crust, provided the bulk of the influx was cometary (i.e., of high velocity and low in CI abundance), but not if the impactors were meteorites (i.e. had velocities and abundances similar to present-day Earth-crossing asteroids). Our study is a first direct indication of the nature of the LHB impactors, and the first to find an agreement between the LHB lunar cratering rate and the Earth’s early geochemical record (and the corresponding lunar record). The LHB comets that delivered the iridium we see at Isua will at the same time have delivered the equivalent of a ∼1 km deep ocean, and we explain why one should expect a cometary ocean to become roughly the size of the Earth’s present-day ocean, not only in terms of depth but also in terms of the surface area it covers. The total impacting mass on the Earth during the LHB will have been ∼1000 tons/m2.  相似文献   

6.
Modeling results of the water vapor plume produced by a comet impact on the Moon and of the resulting water ice deposits in the lunar cold traps are presented. The water vapor plume is simulated near the point of impact by the SOVA hydrocode and in the far field by the Direct Simulation Monte Carlo (DSMC) method using as input the SOVA hydrocode solution at a fixed hemispherical interface. The SOVA hydrocode models the physics of the impact event such as the surface deformation and material phase changes during the impact. The further transport and retention processes, including gravity, photodestruction processes, and variable surface temperature with local polar cold traps, are modeled by the DSMC method for months after impact. In order to follow the water from the near field of the impact to the full planetary induced atmosphere, the 3D parallel DSMC code used a collision limiting scheme and an unsteady multi-domain approach. 3D results for the 45° oblique impact of a 2 km in diameter comet on the surface of the Moon at 30 km/s are presented. Most of the cometary water is lost due to escape just after impact and only ∼3% of the cometary water is initially retained on the Moon. Early downrange focusing of the water vapor plume is observed but the later material that is moving more slowly takes on a more symmetric shape with time. Several locations for the point of impact were investigated and final retention rates of ∼0.1% of the comet mass were observed. Based on the surface area of the cold traps used in the present simulations, ∼1 mm of ice would have accumulated in the cold traps after such an impact. Estimates for the total mass of water accumulated in the polar cold traps over 1 byr are consistent with recent observations.  相似文献   

7.
Based on the vapor pressure behavior of Pluto’s surface ices, Pluto’s atmosphere is expected to be predominantly composed of N2 gas. Measurement of the N2 isotopologue 15N/14N ratio within Pluto’s atmosphere would provide important clues to the evolution of Pluto’s atmosphere from the time of formation to its present state. The most straightforward way of determining the N2 isotopologue 15N/14N ratio in Pluto’s atmosphere is via spectroscopic observation of the 14N15N gas species. Recent calculations of the 80–100 nm absorption behavior of the 14N2 and 14N15N isotopologues by Heays et al. (Heays, A.N. et al. [2011]. J. Chem. Phys. 135, 244301), Lewis et al. (Lewis, B.R., Heays, A.N., Gibson, S.T., Lefebvre-Brion, H., Lefebvre, R. [2008]. J. Chem. Phys. 129, 164306); Lewis et al. (Lewis, B.R., Gibson, S.T., Zhang, W., Lefebvre-Brion, H., Robbe, J.-M. [2005]. J. Chem. Phys. 122, 144302), and Haverd et al. (Haverd, V.E., Lewis, B.R., Gibson, S.T., Stark, G. [2005]. J. Chem. Phys. 123, 214304) show that the peak magnitudes of the 14N2 and 14N15N absorption bandhead cross-sections are similar, but the locations of the bandhead peaks are offset in wavelength by ∼0.05–0.1 nm. These offsets make the segregation of the 14N2 and 14N15N absorption signatures possible. We use the most recent N2 isotopologue absorption cross-section calculations and the atmospheric density profiles resulting from photochemical models developed by Krasnopolsky and Cruickshank (Krasnopolsky, V.A., Cruickshank, D.P. [1999]. J. Geophys. Res. 104, 21979–21996) to predict the level of solar light that will be transmitted through Pluto’s atmosphere as a function of altitude during a Pluto solar occultation. We characterize the detectability of the isotopic absorption signature per altitude assuming 14N15N concentrations ranging from 0.1% to 2% of the 14N2 density and instrumental spectral resolutions ranging from 0.01 to 0.3 nm. Our simulations indicate that optical depth of unity is attained in the key 14N15N absorption bands located between 85 and 90 nm at altitudes ∼1100–1600 km above Pluto’s surface. Additionally, an 14N15N isotope absorption depth ∼4–15% is predicted for observations obtained at these altitudes at a spectral resolution of ∼0.2–0.3 nm, if the N2 isotopologue 15N/14N percent ratio is comparable to the 0.37–0.6% ratio observed at Earth, Titan and Mars. If we presume that the predicted absorption depth must be at least 25% greater than the expected observational uncertainty, then it follows that a statistically significant detection of these signatures and constraint of the N2 isotopologue 14N/15N ratio within Pluto’s atmosphere will be possible if the attainable observational signal-to noise (S/N) ratio is ?9. The New Horizons (NH) Mission will be able to obtain high S/N, 0.27–0.35 nm full-width half-max 80–100 nm spectral observations of Pluto using the Alice spectrograph. Based on the NH/Alice specifications we have simulated 0.3 nm spectral resolution solar occultation spectra for the 1100–1600 km altitude range, assuming 30 s integration times. These simulations indicate that NH/Alice will obtain spectral observations within this altitude range with a S/N ratio ∼25–50, and should be able to reliably detect the 14N15N gas absorption signature between 85 and 90 nm if the 14N15N concentration is ∼0.3% or greater. This, additionally, implies that the non-detection of the 14N15N species in the 1100–1600 km range by NH/Alice may be used to reliably establish an upper limit to the N2 isotopologue 15N/14N ratio within Pluto’s atmosphere. Similar results may be derived from 0.2 to 0.3 nm spectral resolution observations of any other N2-rich Solar System or exoplanet atmosphere, provided the observations are attained with similar S/N levels.  相似文献   

