首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clay liners or compacted earthen barriers are important barrier materials used for preventing contaminant transport through soils. A low hydraulic conductivity (k) is a significant parameter that governs the design and construction of clay liners. Compacted expansive clays, which are montmorillonite clays, also have a very low hydraulic conductivity (k). When expansive clays are blended with fly ash, an industrial waste, the hydraulic conductivity (k) further reduces as the ash-clay blends result in increased dry densities at increased fly ash contents. Hence, fly ash-stabilised expansive clay can also be proposed as a unique clay liner material. As expansive clays undergo heave when they come into contact with water, it is necessary to study the heave behaviour of fly ash-stabilised expansive clay liners. This paper presents heave studies on fly ash-stabilised expansive clay liners. Fly ash in different contents by dry weight of the expansive clay was added to the clay, and the ash-clay blend was compacted as a liner overlying a natural field soil layer. Compacted lateritic clay was used for simulating the natural field soil into which contaminants migrate. Calcium chloride (CaCl2) solution of varying concentration (5, 10, 20, 50, 100 and 500 mM) was used as the permeating fluid in the heave studies. The rate of heave and the amount of heave of the fly ash-stabilised expansive clay liners were monitored. Deionised water (DIW) was also used as inundating fluid for comparative study. Heave (mm) decreased with increase in solute concentration for all fly ash contents. For a given solute concentration, heave decreased up to a fly ash content of 20 % and thereafter it increased when the fly ash content was increased to 30 %. Heave of the fly ash-stabilised expansive clay liners was correlated with their permeability, liquid limit (LL) and free swell index (FSI) pertaining to the respective fly ash content and CaCl2 concentration.  相似文献   

2.
This paper presents leachate studies on fly ash-stabilised expansive clay liners. Fly ash in different contents (0%, 10%, 20% and 30%) by dry weight of the expansive clay was added to the clay, and the ash-clay blend was compacted as a liner overlying a compacted lateritic clay layer. Deionised water (DIW) and calcium chloride (CaCl2) solutions of varying concentration (5 mM, 10 mM, 20 mM, 50 mM, 100 mM and 500 mM) were used as the permeating fluids in the leachate studies. Chemical analysis of the leachate was performed. For a given CaCl2 concentration, the concentrations of both calcium ion and chloride ion in the leachate decreased up to a fly ash content of 20%, and thereafter they increased when the fly ash content was increased to 30%. Further, for a given fly ash content, concentrations of calcium ion and chloride ion increased with increasing CaCl2 concentration.  相似文献   

3.
Compacted clay soils are used as barriers in geoenvironmental engineering applications and are likely to be exposed to salinization and desalinization cycles during life of the facility. Changes in pore fluid composition from salinization and desalinization cycles induce osmotic suction gradients between soil–water and reservoir (example, landfill/brine pond) solution. Dissipation of osmotic suction gradients may induce osmotic swelling and consolidation strains. This paper examines the osmotic swelling and consolidation behaviour of compacted clays exposed to salinization and desalinization cycles at consolidation pressure of 200 kPa in oedometer assemblies. During salinization cycle, sodium ions of reservoir fluid replaced the divalent exchangeable cations. The osmotic swelling strain developed during first desalinization cycle was 29-fold higher than matric suction induced swelling strain of the compacted specimen. Further, the diffusion controlled osmotic swelling strain was 100-fold slower than matric suction-driven swelling process. After establishment of ion-exchange equilibrium, saturated saline specimens develop reversible osmotic swelling strains on exposure to desalinization cycles. Likewise the saturated desalinated specimen develops reversible osmotic consolidation strains on exposure to cycles of salinization. Variations in compaction dry density has a bearing on the osmotic swelling and consolidation strains, while, compaction water content had no bearing on the osmotic volumetric strains.  相似文献   

4.
The degree of saturation of compacted bentonite buffer in deep geological repositories is subject to alterations from infiltration of groundwater and heat emanated from the waste canisters. The matric suction (ψ)–degree of saturation (S r ) relations of unsaturated clays is represented by soil–water characteristics curves (SWCC) that are influenced by soil structure, initial compaction condition and stress history. Infiltration of groundwater besides increasing the degree of saturation can also alter the pore water chemistry; the associated changes in cation hydration and diffuse double layer thickness could impact the micro-structure and matric suction values. This study examines the influence of infiltrating sodium chloride solutions (1,000–5,000 mg/L) on the transient ψS r relations of compacted bentonite–sand specimens. Analysis of the ψS r plots, and X-ray diffraction measurements indicated that infiltration of sodium chloride solutions has progressively less influence on the micro-structure and SWCC relations of bentonite–sand specimens compacted to increasingly higher dry densities. The micro-structure and SWCC relations of specimens compacted to 1.5 Mg/m3 were most affected, specimens compacted to 1.75 Mg/m3 were less affected, while specimens compacted to 2 Mg/m3 remained unaffected upon infiltration with sodium chloride solutions.  相似文献   

