首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We explore the likelihood that early remains of Earth, Mars, and Venus have been preserved on the Moon in high enough concentrations to motivate a search mission. During the Late Heavy Bombardment, the inner planets experienced frequent large impacts. Material ejected by these impacts near the escape velocity would have had the potential to land and be preserved on the surface of the Moon. Such ejecta could yield information on the geochemical and biological state of early Earth, Mars, and Venus. To determine whether the Moon has preserved enough ejecta to justify a search mission, we calculate the amount of terran material incident on the Moon over its history by considering the distribution of ejecta launched from the Earth by large impacts. In addition, we make analogous estimates for Mars and Venus. We find, for a well-mixed regolith, that the median surface abundance of terran material is roughly 7 ppm, corresponding to a mass of approximately 20,000 kg of terran material over a 10×10-square-km area. Over the same area, the amount of material transferred from Venus is 1-30 kg and material from Mars as much as 180 kg. Given that the amount of terran material is substantial, we estimate the fraction of this material surviving impact with intact geochemical and biological tracers.  相似文献   

2.
Trajectory Analysis and Design for A Jupiter Exploration Mission   总被引:1,自引:0,他引:1  
The trajectory design for a Jupiter exploration mission is investigated in this paper. The differences between the Jupiter exploration trajectory and the Mars or Venus exploration trajectory are mainly concerned about. Firstly, the selection of the Jupiter-centered orbit is analyzed based on the Galileo Jupiter mission. As for the Earth-Jupiter transfer orbit, the fuel consumption of the direct transfer is too large. So the energy-saving technologies such as the planetary gravity assist should be used for the trajectory to the Jupiter. The different sequences of planetary gravity assists are examined by applying the Particle Swarm Optimization (PSO). According to the searched result, the Venus-Earth-Earth sequence (VEEGA) is the most effective one for the Jupiter mission. During the Jupiter mission, the spacecraft will pass though the main asteroid belt between the orbits of Mars and Jupiter, and may encounter multiple asteroids. Therefore the Jupiter mission is able to combine with the main-belt asteroid flyby mission. The design method of the intermediate asteroid flyby trajectory is also considered. At last, an entire trajectory for the Jupiter mission launched in 2023 is presented.  相似文献   

3.
木星探测轨道分析与设计   总被引:3,自引:0,他引:3  
研究了与木星探测相关的轨道设计问题.重点关注木星探测轨道与火星、金星等类地行星探测轨道的不同及由此带来的轨道设计难点.首先分析了绕木星探测任务轨道的选择.建立近似模型讨论了向木星飞行需要借助多颗行星的多次引力辅助,对地木转移的多种行星引力辅助序列,使用粒子群算法搜索了2020年至2025年之间的燃料最省飞行方案并对比得到了向木星飞行较好的引力辅助方式为金星-地球-地球引力辅助.结合多任务探测,研究了航天器在飞向木星途中穿越主小行星带飞越探测小行星的轨道设计.最后,给出2023年发射完整的结合引力辅助与小行星多次飞越的木星探测轨道设计算例.  相似文献   

4.
Polygonal terrain, a landform commonly associated with the presence of ground ice, is widespread throughout the high latitudes on Mars. In this paper, we present the results of field testing a potential mission concept for the robotic prospecting of ground ice in polygonal terrain. The focus of the paper is on the key robotic technologies that could be used to implement the concept and the engineering lessons we learned (as opposed to the specific scientific findings of our field tests). In particular, we have found that a lander- or rover-mounted lidar and a rover-borne stereo camera/ground-penetrating radar suite are two important scientific tools that may be used to help pin-point ground ice prior to subsurface sampling. We field tested some aspects of this mission concept on a previously - unstudied polygonal terrain site on Devon Island in the Canadian High Arctic (a common Mars/Moon analogue site) during the summer of 2008. This unique collaboration between technological and scientific communities has led to a deeper understanding of how such a science-driven mission could actually be implemented robotically.  相似文献   

