首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Current surface conditions (strong oxidative atmosphere, UV radiation, low temperatures and xeric conditions) on Mars are considered extremely challenging for life. The question is whether there are any features on Mars that could exert a protective effect against the sterilizing conditions detected on its surface. Potential habitability in the subsurface would increase if the overlaying material played a protective role. With the aim of evaluating this possibility we studied the viability of two microorganisms under different conditions in a Mars simulation chamber. An acidophilic chemolithotroph isolated from Río Tinto belonging to the Acidithiobacillus genus and Deinococcus radiodurans, a radiation resistant microorganism, were exposed to simulated Mars conditions under the protection of a layer of ferric oxides and hydroxides, a Mars regolith analogue. Samples of these microorganisms were exposed to UV radiation in Mars atmospheric conditions at different time intervals under the protection of 2 and 5 mm layers of oxidized iron minerals. Viability was evaluated by inoculation on fresh media and characterization of their growth cultures. Here we report the survival capability of both bacteria to simulated Mars environmental conditions.  相似文献   

2.
Ultraviolet radiation is more damaging on the surface of Mars than on Earth because of the lack of an ozone shield. We investigated micro-habitats in which UV radiation could be reduced to levels similar to those found on the surface of present-day Earth, but where light in the photosynthetically active region (400-700 nm) would be above the minimum required for photosynthesis. We used a simple radiative transfer model to study four micro-habitats in which such a theoretical Martian Earth-like Photosynthetic Zone (MEPZ) might exist. A favorable radiation environment was found in martian soils containing iron, encrustations of halite, polar snows and crystalline rocks shocked by asteroid or comet impacts, all of which are known habitats for phototrophs on Earth. Although liquid water and nutrients are also required for life, micro-environments with favorable radiation environments for phototrophic life exist in a diversity of materials on Mars. This finding suggests that the lack of an ozone shield is not in itself a limit to the biogeographically widespread colonization of land by photosynthetic organisms, even if there are no other UV-absorbers in the atmosphere apart from carbon dioxide. When applied to the Archean Earth, these data suggest that even with the worst-case assumptions about the UV radiation environment, early land masses could have been colonized by primitive photosynthetic organisms. Such zones could similarly exist on anoxic extra-solar planets lacking ozone shields.  相似文献   

3.
A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment, past and present. Biological action spectra for DNA inactivation and chloroplast (photosystem) inhibition are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Over time Mars has probably experienced an increasingly inhospitable photobiological environment, with present instantaneous DNA weighted irradiances 3.5-fold higher than they may have been on early Mars. This is in contrast to the surface of Earth, which experienced an ozone amelioration of the photobiological environment during the Proterozoic and now has DNA weighted irradiances almost three orders of magnitude lower than early Earth. Although the present-day martian UV flux is similar to that of early Earth and thus may not be a critical limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Microbial strategies for protection against UV radiation are considered in the light of martian photobiological calculations, past and present. Data are also presented for the effects of hypothetical planetary atmospheric manipulations on the martian UV radiation environment with estimates of the biological consequences of such manipulations.  相似文献   

4.
The origin and nature of the early atmosphere of Mars is still debated. The discovery of sulfate deposits on the surface, coupled with the evidence that there are not large abundances of carbonates detectable on Mars in the optically accessible part of the regolith, leaves open different paleoclimatic evolutionary pathways. Even if carbonates are responsible for the feature observed by TES and Mini-TES at 6.76 μm, alternative hypotheses suggest that it could be due to the presence of Hydrated Iron Sulfates (HIS). Carbonates can be discerned from HIS by investigating the spectral region in which a strong overtone carbonate band is present. The Planetary Fourier Spectrometer on board the Mars Express spacecraft has acquired several thousand martian spectra in the range 1.2-45 μm since January 2004, most of which show a weak absorption feature between 3.8 and 4 μm. A similar feature was observed previously from the Earth, but its origin could not be straightforwardly ascribed to surface materials, and specifically to carbonates. Here we show the surficial nature of this band that can be ascribed to carbonate mixed with the martian soil materials. The materials that best reproduce the detected feature are Mg-rich carbonates (huntite [CaMg3(CO3)4] and/or magnesite [MgCO3]). The presence of carbonates is demonstrated in both bright and dark martian regions. An evaluation of the likeliest abundance gives an upper limit of ∼10 wt%. The widespread distribution of carbonates supports scenarios that suggest carbonate formation occurred not by precipitation in a water-rich environment but by weathering processes.  相似文献   