5.
The effects of post-compaction residual lateral stress and salt concentration in the hydrating fluid on swelling pressures of compacted MX80 bentonite is brought out in this paper. In order to release the residual lateral stresses, following the static compaction process during preparation of specimens, compacted bentonite specimens were extruded from the specimen rings and then inserted back prior to testing them for swelling pressures in isochoric condition. The swelling pressure tests were carried out at several dry densities of the bentonite with distilled water and solutions of NaCl (0.1 and 1.0 M) as the hydrating fluids. With water, the test results showed that specimens that underwent extrusion and insertion processes exhibited about 10–15 % greater swelling pressures as compared to the specimens those that were compacted and tested. The influence of saline solutions was found to reduce the swelling pressure of the bentonite, but their impact was less significant at high compaction dry densities.  相似文献   

6.
ABSTRACT

Expansive soil subgrades, which are subjected to dual swell-shrink problem consequent upon absorption and evaporation of water, need to be improved by chemical stabilization or compacted cushion or geosynthetic reinforcement in order that pavements constructed over them are even, stable and safe. This paper presents extensive experimental data on plasticity, free swell index (FSI) and compaction characteristics of a highly swelling expansive clay stabilized with varying silica fume contents. In another series of tests on a laterite soil to be used as a cushion over the expansive clay subgrade, plasticity properties, compaction characteristics and strength characteristics were determined at varied silica fume contents. Further, CBR of the expansive clay subgrade was determined in the laboratory stabilizing it with varied silica fume contents and providing a cushion of 50 mm thickness of silica fume-stabilized lateritic soil. Liquid limit (LL), plasticity index (PI) and free swell index (FSI) of the expansive clay decreased with increasing silica fume contents. The compaction and strength characteristics of both the soils improved with silica fume stabilization. The CBR of the expansive clay provided with silica fume-stabilized cushion improved significantly.  相似文献   

7.
Shales or highly compacted engineered clay layers are being used as buffers in deep surface nuclear waste repositories. Due to the complex natural structure and fabric of clay and non-clay minerals associated with high in situ stresses, high temperatures, and the practical difficulties in the replication of the field stress and temperature conditions in the lab testing facilities, swell potential from the macro and micro investigations does not provide reliable and universally applicable results. In this study, a comprehensive molecular-level simulation-based volume change constitutive model has been developed for clay minerals incorporating the effects of cation exchange capacity, density, water content, in situ stress state, temperature, exchangeable-cations type and proportion, pore fluids, and the dissolved salts. The molecular simulations were performed using molecular mechanics, molecular dynamics, and Monte Carlo simulation techniques. Comparing the model predictions with the results of the lab tests, the model has been proven to be quite precise in the prediction of the swell potential of these strata under various overburden pressures and temperatures. There is several fold increase in swelling of clay samples at 80 °C as compared to the equivalent specimen tested at 25 °C. The effect of higher temperature is lesser at lower initial water content (higher density) while at higher water content (lower density) the structure has been found to be more vulnerable at higher temperatures. About 100 times higher confining pressure results in the same swell at 80 °C as in its counterpart specimen at 25 °C, the corresponding swell increase factor in case of 50 °C specimens is about 45. A sharp increase in swelling with a drop in in situ pressure emphasizes the probability of higher swell as a result of an accidental reduction in in situ pressure such as the higher concentration of nuclear reactions. In this study, the cohesive energy density (CED) was found to be highly sensitive to various volume change variables, such as water content, density, CEC, type, and percentage of exchangeable and non-exchangeable cations. Contrary to all the previous models, CED-based model developed in this study is universal in nature and can be adopted for any case with minimal basic material input parameters. The good agreement found between the predicted and real values for the swell potential of the undisturbed samples suggests that the model presented here can effectively be used for the assessment of the swelling potential of shale/clay deposits to be used as buffers to the nuclear waste storage.  相似文献   