5.
《Planetary and Space Science》1999,47(3-4):441-450
The Planetary Fourier Spectrometer (PFS) is a Fourier transform interferometer, operating in the range 1.2–45 μm. The instrument, previously included in the payload of the failed mission Mars ′96, is proposed for the future space mission Mars Express, under study by ESA. The present paper is aimed at presenting the radiometric performances of PFS. The two channels (LW and SW) forming PFS were analysed and characterised in terms of sensitivity and noise equivalent brightness. To cover the wide spectral range of PFS, different blackbodies were used for calibration. The built-in blackbodies, needed for the in-flight calibrations, were also characterised. The results show that the LW channel is comparable with IRIS Mariner 9 in terms of noise equivalent brightness. The SW channel performances, while satisfactorily, could be improved by lowering the sensor operative temperature. A simple model of the Mars radiance is used in order to calculate the signal-to-noise ratio on the spectra in typical observation conditions. The computed signal-to-noise ratio for the LW channel varies between 430 and 40, while for the SW channel it ranges from 150 to 30. The radiometric analyses confirm that PFS performances are compliant with the design requirements of the instrument. PFS is fully validated for future remote exploration of the atmosphere and the surface of Mars.  相似文献   

6.
The surface of Mars is covered by weathered material. Mars' rusty red colour in particular is commonly ascribed to ferric iron-bearing minerals. The planet's surface is generally iron rich. Mössbauer spectroscopy is a powerful tool for quantitative mineralogical analysis of Fe-bearing minerals. Consequently, the miniaturized Mössbauer spectrometer MIMOS II is part of the payload of NASA's twin Mars Exploration Rovers “Spirit” and “Opportunity”, and ESA's ill-fated Mars Express lander “Beagle 2”. Both Mars Exploration Rovers are currently conducting successful surface operations on Mars. In this paper, we give a brief insight into mission operations with respect to the reconstruction of local weathering scenarios at the landing sites, which in turn will help to illuminate the climatic history of the planet. Mössbauer spectra obtained in preparation of the mission from the SNC meteorites Nakhla, Dar al Gani 476, and Sayh al Uhaymir, show weathering and other alteration features. Preliminary results of laboratory weathering experiments on Fe-bearing minerals (olivine and pyroxene) show the importance of analysing individual minerals to understand weathering of more complex mineral assemblages like, e.g., basalt.  相似文献   

7.
Several characteristic geological features found on the surface of Mars by planetary rovers suggest that a possible extinct biosphere could exist based on similar sources of energy as occurred on Earth. For this reason, analytical instrumental protocols for the detection of biomarkers in suitable geological matrices unequivocally have to be elaborated for future unmanned explorations including the forthcoming ESA ExoMars mission. As part of the Pasteur suite of analytical instrumentation on ExoMars, the Raman/LIBS instrument will seek elemental and molecular information about geological, biological and biogeological markers in the Martian record. A key series of experiments on terrestrial Mars analogues, of which this paper addresses a particularly important series of compounds, is required to obtain the Raman spectra of key molecules and crystals, which are characteristic for each biomarker. Here, we present Raman spectra of several examples of organic compounds which have been recorded non-destructively—higher n-alkanes, polycyclic aromatic hydrocarbons, carotenoids, salts of organic acids, pure crystalline terpenes as well as oxygen-containing organic compounds. In addition, the lower limit of β-carotene detection in sulphate matrices using Raman microspectroscopy was estimated.  相似文献   

8.
The interest towards Mars is nowadays renewed as various satellites, already launched or foreseen for the future, will visit this planet, providing a new wealth of data. In particular, infrared spectroscopic observations need a parallel modelling effort for a proper interpretation of observations. The goal of our modelling is to evaluate the influence of a non negligible fraction of dust particles on intensity and profile of atmospheric Martian spectra. The joint effects of the atmosphere and the surface materials have been also accounted for. For the modelling, a version of the MODTRAN code, expressly modified for application to the Mars environment, has been used. As an example of the materials forming dust dispersed in the atmosphere and on the surface, we have considered andesite. Indices of refraction (n and k) of this material have been derived from laboratory measurements. The obtained results can have an important impact on the interpretation of infrared spectra that instruments such as TES (Thermal Emission Spectrometer), on board the Mars Global Surveyor, and PFS, in the Mars Express mission, will provide.  相似文献   