8.
Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III   总被引:1,自引:0,他引:1  
Understanding plume impingement by retrorockets on the surface of the Moon is paramount for safe lunar outpost design in NASA’s planned return to the Moon for the Constellation Program. Visual inspection, Scanning Electron Microscopy, and surface scanned topology have been used to investigate the damage to the Lunar Surveyor III spacecraft that was caused by the Apollo 12 Lunar Module’s close proximity landing. Two parts of the Surveyor III craft returned by the Apollo 12 astronauts, Coupons 2050 and 2051, which faced the Apollo 12 landing site, show that a fine layer of lunar regolith coated the materials and was subsequently removed by the Apollo 12 Lunar Module landing rocket. The coupons were also pitted by the impact of larger soil particles with an average of 103 pits/cm2. The average entry size of the pits was 83.7 μm (major diameter) × 74.5 μm (minor diameter) and the average estimated penetration depth was 88.4 μm. Pitting in the surface of the coupons correlates to removal of lunar fines and is likely a signature of lunar material imparting localized momentum/energy sufficient to cause cracking of the paint. Comparison with the lunar soil particle size distribution and the optical density of blowing soil during lunar landings indicates that the Surveyor III spacecraft was not exposed to the direct spray of the landing Lunar Module, but instead experienced only the fringes of the spray of soil. Had Surveyor III been exposed to the direct spray, the damage would have been orders of magnitude higher.  相似文献   

9.
Seismic refraction data, obtained at the Apollo 14 and 16 sites, when combined with other lunar seismic data, allow a compressional wave velocity profile of the lunar near-surface and crust to be derived. The regolith, although variable in thickness over the lunar surface, possesses surprisingly similar seismic properties. Underlying the regolith at both the Apollo 14 Fra Mauro site and the Apollo 16 Descartes site is low-velocity brecciated material or impact derived debris. Key features of the lunar seismic velocity profile are: (i) velocity increases from 100–300 m s–1 in the upper 100 m to 4 km s–1 at 5 km depth, (ii) a more gradual increase from 4 km s–1 to 6 km s–1 at 25 km depth, (iii) a discontinuity at a depth of 25 km and (iv) a constant value of 7 km s–1 at depths from 25 km to about 60 km. The exact details of the velocity variation in the upper 5 to 10 km of the Moon cannot yet be resolved but self-compression of rock powders cannot duplicate the observed magnitude of the velocity change and the steep velocity-depth gradient. Other textural or compositional changes must be important in the upper 5 km of the Moon. The only serious candidates for the lower lunar crust are anorthositic or gabbroic rocks.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April, 1973.  相似文献   