5.
Low-inclination, low altitude Earth orbits (LEO) are of increasing importance for astrophysical satellites, due to their low background environment. Here, the South Atlantic Anomaly (SAA) is the region with the highest amount of radiation. We study the radiation environment in a LEO (500–600 km altitude, 4° inclination) through the particle background measured by the Particle Monitor (PM) experiment onboard the BeppoSAX satellite, between 1996 and 2002. Using time series of particle count rates measured by PM we construct intensity maps and derive SAA passage times and fluences. The low-latitude SAA regions are found to have an intensity strongly decreasing with altitude and dependent on the magnetic rigidity. The SAA extent, westward drift and strength vs altitude is shown.  相似文献   

6.
运动学定轨是星载GPS特有的定轨方法,该方法不依赖于任何力学模型(地球重力场、大气阻力及太阳辐射压等),尤其适用于受大气阻力影响严重的低轨卫星定轨.基于双频星载GPS数据,研究了运动学定轨原理,讨论了数据预处理方法,建立了一套非差运动学定轨算法.并以GRACE (Gravity Recovery And Climate Experiment)-A、B卫星2008年2月实测数据作为试算验证了本研究方法的有效性和可靠性.GRACE 卫星实测数据计算结果表明:运动学定轨能达到5 cm精度(相对于SLR (Satellite Laser Ranging)),与动力学和简化动力学定轨精度相当.  相似文献   

7.
Secondary ion mass spectrometry is a powerful analytical tool, which has the potentiality, through molecular ion emission, of detecting minor phases, as well as the unique capability of directly measuring isotope abundances in mineral or organic phases without any prior physical, chemical or thermal processing. Applied to the in situ analysis of the Martian regolith, it can provide evidence of the presence of carbonates and, by inference (if carbonates constitute significant deposits), of past liquid water--a necessary condition for the development of life. In addition, oxygen isotopic composition of carbonates preserves a record of the temperature at which this phase precipitated and may therefore help decipher the past climatology of Mars. Detection of a carbon isotopic composition shift between carbonates and organic matter (on Earth, the result of a kinetic fractionation effect during photosynthesis) would provide a definite clue regarding the existence of a past biochemical activity on Mars.  相似文献   

8.
A large number of candidate open-basin lakes (low-lying regions with both inlet valleys and an outlet valley) have been identified and mapped on Mars and are fed by valley network systems that were active near the Noachian–Hesperian boundary. The nature of processes that modified the open-basin lake interiors subsequent to lacustrine activity, and how frequently sedimentary deposits related to lacustrine activity remain exposed, has not been extensively examined. An analysis of 226 open-basin lakes was undertaken to identify evidence for: (1) exposed deposits of possible lacustrine origin and (2) post-lacustrine-activity processes that may have modified or resurfaced open-basin lakes. Spectroscopic data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument were analyzed over identified exposed open-basin lake deposits to assess the mineralogy of these deposits. Particular attention was paid to the possible detection of any component of aqueous alteration minerals (e.g. phyllosilicates, hydrated silica, zeolites) or evaporites (e.g. carbonates, sulfates, chlorides) associated with these exposed deposits. The aim of this paper is to act as a broad survey and cataloguing of the types of lacustrine and post-lacustrine deposits that are present within these 226 paleolake basins. Results of the morphologic classification indicate that 79 open-basin lakes (~35% of the population) contain exposed deposits of possible lacustrine origin, identified on the basis of fan/delta deposits, layered deposits and/or exposed floor material of apparent lacustrine origin. Additionally, all 226 open-basin lakes examined appear to have been at least partially resurfaced subsequent to their formation by several processes, including volcanism, glacial and periglacial activity, impact cratering and aeolian activity. Results from the analysis of CRISM data show that only 10 (~29% of the 34 deposits with CRISM coverage) of the exposed open-basin lake deposits contain positively identified aqueous alteration minerals, with one deposit also containing evaporites. The identified hydrated and evaporite minerals include Fe/Mg-smectite, kaolinite, hydrated silica and carbonate, with Fe/Mg-smectite the most commonly identified mineral. These results indicate that hydrated and evaporite minerals are not as commonly associated with lacustrine deposits on Mars as they are on Earth. This suggests in situ alteration and mineral precipitation, a common source of such minerals in terrestrial lakes, was not a major process occurring in these paleo-lacustrine systems, and that the observed minerals are likely to be present as transported material within the lacustrine deposits. The lack of widespread in situ alteration also suggests that either the water chemistry in these paleolake systems was not conducive to aqueous alteration and mineral precipitation, or that the open-basin lake systems were relatively short-lived.  相似文献   