8.
Municipalities and recycling and environmental authorities are concerned about the growing amount of carpet waste produced by household, commercial and industrial sectors. It is reported that 500,000 tonnes of carpet waste fibre are plunged into landfills annually in the UK. In the United States of America, around 10 million tonnes of textile waste was generated in 2003. In geotechnical engineering, expansive clay soils are categorised as problematic soils due to their swelling behaviour upon increase in the moisture content. The problematic nature of such soils is intensified with the increase in the plasticity index. This paper presents results of a comprehensive investigation into utilisation of carpet waste fibres in order to improve the swelling characteristics of compacted cohesive soils. Therefore, two different clay soils with markedly different plasticity indices (i.e. 17.0 and 31.5 %) were treated with two different types of carpet waste fibre. Waste fibres were added to prepare specimens with fibre content of 1, 3 and 5 % by dry weight of soil. Soil specimens with different dry unit weights and moisture contents were prepared so as to the swelling behaviour of fibre reinforced compacted clays is completely attained under various scenarios. The results indicated that the behaviour of the fibre reinforced soils seems highly dependent on the initial compaction state and secondary on the moisture content. It was found that the swelling pressure drops rapidly as the percentage of fibre increases in samples prepared at the maximum dry unit weight and optimum moisture content. Reducing the dry unit weight, while maintaining constant moisture content or increasing the moisture content at constant dry unit weight was found to reduce the swelling pressure.  相似文献   

9.
The results presented in this paper shows that high concentrations of sodium hydroxide causes abnormal changes on the volume change behaviour of illite–smectite (interstratified mineral) soil due to mineralogical changes. The higher swell that occurs is shown in the form of a new second stage of swelling. Increase in negative charges on soil particles and mineralogical changes after interaction with soil, respectively, are responsible for the swelling in these two stages. However, potassium hydroxide does not induce such high swelling in soils. This is mainly due to the fixation of potassium ions. Hence an attempt has been made to control the swelling induced by sodium hydroxide by making used of potassium chloride as an additive. Potassium fixation which is not substantial at neutral pH is favoured at higher pH Addition of potassium chloride salt solution (as 2 and 5% solution) can reduce only the first stage of swelling by linking the unit layers of mineral by reducing development diffuse double layer near clay surface. Potassium chloride is unable to prevent the formation of mineralogical alteration due to soil alkali interaction and hence the swelling associated with mineralogical changes. X-ray diffraction studies have revealed that mineralogical changes leading to formation of zeolite by soil alkali interaction is not inhibited by potassium ions. Morphological changes studied by scanning electron microscope corroborate these observations. Also the compressibility of soil which is increased in alkali solution is reduced in the presence of potassium salts. This reduction is due to reduction in the first stage of swelling.  相似文献   

10.
Earthen barriers or clay liners are a major concern in geo-environmental engineering. They are designed to preclude or reduce leachate migration. Hence, a low hydraulic conductivity (k) is an important parameter in the design of clay liners. Materials such as bentonite and lateritic clays, which have a low hydraulic conductivity at high dry densities, are used in the construction of clay liners. Compacted expansive clays which are high in montmorillonite content also have a very low hydraulic conductivity. When expansive clays are blended with fly ash, an industrial waste, the hydraulic conductivity further reduces as the ash-clay blends result in increased dry densities at increased fly ash contents. Hence, fly ash-stabilised expansive clay can also be proposed as an innovative clay liner material. It is, therefore, required to study various physical and engineering properties of this new clay liner material. Liquid limit (LL) and free swell index (FSI) are important index properties to be studied in the case of this clay liner material. The hydraulic conductivity of this new clay liner material depends on the fly ash content in the blend. Further, parameters such as solute concentration and kinematic viscosity also influence hydraulic conductivity of clay liners. This paper presents experimental results obtained on hydraulic conductivity (k) of fly ash-stabilised expansive clay liner at varying fly ash content and solute concentration. The tests were performed with deionised water (DIW), CaCl2, NaCl and KCl as permeating fluids. Fly ash content in the blend was varied as 0, 10, 20 and 30 % by weight of the expansive clay, and the solute concentration was varied as 5 mM (milli molar), 10, 20, 50, 100 and 500. It was found that hydraulic conductivity (k) decreased with increasing fly ash content, solute concentration and kinematic viscosity. Further, hydraulic conductivity (k) was correlated with LL and FSI of the clay liner material for different fly ash contents and solute concentrations. Useful correlations were obtained.  相似文献   