10.
G.J. Black  D.B. Campbell 《Icarus》2010,209(1):224-229
We present radar imaging of Mercury using the Arecibo Observatory’s 70-cm wavelength radar system during the inferior conjunction of July 1999. At that time the sub-Earth latitude was ∼11°N and the highly reflective region at Mercury’s north pole that was first identified in radar images at the shorter wavelengths of 3.6 cm [Slade, M.A., Butler, B.J., Muhleman, D.O., 1992. Science 258, 635-640] and 13 cm [Harmon, J.K., Slade, M.A., 1992. Science 258, 640-643] was again clearly detected. The reflectivity averaged over a 75,000 km2 region including the pole is similar to that measured at the other wavelengths over a comparable area, and the 70 cm circular polarization ratio of μC0.87 is possibly slightly lower. If this strong backscattering results from volume scattering in low absorption layers, the persistence of this effect over more than an order of magnitude change in wavelength scale has implications for the depth and thickness of the deposits responsible. The resolution of the radar maps at this wavelength is not sufficient to resolve individual craters, nor to discern features at other latitudes, but the planet’s total reflectivity is consistent with previous work and the scattering function suggests a surface roughness at this wavelength similar to the lunar highlands.  相似文献   

11.
This paper extends Leovy's theory on Venus’ equatorial superrotation by analytically examining additional terms in the mean zonal momentum equation that stably balances the momentum source of pumping by thermal tides. The general analytical solution is applied to the atmospheres of both Venus and Saturn's moon Titan. The main results are: (i) Venus’ equatorial superrotation of 118 m s−1 results primarily from a balance between the momentum source of pumping by thermal tides and the momentum sink of meridional advection of wind shear by horizontal branches of the Hadley circulation; (ii) no solution is found for Titan's stratospheric equatorial superrotation centered at the 1-hPa level; (iii) however, if the main solar radiation absorption layer in Titan's stratosphere is lifted from 1 hPa (∼185 km) to 0.1 hPa (∼288 km), an equatorial superrotation of ∼110 m s−1 centered at 0.1-hPa could be maintained. Titan's equatorial superrotation results mainly from a balance between the momentum source of tidal pumping and the momentum sink of frictional drag.  相似文献   

12.
We report on hydrodynamic calculations of impacts of large (multi-kilometer) objects on Saturn’s moon Titan. We assess escape from Titan, and evaluate the hypothesis that escaping ejecta blackened the leading hemisphere of Iapetus and peppered the surface of Hyperion.We carried out two- and three-dimensional simulations of impactors ranging in size from 4 to 100 km diameter, impact velocities between 7 and 15 km s−1, and impact angles from 0° to 75° from the vertical. We used the ZEUSMP2 hydrocode for the calculations. Simulations were made using three different geometries: three-dimensional Cartesian, two-dimensional axisymmetric spherical polar, and two-dimensional plane polar. Three-dimensional Cartesian geometry calculations were carried out over a limited domain (e.g. 240 km on a side for an impactor of size di = 10 km), and the results compared to ones with the same parameters done by Artemieva and Lunine (2005); in general the comparison was good. Being computationally less demanding, two-dimensional calculations were possible for much larger domains, covering global regions of the satellite (from 800 km below Titan’s surface to the exobase altitude 1700 km above the surface). Axisymmetric spherical polar calculations were carried out for vertical impacts. Two-dimensional plane-polar geometry calculations were made for both vertical and oblique impacts. In general, calculations among all three geometries gave consistent results.Our basic result is that the amount of escaping material is less than or approximately equal to the impactor mass even for the most favorable cases. Amounts of escaping material scaled most strongly as a function of velocity, with high-velocity impacts generating the largest amount, as expected. Dependence of the relative amount of escaping mass fesc = mesc/Mi on impactor diameter di was weak. Oblique impacts (impact angle θi > 45°) were more effective than vertical or near-vertical impacts; ratios of mesc/Mi ∼ 1-2 were found in the simulations.  相似文献   