9.
Abstract– Even in the absence of any biosphere on Mars, organic molecules, including polycyclic aromatic hydrocarbons (PAHs), are expected on its surface due to delivery by comets and meteorites of extraterrestrial organics synthesized by astrochemistry, or perhaps in situ synthesis in ancient prebiotic chemistry. Any organic compounds exposed to the unfiltered solar ultraviolet spectrum or oxidizing surface conditions would have been readily destroyed, but discoverable caches of Martian organics may remain shielded in the subsurface or within surface rocks. We have studied the stability of three representative polycyclic aromatic hydrocarbons (PAHs) in a Mars chamber, emulating the ultraviolet spectrum of unfiltered sunlight under temperature and pressure conditions of the Martian surface. Fluorescence spectroscopy is used as a sensitive indicator of remaining PAH concentration for laboratory quantification of molecular degradation rates once exposed on the Martian surface. Fluorescence‐based instrumentation has also been proposed as an effective surveying method for prebiotic organics on the Martian surface. We find the representative PAHs, anthracene, pyrene, and perylene, to have persistence half‐lives once exposed on the Martian surface of between 25 and 60 h of noontime summer UV irradiation, as measured by fluorescence at their peak excitation wavelength. This equates to between 4 and 9.6 sols when the diurnal cycle of UV light intensity on the Martian surface is taken into account, giving a substantial window of opportunity for detection of organic fluorescence before photodegradation. This study thus supports the use of fluorescence‐based instrumentation for surveying recently exposed material (such as from cores or drill tailings) for native Martian organic molecules in rover missions.  相似文献   

10.
We investigate the expected performance of a wide-angle camera in Martian orbit, which, unlike previous cameras that have flown to Mars, is capable of recording meteor activity in that planet's atmosphere. We show that, based on our current understanding of meteor physics and the interplanetary meteoroid population, several meteors will be detected by this instrument during a single nightside pass on a low Martian orbit. The instrument will also record the signatures of meteor showers expected to occur every Martian year (1.88 Earth years). The results of this investigation will test models of the flux of “large” (mm-cm) meteoroids at the orbit of Mars and their interaction with the Martian atmosphere.  相似文献   

11.
Abstract– A model is presented in which the aqueous conditions needed to generate phyllosilicate minerals in the absence of carbonates found in the ancient Noachian crust are maintained by an early CO2‐rich atmosphere, that, together with iron (II) oxidation, would prevent carbonate formation at the surface. After cessation of the internal magnetic dynamo, a CO2‐rich primordial atmosphere was stripped by interactions with the solar wind and surface conditions evolved from humid to arid, with ground waters partially dissolving subsurface carbonate and sulfide minerals to produce acid‐sulfate evaporitic deposits in areas with upwelling ground water. In a subsequent geochemical state (Late Noachian to Hesperian), surface and subsurface acidic solutions were neutralized in the subsurface through interaction with basaltic crust, allowing the precipitation of secondary carbonates. This model suggests that, in the early Noachian, the surface waters of Mars maintained acidity because of a drop in temperature. This would have favored increased dissolution of CO2 and a reduction in atmospheric pressure. In this scenario, physicochemical conditions precluded the formation of surface carbonates, but induced the precipitation of carbonates in the subsurface.  相似文献   