9.
A mission to Mars including two Small Stations, two Penetrators and an Orbiter was launched at Baikonur, Kazakhstan, on 16 November 1996. This was called the Mars-96 mission. The Small Stations were expected to land in September 1997 (Ls approximately 178 degrees), nominally to Amazonis-Arcadia region on locations (33 N, 169.4 W) and (37.6 N, 161.9 W). The fourth stage of the Mars-96 launcher malfunctioned and hence the mission was lost. However, the state of the art concept of the Small Station can be applied to future Martian lander missions. Also, from the manufacturing and performance point of view, the Mars-96 Small Station could be built as such at low cost, and be fairly easily accommodated on almost any forthcoming Martian mission. This is primarily due to the very simple interface between the Small Station and the spacecraft. The Small Station is a sophisticated piece of equipment. With the total available power of approximately 400 mW the Station successfully supports an ambitious scientific program. The Station accommodates a panoramic camera, an alpha-proton-x-ray spectrometer, a seismometer, a magnetometer, an oxidant instrument, equipment for meteorological observations, and sensors for atmospheric measurement during the descent phase, including images taken by a descent phase camera. The total mass of the Small Station with payload on the Martian surface, including the airbags, is only 32 kg. Lander observations on the surface of Mars combined with data from Orbiter instruments will shed light on the contemporary Mars and its evolution. As in the Mars-96 mission, specific science goals could be exploration of the interior and surface of Mars, investigation of the structure and dynamics of the atmosphere, the role of water and other materials containing volatiles and in situ studies of the atmospheric boundary layer processes. To achieve the scientific goals of the mission the lander should carry a versatile set of instruments. The Small Station accommodates devices for atmospheric measurements, geophysical and geochemical studies of the Martian surface and interior, and cameras for descent phase and panoramic views. These instruments would be able to contribute remarkably to the process of solving some of the scientific puzzles of Mars.  相似文献   

10.
The new Wuqing 70 m radio telescope is first used for the downlink data reception in the first Mars exploration mission of China,and will be used for the other ...  相似文献   

11.
ExoMars is the European Space Agency (ESA) mission to Mars planned for launch in 2018, focusing on exobiology with the primary objective of searching for any traces of extant or extinct carbon-based micro-organisms. The on-surface mission is performed by a near-autonomous mobile robotic vehicle (also referred to as the rover) with a mission design life of 180 sols (Patel et al., 2010). In order to obtain useful data on the tractive performance of the ExoMars rover before flight, it is necessary to perform mobility tests on representative soil simulant materials producing a Martian terrain analogue under terrestrial laboratory conditions. Three individual types of regolith shown to be found extensively on the Martian surface were identified for replication using commercially available terrestrial materials, sourced from UK sites in order to ensure easy supply and reduce lead times for delivery. These materials (also referred to as the Engineering Soil (ES-x) simulants) are: a fine dust analogue (ES-1); a fine aeolian sand analogue (ES-2); and a coarse sand analogue (ES-3). Following a detailed analysis, three fine sand regolith types were identified from commercially available products. Each material was used in its off-the-shelf state, except for ES-2, where further processing methods were used to reduce the particle size range. These materials were tested to determine their physical characteristics, including the particle size distribution, particle density, particle shape (including angularity/sphericity) and moisture content. The results are analysed to allow comparative analysis with existing soil simulants and the published results regarding in situ analysis of Martian soil on previous NASA (National Aeronautics and Space Administration) missions. The findings have shown that in some cases material properties vary significantly from the specifications provided by material suppliers. This has confirmed the need for laboratory testing to determine the actual parameters to prove that standard geotechnical processes are indeed suitable. The outcomes have allowed the confirmation of each simulant material as suitable for replicating their respective regolith types.  相似文献   

12.
To send humans beyond Mars, a Human Outer Planet Exploration (HOPE) mission has been studied for new spacecraft concepts and technologies. In this paper, an interplanetary trajectory and a preliminary spacecraft design are presented for the HOPE visit to Callisto, one of Jupiter's moons. To design a round-trip trajectory for the mission, the characteristics of the spacecraft and its trajectories are analyzed. A detailed optimization approach is formulated to utilize a Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine with capabilities of variable specific impulse, variable engine efficiency, and engine on-off control. It is mainly illustrated that a 30 MW powered spacecraft can make the mission possible in a 5-year round trip constraint around the year 2045. Trajectories with different power and reactor options are also discussed. The results obtained in this study can be used for formulating an overall concept for the mission.  相似文献   