13.
Hale crater, a 125 × 150 km impact crater located near the intersection of Uzboi Vallis and the northern rim of Argyre basin at 35.7°S, 323.6°E, is surrounded by channels that radiate from, incise, and transport material within Hale’s ejecta. The spatial and temporal relationship between the channels and Hale’s ejecta strongly suggests the impact event created or modified the channels and emplaced fluidized debris flow lobes over an extensive area (>200,000 km2). We estimate ∼1010 m3 of liquid water was required to form some of Hale’s smaller channels, a volume we propose was supplied by subsurface ice melted and mobilized by the Hale-forming impact. If 10% of the subsurface volume was ice, based on a conservative porosity estimate for the upper martian crust, 1012 m3 of liquid water could have been present in the ejecta. We determine a crater-retention age of 1 Ga inside the primary cavity, providing a minimum age for Hale and a time at which we propose the subsurface was volatile-rich. Hale crater demonstrates the important role impacts may play in supplying liquid water to the martian surface: they are capable of producing fluvially-modified terrains that may be analogous to some landforms of Noachian Mars.  相似文献   

14.
Illumination conditions of the lunar polar regions using LOLA topography   总被引:3,自引:0,他引:3  
E. Mazarico  G.A. Neumann  M.T. Zuber 《Icarus》2011,211(2):1066-1081
We use high-resolution altimetry data obtained by the Lunar Orbiter Laser Altimeter instrument onboard the Lunar Reconnaissance Orbiter to characterize present illumination conditions in the polar regions of the Moon. Compared to previous studies, both the spatial and temporal extent of the simulations are increased significantly, as well as the coverage (fill ratio) of the topographic maps used, thanks to the 28 Hz firing rate of the five-beam instrument. We determine the horizon elevation in a number of directions based on 240 m-resolution polar digital elevation models reaching down to ∼75° latitude. The illumination of both polar regions extending to ∼80° can be calculated for any geometry from those horizon longitudinal profiles. We validated our modeling with recent Lunar Reconnaissance Orbiter Wide-Angle Camera images. We assessed the extent of permanently shadowed regions (PSRs, defined as areas that never receive direct solar illumination), and obtained total areas generally larger than previous studies (12,866 and 16,055 km2, in the north and south respectively). We extended our direct illumination model to account for singly-scattered light, and found that every PSR does receive some amount of scattered light during the year. We conducted simulations over long periods (several 18.6-years lunar precession cycles) with a high temporal resolution (6 h), and identified the most illuminated locations in the vicinity of both poles. Because of the importance of those sites for exploration and engineering considerations, we characterized their illumination more precisely over the near future. Every year, a location near the Shackleton crater rim in the south polar region is sunlit continuously for 240 days, and its longest continuous period in total darkness is about 1.5 days. For some locations small height gains (∼10 m) can dramatically improve their average illumination and reduce the night duration, rendering some of those particularly attractive energy-wise as possible sites for near-continuous sources of solar power.  相似文献   