12.
The results of observations of solar hard radiation recorded by two spacecraft—2001 Mars Odyssey and CORONAS-F—which were located in the vicinity of Mars and Earth, respectively, are discussed. The HEND instrument, developed at the Space Research Institute of the Russian Academy of Sciences, recorded photons with energies ranging from 80 keV to 2 MeV, and the SPR and SONG instruments, developed at the Skobeltsyn Research Institute of Nuclear Physics of the Moscow State University, detected radiation in the energy interval from 15 keV to 100 MeV. The rising of the sunspot group 10486 in late October 2003, which had been observed from Martian orbit before it was seen from the Earth’s surface, is analyzed in detail. In this case, observations made from directions that differ by 24° showed a close-to-24 h advance for the detection of hard radiation of flares. Stereoscopic observations of M-class flares near the limb show that the overwhelming part of radiation with energies above 80 keV arises at heights that do not exceed 7–10 thousand km. Also reported are the results of observations of the powerful flare on August 25, 2001, by the two devices, which complement each other substantially. The processes resulting in the formation of high-energy radiation of solar flares are discussed.  相似文献   

13.
Ultraviolet observations from low Earth orbit (LEO) have to deal with a foreground comprised of airglow and zodiacal light which depend on the look direction and on the date and time of the observation. We have used all-sky observations from the GALEX spacecraft to find that the airglow may be divided into a baseline dependent on the sun angle and a component dependent only on the time from local midnight. The zodiacal light is observable only in the near ultraviolet band (2321 Å) of GALEX and is proportional to the zodiacal light in the visible but with a color of 0.65 indicating that the dust grains are less reflective in the UV.  相似文献   

14.
This paper presents a comprehensive analysis of the Mars orbital phase of the Mariner 9 trajectory as determined from Earth based radio data. Both the method and accuracy of the orbit determination process are reviewed. Analysis is presented to show the effects of Mars gravity model and node in the plane of the sky errors on the accuracy of orbit determination. In addition the long term evolution of the orbit from insertion through the first 500 revolutions is presented, and decomposed into effects from the Mars garvity field,n-body perturbations, and solar radiation pressure. Since the orbit period is nearly commensurable with the Mars rotational period, the orbit experiences significant resonance perturbations. The primary perturbation is in-track with a maximum amplitude of 1000 km and a wavelength of 39 spacecraft revolutions.This paper was presented at the AIAA/AAS Astrodynamics Conference, Palo Alto, California, September 11 and 12, 1972. At this time Mariner 9 operations were still underway. The operational life of Mariner 9 ended October 27, 1972, when the supply of nitrogen gas, used for attitude stabilization, was depleted. This paper represents one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, under NASA Contract No. NAS 7-100.  相似文献   

15.
Carbonate deposits have not been found so far on Mars, although there appears to have been sufficient water to have supported their formation. Many hypotheses have been proposed in order to explain this. In the present work we explore the possibility that the missed detection of carbonate deposits on the martian surface could be simply due to the fact that the concentration of carbonates, when mixed with other materials present in the sedimentary deposits, may be below the detection limit of the various instruments used so far in this search. In the present study we consider 21 putative paleolacustrine basins and use a sediment transport model to estimate the abundance of carbonates which could be present in the sediments deposited on the basin floor. In this way we find that for all the selected basins the estimated carbonate abundances are in general less than a few percent, and such values are below (or at best comparable to) the detection limits of the spectrometers flown around Mars during the recent space missions. Furthermore, applying the sediment transport model to the well studied Eberswalde crater, we conclude that the fluvio-lacustrine activity in this basin should have lasted for a period on the order of 103–104 years, in good agreement with previous work. Our results suggest that a hydrological cycle, able to move large volumes of water and to create relatively stable lakes, could have been active intermittently on Mars in the past, producing carbonate deposits that could escape detection by the instruments that have flown to date.  相似文献   