13.
The reported detection of methane in the atmosphere of Mars as well as its potentially large seasonal spatial variations challenge our understanding of both the sources and sinks of atmospheric trace gases. The presence of methane suggests ongoing exchange between the subsurface and the atmosphere of potentially biogenic trace gases, while the spatial and temporal variations cannot be accounted for with current knowledge of martian photochemistry. A Joint Instrument Definition Team (JIDT) was asked to assess concepts for a mission that might follow up on these discoveries within the framework of a series of joint missions being considered by ESA and NASA for possible future exploration of Mars. The following is based on the report of the JIDT to the space agencies (Zurek et al., 2009); a synopsis of the report was presented at the Workshop on Mars Methane held in Frascati, Italy, in November 2009. To summarize, the JIDT believed that a scientifically exciting and credible mission could be conducted within the evolving capabilities of the science/telecommunications orbiter being considered by ESA and NASA for possible launch in the 2016 opportunity for Mars.  相似文献   

14.
Data from the Mars Orbiter Laser Altimeter (MOLA) and Mars Orbiter Camera (MOC) aboard the Mars Global Surveyor (MGS) mission and the Thermal Emission Imaging System (THEMIS) aboard the Mars Odyssey mission have revealed unique surface features in a particular region of the South Polar Layered Deposits (SPLD). The dominant morphology is large-scale quasi-parallel grooves that extend for hundreds of kilometers with only tens of meters of vertical relief, that we have termed here the “Wire Brush” terrain. The grooves are also transected by disjointed, yet roughly continuous, low-relief sinuous ridges that cross roughly perpendicular to the trend-direction of the large-scale grooves and show only tens of meters of relief. We interpret these ridges to be eroded remnants of folded layers. At the northern end of the large-scale grooves there are non-symmetric mounds. They are frequently preceded by a significant depression and/or trailing grooves that are parallel to the Wire Brush trend. We find that a two-stage process involving winds that intermittently remove a low-density crust exposing the underlying ice to ablation is the interpretation that best explains the multitude of features observed here. These features appear to be currently inactive indicating higher winds in previous epochs.  相似文献   

15.
Vaduvescu  O.  Aznar Macias  A.  Wilson  T. G.  Zegmott  T.  Pérez Toledo  F. M.  Predatu  M.  Gherase  R.  Pinter  V.  Pozo Nunez  F.  Ulaczyk  K.  Soszyński  I.  Mróz  P.  Wrona  M.  Iwanek  P.  Szymanski  M.  Udalski  A.  Char  F.  Salas Olave  H.  Aravena-Rojas  G.  Vergara  A. C.  Saez  C.  Unda-Sanzana  E.  Alcalde  B.  de Burgos  A.  Nespral  D.  Galera-Rosillo  R.  Amos  N. J.  Hibbert  J.  López-Comazzi  A.  Oey  J.  Serra-Ricart  M.  Licandro  J.  Popescu  M. 《Earth, Moon, and Planets》2022,126(2):1-26
Earth, Moon, and Planets - The Perseverance rover (Mars 2020) mission, the first step in NASA’s Mars Sample Return (MSR) program, will select samples for caching based on their potential to...  相似文献   

16.
Temporal variations in the visible/near-infrared reflectance spectra of the radiometric calibration targets on the Mars Pathfinder (MPF) lander obtained by the Imager for Mars Pathfinder (IMP) camera reveal the effects of aeolian dust deposition at the MPF site throughout the mission. Sky brightness models in combination with two-layer radiative transfer models were used with these data to track changes in dust opacity on the radiometric calibration targets (RCTs) to constrain the dust deposition rate and the spectral properties of the deposited dust. Two-layer models were run assuming both linear and nonlinear dust accumulation rates, and suggest that RCT dust optical depth at the end of the 83-sol mission was 0.08 to 0.16, or on the order of 5- to 10-μm thickness for plausible values for dust porosity and grain size. These values correspond to dust fall rates of about 20-45 μm per Earth year, consistent with previous studies of dust deposition on Mars. The single scattering albedos of the dust derived from the models fall between those previously determined for atmospheric dust and bright soils. Comparisons of relative reflectance spectra calibrated using observed RCT radiances from late in the mission versus using radiances from modeled (dust-free) RCTs also reveal distinct spectral differences consistent with dust on the RCTs. Temporal variations in RCT dust opacity are not clearly linked to known passages of vortices at the MPF site, but overall suggest that deposition of dust onto the targets by local dust devils may be favored over erosion. Analyses of temporal changes in visible/near-infrared spectra will provide valuable information for future missions by constraining how dust deposition affects landed spacecraft operability (e.g., solar power availability), instrument calibration, and interpretations of surface mineralogy and composition.  相似文献   