15.
Volcanism on Io: New insights from global geologic mapping   总被引:2,自引:0,他引:2  
We produced the first complete, 1:15 M-scale global geologic map of Jupiter’s moon Io, based on a set of monochrome and color Galileo-Voyager image mosaics produced at a spatial resolution of 1 km/pixel. The surface of Io was mapped into 19 units based on albedo, color and surface morphology, and is subdivided as follows: plains (65.8% of surface), lava flow fields (28.5%), mountains (3.2%), and patera floors (2.5%). Diffuse deposits (DD) that mantle the other units cover ∼18% of Io’s surface, and are distributed as follows: red (8.6% of surface), white (6.9%), yellow (2.1%), black (0.6%), and green (∼0.01%). Analyses of the geographical and areal distribution of these units yield a number of results, summarized below. (1) The distribution of plains units of different colors is generally geographically constrained: Red-brown plains occur >±30° latitude, and are thought to result from enhanced alteration of other units induced by radiation coming in from the poles. White plains (possibly dominated by SO2 + contaminants) occur mostly in the equatorial antijovian region (±30°, 90-230°W), possibly indicative of a regional cold trap. Outliers of white, yellow, and red-brown plains in other regions may result from long-term accumulation of white, yellow, and red diffuse deposits, respectively. (2) Bright (possibly sulfur-rich) flow fields make up 30% more lava flow fields than dark (presumably silicate) flows (56.5% vs. 43.5%), and only 18% of bright flow fields occur within 10 km of dark flow fields. These results suggest that secondary sulfurous volcanism (where a bright-dark association is expected) could be responsible for only a fraction of Io’s recent bright flows, and that primary sulfur-rich effusions could be an important component of Io’s recent volcanism. An unusual concentration of bright flows at ∼45-75°N, ∼60-120°W could be indicative of more extensive primary sulfurous volcanism in the recent past. However, it remains unclear whether most bright flows are bright because they are sulfur flows, or because they are cold silicate flows covered in sulfur-rich particles from plume fallout. (3) We mapped 425 paterae (volcano-tectonic depressions), up from 417 previously identified by Radebaugh et al. (Radebaugh, J., Keszthelyi, L.P., McEwen, A.S., Turtle, E.P., Jaeger, W., Milazzo, M. [2001]. J. Geophys. Res. 106, 33005-33020). Although these features cover only 2.5% of Io’s surface, they correspond to 64% of all detected hot spots; 45% of all hot spots are associated with the freshest dark patera floors, reflecting the importance of active silicate volcanism to Io’s heat flow. (4) Mountains cover only ∼3% of the surface, although the transition from mountains to plains is gradational with the available imagery. 49% of all mountains are lineated and presumably layered, showing evidence of linear structures supportive of a tectonic origin. In contrast, only 6% of visible mountains are mottled (showing hummocks indicative of mass wasting) and 4% are tholi (domes or shields), consistent with a volcanic origin. (5) Initial analyses of the geographic distributions of map units show no significant longitudinal variation in the quantity of Io’s mountains or paterae, in contrast to earlier studies. This is because we use the area of mountain and patera materials as opposed to the number of structures, and our result suggests that the previously proposed anti-correlation of mountains and paterae (Schenk, P., Hargitai, H., Wilson, R., McEwen, A., Thomas, P. [2001]. J. Geophys. Res. 106, 33201-33222; Kirchoff, M.R., McKinnon, W.B., Schenk, P.M. [2011]. Earth Planet. Sci. Lett. 301, 22-30) is more complex than previously thought. There is also a slight decrease in surface area of lava flows toward the poles of Io, perhaps indicative of variations in volcanic activity. (6) The freshest bright and dark flows make up about 29% of all of Io’s flow fields, suggesting active emplacement is occurring in less than a third of Io’s visible lava fields. (7) About 47% of Io’s diffuse deposits (by area) are red, presumably deriving their color from condensed sulfur gas, and ∼38% are white, presumably dominated by condensed SO2. The much greater areal extent of gas-derived diffuse deposits (red + white, 85%) compared to presumably pyroclast-bearing diffuse deposits (dark (silicate tephra) + yellow (sulfur-rich tephra), 15%) indicates that there is effective separation between the transport of tephra and gas in many Ionian explosive eruptions. Future improvements in the geologic mapping of Io can be obtained via (a) investigating the relationships between different color/material units that are geographically and temporally associated, (b) better analysis of the temporal variations in the map units, and (c) additional high-resolution images (spatial resolutions ∼200 m/pixel or better). These improvements would be greatly facilitated by new data, which could be obtained by future missions.  相似文献   

16.
MESSENGER Neutron Spectrometer (NS) observations of cosmic-ray-generated thermal neutrons provide the first direct measurements of Mercury’s surface elemental composition. Specifically, we show that Mercury’s surface is enriched in neutron-absorbing elements and has a measured macroscopic neutron-absorption cross section of 45-81 × 10−4 cm2/g, a range similar to the neutron absorption of lunar basalts from Mare Crisium. The expected neutron-absorbing elements are Fe and Ti, with possible trace amounts of Gd and Sm. Fe and Ti, in particular, are important for understanding Mercury’s formation and how its surface may have changed over time through magmatic processes. With neutron Doppler filtering - a neutron energy separation technique based on spacecraft velocity - we demonstrate that Mercury’s surface composition cannot be matched by prior models, which have characteristically low abundances of Fe, Ti, Gd, and Sm. While neutron spectroscopy alone cannot separate the relative contributions of individual neutron-absorbing elements, these results provide strong new constraints on the nature of Mercury’s surface materials. For example, if all the measured neutron absorption were due to the presence of an Fe-Ti oxide and that oxide were ilmenite, then Mercury’s surface would have an ilmenite content of 7-18 wt.%. This result is in general agreement with the inference from color imaging and visible-near-infrared spectroscopy that Mercury’s overall low reflectance is consistent with a surface composition that is enriched in Fe-Ti oxides. The incorporation of substantial Fe and Ti in oxides would imply that the oxygen fugacity of basalts on Mercury is at the upper range of oxygen fugacities inferred for basalts on the Moon.  相似文献   