16.
James B. Pollack 《Icarus》1979,37(3):479-553
In this paper, we review the observational data on climatic change for the terrestrial planets, discuss the basic factors that influence climate, and examine the manner in which these factors may have been responsible for some of the known changes. Emphasis is placed on trying to understand the similarities and differences in both the basic factors and their climatic impacts on Venus, the Earth, and Mars. Climatic changes have occurred on the Earth over a broad spectrum of time scales that range from the elevated temperatures of Pre-Cambrian times (~109 years ago), through the alternating glacial and interglacial epochs of the last few million years, to the small but significant decadal and centurial variations of the recent past. Evidence for climatic change on Mars is given by certain channel features, which suggest an early to intermediate aged epoch of warmer and wetter climate, and by layered polar deposits, which imply more recent periodic climate variations. No evidence for climatic change on Venus exists as yet, but comparison of its present climate state with that of outer terrestrial planets offers important clues on some of the mechanisms affecting climate. The important determinants of climate for a terrestrial planet include the Sun's output, astronomical perturbations of its orbital and axial characteristics, the gaseous and particulate content of its atmosphere, its land surface, volatile reservoirs, and its interior. All these factors appear to have played major roles in causing climatic changes on the terrestrial planets. Despite a lower solar luminosity in the past, the Earth and Mars have had warmer periods in their early history. In both cases, a more reducing atmosphere may have been the responsible agent through an enhanced greenhouse effect. In this paper, we present detailed calculations of the effect of atmospheric pressure and composition on the temperature state of Mars. We find that the higher temperature period is easier to explain with a reducing atmosphere than with the current fully oxidizing one. Both the very high surface temperature and massive atmosphere of Venus may be the result of the solar flux being a factor of two higher at its orbit than at the Earth's orbit. This difference may have led to a runaway greenhouse effect on Venus, i.e., the emplacement of volatiles entirely in the atmosphere rather than mostly in surface reservoirs. But if Venus formed with relatively little or no water, it may have always had an oxidizing atmosphere. In this case, a lower solar luminosity would have led to a moderate surface temperature in Venus' early history. Quasi-periodic variations in orbital eccentricity and axial obliquity may have contributed to the alternation between Pleistocene glacial and interglacial periods in the case of the Earth and to the formation of the layered polar deposits in the case of Mars. In this paper, we postulate that two mechanisms, acting jointly, account for the creation of the laminated terrain of Mars: dust particles serve as nucleation centers for the condensation of water vapor and carbon dioxide. The combined dust-H2O-CO2 particle is much larger and so has a much higher terminal velocity than either a dust-H2O or a plain dust particle. As a result, dust and water ice are preferentially deposited in the polar regions. In addition, we postulate that the obliquity variations are key drivers of the periodic layering because of their impact on both atmospheric pressure and polar surface temperature, which, in turn, influence the amounts of dust and water ice in the atmosphere. But eccentricity and precessional changes probably also play important roles in creating the polar layers. The drifting of continents on the Earth has caused substantial climatic changes on individual continents and may have helped to set the stage for the Pleistocene ice ages through a positioning of the continents near the poles. While continental drift apparently has not occurred on Mars, tectonic distortions of its lithosphere may, in some circumstances, cause an alteration in the mean value of that planet's obliquity, which would significantly impact its climate. Atmospheric aerosols can influemce climate through their radiative effects. In the case of the Earth, volcanic aerosols appear to have contributed to past climatic changes, while consideration needs to be given to the future impact of man-generated aerosols. In the case of Mars, the atmospheric temperature structure and thereby atmospheric dynamics are greatly altered by suspended dust particles. The sulfuric acid clouds of Venus play a major role in its heat balance. Cometary impacts may have added substantial quantities of water vapor and sulfur gases to Venus' atmosphere and thus have indirectly affected its cloud properties. Calculations presented in this paper indicate substantial changes in surface temperature accompany these compositional changes.  相似文献   

17.
Solar UV radiation is a major source of energy for chemical evolution of organic materials in the Solar System. Therefore studies on the photostability of organic compounds in extraterrestrial environments are of prime importance for the understanding of the extraterrestrial origin of organic materials on Earth. A series of organic samples have been photolysed in Earth orbit during the ESA BIOPAN 6 mission (14-26/09/2007). Their photochemical lifetime has been measured and compared to results recorded in the laboratory using a lamp that simulates the solar radiation in the VUV domain. The half-lives at a distance of 1 AU from the Sun have been measured for glycine, xanthine, hypoxanthine, adenine, guanine, urea, carbon suboxide polymer ((C3O2)n) and HCN polymer. They range from a few days to a lower limit of a few tens of days for the most photoresistant (e.g. adenine, guanine, hypoxanthine). Lifetimes measured in terrestrial orbit are very different from those derived with laboratory experiments. These measurements confirm that it is difficult to simulate the solar spectrum below 200 nm in the laboratory. Results are discussed and highlight the necessity to conduct experiments in orbit, and for longer duration. It also appears that the laboratory measurements made in VUV must be extrapolated very cautiously to the different environments they are supposed to simulate.  相似文献   