17.
Mariner 9 was inserted into orbit about Mars on November 14, 1971, to study that planet for a period of 90 days. Observations and measurements made by Mariner 9 continued beyond the planned 90 days, providing data to meet all science objectives. The new knowledge of Mars gained from this mission has made obsolete all previous concepts of Mars.A general background of the Mariner Mars 1971 Project and the significant events of the Mariner 9 mission are presented.  相似文献   

18.
There is enormous potential for more mobile planetary surface science. This is especially true in the case of Mars because the ability to cross challenge terrain, access areas of higher elevation, visit diverse geological features and perform long traverses of up to 200 km supports the search for past water and life. Vehicles capable of a ballistic ‘hop’ have been proposed on several occasions, but those proposals using in-situ acquired propellants are the most promising for significant planetary exploration. This paper considers a mission concept termed Mars Reconnaissance Lander using such a vehicle. We describe an approach where planetary science requirements that cannot be met by a conventional rover are used to derive vehicle and mission requirements.The performance of the hopper vehicle was assessed by adding estimates of gravity losses and mission mass constraints to recently developed methods. A baseline vehicle with a scientific payload of 16.5 kg and conservatively estimated sub-system masses is predicted to achieve a flight range of 0.97 km. Using a simple consideration of system reliability, the required cumulative range of 200 km could be achieved with a probability of around 80%. Such a range is sufficient to explore geologically diverse terrains. We therefore plot an illustrative traverse in Hypanis Valles/Xanthe Terra, which encounters crater wall sections, periglacial terrain, aqueous sedimentary deposits and a traverse up an ancient fluvial channel. Such a diversity of sites could not be considered with a conventional rover. The Mars Reconnaissance Lander mission and vehicle presents some very significant engineering challenges, but would represent a valuable complement to rovers, static landers and orbital observations.  相似文献   

19.
Ozone is a tracer of photochemistry in the atmosphere of Mars and an observable used to test predictions of photochemical models. We present a comparison of retrieved ozone abundances on Mars using ground-based infrared heterodyne measurements by NASA Goddard Space Flight Center’s Heterodyne Instrument for Planetary Wind And Composition (HIPWAC) and space-based Mars Express Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) ultraviolet measurements. Ozone retrievals from simultaneous measurements in February 2008 were very consistent (0.8 μm-atm), as were measurements made close in time (ranging from <1 to >8 μm-atm) during this period and during opportunities in October 2006 and February 2007. The consistency of retrievals from the two different observational techniques supports combining the measurements for testing photochemistry-coupled general circulation models and for investigating variability over the long-term between spacecraft missions. Quantitative comparison with ground-based measurements by NASA/GSFC’s Infrared Heterodyne Spectrometer (IRHS) in 1993 reveals 2-4 times more ozone at low latitudes than in 2008 at the same season, and such variability was not evident over the shorter period of the Mars Express mission. This variability may be due to cloud activity.  相似文献   

20.
Abstract— Ultramicrotomy of samples embedded in epoxy resin is a standard method for preparing ultra‐thin sections for electron microscopy. In this report we describe a new embedding technique that uses acrylic resin instead of epoxy. This method offers several important advantages for sectioning small extraterrestrial samples. One is that the acrylic resin is soluble and can be removed after ultramicrotomy to leave a sample that is free of the mounting media. This is important for studying carbon and insoluble organic components. A second major advantage of acrylic is that, when combined with pre‐embedding compression, it provides a very effective method of mounting samples collected in silica aerogel. Acrylic embedding is currently being used to mount comet particles collected by NASA's Stardust mission. Combined with a flattening process, the acrylic embedding and sectioning preserves all pieces of collected samples in their collection matrix. In addition to Stardust, acrylic may be applied to other samples collected in aerogel such as those from the Russian Mir space station (Hörz et al. 2000) and future missions such as Sample Collection for Investigation of Mars (SCIM) (Leshin 2003), a proposed mission to collect atmospheric dust particles from Mars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号