17.
The “paraboloid” model of Mercury’s magnetospheric magnetic field is used to determine the best-fit magnetospheric current system and internal dipole parameters from magnetic field measurements taken during the first and second MESSENGER flybys of Mercury on 14 January and 6 October 2008. Together with magnetic field measurements taken during the Mariner 10 flybys on 29 March 1974 and 16 March 1975, there exist three low-latitude traversals separated in longitude and one high-latitude encounter. From our model formulation and fitting procedure a Mercury dipole moment of 196 nT ·  (where RM is Mercury’s radius) was determined. The dipole is offset from Mercury’s center by 405 km in the northward direction. The dipole inclination to Mercury’s rotation axis is relatively small, ∼4°, with an eastern longitude of 193° for the dipole northern pole. Our model is based on the a priori assumption that the dipole position and the moment orientation and strength do not change in time. The root mean square (rms) deviation between the Mariner 10 and MESSENGER magnetic field measurements and the predictions of our model for all four flybys is 10.7 nT. For each magnetic field component the rms residual is ∼6 nT or about 1.5% of the maximum measured magnetic field, ∼400 nT. This level of agreement is possible only because the magnetospheric current system parameters have been determined separately for each flyby. The magnetospheric stand-off distance, the distance from the planet’s center to the inner edge of the tail current sheet, the tail lobe magnetic flux, and the displacement of the tail current sheet relative to the Mercury solar-magnetospheric equatorial plane have been determined independently for each flyby. The magnetic flux in the tail lobes varied from 3.8 to 5.9 MWb; the subsolar magnetopause stand-off distance from 1.28 to 1.43 RM; and the distance to the inner edge of the current sheet from 1.23 to 1.32 RM. The differences in the current systems between the first and second MESSENGER flybys are attributed to the effects of strong magnetic reconnection driven by southward interplanetary magnetic field during the latter flyby.  相似文献   

18.
We analyze observations taken with Cassini’s Visual and Infrared Mapping Spectrometer (VIMS), to determine the current methane and haze latitudinal distribution between 60°S and 40°N. The methane variation was measured primarily from its absorption band at 0.61 μm, which is optically thin enough to be sensitive to the methane abundance at 20-50 km altitude. Haze characteristics were determined from Titan’s 0.4-1.6 μm spectra, which sample Titan’s atmosphere from the surface to 200 km altitude. Radiative transfer models based on the haze properties and methane absorption profiles at the Huygens site reproduced the observed VIMS spectra and allowed us to retrieve latitude variations in the methane abundance and haze. We find the haze variations can be reproduced by varying only the density and single scattering albedo above 80 km altitude. There is an ambiguity between methane abundance and haze optical depth, because higher haze optical depth causes shallower methane bands; thus a family of solutions is allowed by the data. We find that haze variations alone, with a constant methane abundance, can reproduce the spatial variation in the methane bands if the haze density increases by 60% between 20°S and 10°S (roughly the sub-solar latitude) and single scattering absorption increases by 20% between 60°S and 40°N. On the other hand, a higher abundance of methane between 20 and 50 km in the summer hemisphere, as much as two times that of the winter hemisphere, is also possible, if the haze variations are minimized. The range of possible methane variations between 27°S and 19°N is consistent with condensation as a result of temperature variations of 0-1.5 K at 20-30 km. Our analysis indicates that the latitudinal variations in Titan’s visible to near-IR albedo, the north/south asymmetry (NSA), result primarily from variations in the thickness of the darker haze layer, detected by Huygens DISR, above 80 km altitude. If we assume little to no latitudinal methane variations we can reproduce the NSA wavelength signatures with the derived haze characteristics. We calculate the solar heating rate as a function of latitude and derive variations of ∼10-15% near the sub-solar latitude resulting from the NSA. Most of the latitudinal variations in the heating rate stem from changes in solar zenith angle rather than compositional variations.  相似文献   