18.
With the increased number of low Earth orbit (LEO) satellites equipped with Global Positioning System (GPS) receiver, the LEO based GPS slant total electron content (STEC) data play a more important role in ionospheric research due to better global coverage. The accuracy of LEO TEC is hardly evaluated by comparison with the independent TEC measurement simultaneously. We propose an approach based on the simulated data to verify the accuracy of TEC determination. The simulated data (i.e., the pseudorange and carrier phase observations) was generated based on the consideration of the effect of the ionosphere, the so-called differential code bias (DCB) and observational noise. The errors of carrier phase to code leveling process and DCB estimation are analyzed quantitatively. Also, the effect of observational noise, solar activity and LEO orbit altitude on the accuracy of TEC determination will be discussed in detail. The accuracy of TEC determination is relative to solar activity and LEO orbit altitude, the higher LEO orbit and lower F10.7 index, the higher accuracy of TEC determination. It is found by the first time that, with the amplification of the pseudorange noise, the accuracy of leveling process and TEC determination declines almost linearly. With the LEO missions in the near future, it is hoped that the GPS satellite DCBs estimated based on LEO observations would be better than those based on ground-based observations.  相似文献   

19.
Many asteroids with a semimajor axis close to that of Mars have been discovered in the last several years. Potentially some of these could be in 1:1 resonance with Mars, much as are the classic Trojan asteroids with Jupiter, and its lesser-known horseshoe companions with Earth. In the 1990s, two Trojan companions of Mars, 5261 Eureka and 1998 VF31, were discovered, librating about the L5 Lagrange point, 60° behind Mars in its orbit. Although several other potential Mars Trojans have been identified, our orbital calculations show only one other known asteroid, 1999 UJ7, to be a Trojan, associated with the L4 Lagrange point, 60° ahead of Mars in its orbit. We further find that asteroid 36017 (1999 ND43) is a horseshoe librator, alternating with periods of Trojan motion. This asteroid makes repeated close approaches to Earth and has a chaotic orbit whose behavior can be confidently predicted for less than 3000 years. We identify two objects, 2001 HW15 and 2000 TG2, within the resonant region capable of undergoing what we designate “circulation transition”, in which objects can pass between circulation outside the orbit of Mars and circulation inside it, or vice versa. The eccentricity of the orbit of Mars appears to play an important role in circulation transition and in horseshoe motion. Based on the orbits and on spectroscopic data, the Trojan asteroids of Mars may be primordial bodies, while some co-orbital bodies may be in a temporary state of motion.  相似文献   

20.
J.L. France  M.D. King 《Icarus》2010,207(1):133-139
Dusty water-ice snowpacks on Mars may provide a habitable zone for DNA based photosynthetic life. Previous work has over estimated the depths and thicknesses of such photohabitable zones by not considering the effect of red dust within the snowpack. For the summer solar solstice, at 80°N and a surface albedo of 0.45, there is a calculated photohabitable zone in the snowpack between depths of 5.5 and 7.5 cm. For an albedo of 0.62, there is a calculated photohabitable zone in the snowpack between depths of 8 and 11 cm. A coupled atmosphere-snow radiative-transfer model was set to model the Photosynthetic Active Radiation and DNA dose rates through water-ice snow at the north polar region of Mars. The optical properties of the polar caps were determined by creating a laboratory analogue to the Mars north polar deposits, and directly measuring light penetration and albedo. It is important for future exobiology missions to the polar regions of Mars to consider the implications of these findings, as drilling to depths of ∼11 cm should be sufficient to determine whether life exists within the martian snows, whether it is photosynthetic or otherwise, as at this depth the snow cover will provide a permanent protection from DNA damaging UV radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号