19.
MESSENGER’s Mercury Dual Imaging System (MDIS) obtained multispectral images for more than 80% of the surface of Mercury during its first two flybys. Those images have confirmed that the surface of Mercury exhibits subtle color variations, some of which can be attributed to compositional differences. In many areas, impact craters are associated with material that is spectrally distinct from the surrounding surface. These deposits can be located on the crater floor, rim, wall, or central peak or in the ejecta deposit, and represent material that originally resided at depth and was subsequently excavated during the cratering process. The resulting craters make it possible to investigate the stratigraphy of Mercury’s upper crust. Studies of laboratory, terrestrial, and lunar craters provide a means to bound the depth of origin of spectrally distinct ejecta and central peak structures. Excavated red material (RM), with comparatively steep (red) spectral slope, and low-reflectance material (LRM) stand out prominently from the surrounding terrain in enhanced-color images because they are spectral end-members in Mercury’s compositional continuum. Newly imaged examples of RM were found to be spectrally similar to the relatively red, high-reflectance plains (HRP), suggesting that they may represent deposits of HRP-like material that were subsequently covered by a thin layer (∼1 km thick) of intermediate plains. In one area, craters with diameters ranging from 30 km to 130 km have excavated and incorporated RM into their rims, suggesting that the underlying RM layer may be several kilometers thick. LRM deposits are useful as stratigraphic markers, due to their unique spectral properties. Some RM and LRM were excavated by pre-Tolstojan basins, indicating a relatively old age (>4.0 Ga) for the original emplacement of these deposits. Detailed examination of several small areas on Mercury reveals the complex nature of the local stratigraphy, including the possible presence of buried volcanic plains, and supports sequential buildup of most of the upper ∼5 km of crust by volcanic flows with compositions spanning the range of material now visible on the surface, distributed heterogeneously across the planet. This emerging picture strongly suggests that the crust of Mercury is characterized by a much more substantial component of early volcanism than represented by the phase of mare emplacement on Earth’s Moon.  相似文献   

20.
Large expanses of linear dunes cover Titan’s equatorial regions. As the Cassini mission continues, more dune fields are becoming unveiled and examined by the microwave radar in all its modes of operation (SAR, radiometry, scatterometry, altimetry) and with an increasing variety of observational geometries. In this paper, we report on Cassini’s radar instrument observations of the dune fields mapped through May 2009 and present our key findings in terms of Titan’s geology and climate. We estimate that dune fields cover ∼12.5% of Titan’s surface, which corresponds to an area of ∼10 million km2, roughly the area of the United States. If dune sand-sized particles are mainly composed of solid organics as suggested by VIMS observations (Cassini Visual and Infrared Mapping Spectrometer) and atmospheric modeling and supported by radiometry data, dune fields are the largest known organic reservoir on Titan. Dune regions are, with the exception of the polar lakes and seas, the least reflective and most emissive features on this moon. Interestingly, we also find a latitudinal dependence in the dune field microwave properties: up to a latitude of ∼11°, dune fields tend to become less emissive and brighter as one moves northward. Above ∼11° this trend is reversed. The microwave signatures of the dune regions are thought to be primarily controlled by the interdune proportion (relative to that of the dune), roughness and degree of sand cover. In agreement with radiometry and scatterometry observations, SAR images suggest that the fraction of interdunes increases northward up to a latitude of ∼14°. In general, scattering from the subsurface (volume scattering and surface scattering from buried interfaces) makes interdunal regions brighter than the dunes. The observed latitudinal trend may therefore also be partially caused by a gradual thinning of the interdunal sand cover or surrounding sand sheets to the north, thus allowing wave penetration in the underlying substrate. Altimetry measurements over dunes have highlighted a region located in the Fensal dune field (∼5° latitude) where the icy bedrock of Titan is likely exposed within smooth interdune areas. The hemispherical assymetry of dune field properties may point to a general reduction in the availability of sediments and/or an increase in the ground humidity toward the north, which could be related to Titan’s asymmetric seasonal polar insolation. Alternatively, it may indicate that either the wind pattern or the topography is less favorable for dune formation in Titan’s northern tropics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号