11.
Chemical stabilisation of expansive soils has been quite efficacious in reducing swelling characteristics, namely, swell potential (S%) and swelling pressure (ps). When chemicals such as lime and cement are added to an expansive clay, flocculation and cementation take place. Flocculation, which is an immediate reaction, is instrumental in reducing plasticity and swell potential significantly. It also reduces the time required for equilibrium heave. This paper presents experimental data on lime-blended and cement-blended expansive clay specimens. Free swell index (FSI), heave, rate of heave and swelling pressure were studied. FSI, heave and rate of heave decreased with increasing lime content and cement content in the blends. But, during a 3-day inundation (a period, generally allowed for the sample to attain to equilibrium heave), cementitious products developed and resisted the applied compressive loads stiffly, resulting in high swelling pressures in the case of lime-blended specimens. Swelling pressure could not be determined in the case of cement-blended specimens. Hence, short inundation tests (inundating the specimens only for 15 minutes) were performed. But, even from these tests, swelling pressure could not be determined for cement-blended specimens. This indicated the development of strong cementitious products in them. It was interesting to find that, in both long and short duration, the lime- and cement-blended specimens attained to equilibrium heave in the same time period. FSI decreased from 185% to 63.63% when lime content was increased from 0% to 4%, and from 185% to 110% when cement content was increased from 0% to 20%. Swell potential reduced by 42.5% at 4% lime and by 46.4% at 20% cement. Swelling pressure increased from 210 kPa to 320 kPa when lime content was increased from 0% to 4%. Linear shrinkage of the specimens also decreased with increasing additive content.  相似文献   

12.
Swelling behavior of expansive soil has always created problems in the field of geotechnical engineering. Generally, the method used to assess the swelling potential of expansive soil from its plasticity index, shrinkage limit and colloidal content. Alternative way to evaluate swelling behavior is from its expansive index (EI) and swelling pressure value. The present study investigates the reduction of EI and swelling pressure for kaolinite and bentonite clay when mixed with various percentages of Ottawa sand and Class C fly ash. The percentages of Ottawa sand and Class C fly ash used were 0–50 % by weight. The results show that there is a significant reduction in the swelling properties of expansive soil with the addition of Ottawa sand and Class C fly ash. The reduction in EI ranged approximately from 10 to 50 and 4 to 49 % for kaolinite and bentonite clay, respectively. Also the maximum swelling pressure of kaolinite and bentonite clay decreased approximately 93 and 64 %, respectively with the addition of various percentages of Ottawa sand and Class C fly ash. Standard index properties test viz., liquid limit, plastic limit and linear shrinkage test were conducted to see the characteristics of expansive soil when mixed with less expansive sand and fly ash. Also, for these expansive soils one dimensional consolidation test have been conducted with sand and fly ash mixtures and the results were compared with pure kaolinite and bentonite clay.  相似文献   

13.
Owing to its favourable physical, chemical and rheological properties, densely compacted bentonite or bentonite-sand mix is considered as a suitable buffer material in deep geological repositories to store high level nuclear waste. Iodine-129 is one of the significant nuclides in the high level waste owing to its long half life and poor sorption onto most geologic media. Bentonite by virtue of negatively charged surface has negligible affinity to retain iodide ions. As organo-bentonites are known to retain iodide ions, the present study characterizes hexadecylpyridinium chloride (HDPyCl.H2O) treated bentonite from Barmer India (referred as HDPy+B) for physico-chemical properties, engineering properties and the iodide adsorption behavior of the organo clay. Batch experiments revealed that HDPy+ ions are largely retained (94 % retention) via cation exchange; the ion-exchange process neutralizes the negative surface charge and bridges clay particles leading to reduction in Atterberg limits, clay content and sediment volume. The organo clay retains iodide by Coulombic attraction (at primary sites) and anion exchange (at secondary sites). The free-energy change (ΔG o = ?25.5 kJ/mol) value indicated that iodide retention by organo clay is favored physical adsorption process. Iodide adsorption capacity of organo clay decreased significantly (85–100 %) on dilution with 50–80 % bentonite. On the other hand, dilution of bentonite with 50 % organo clay caused 58 % reduction in swell potential and 21 % reduction in swell pressure.  相似文献   

14.
刘清秉  吴云刚  项伟  汪稔 《岩土力学》2016,37(10):2795-2802
以不同初始压实状态下的南阳中膨胀土为对象,在常规固结仪上开展侧限膨胀试验及采用GDS三轴仪进行恒定偏差应力的三轴膨胀试验,通过多元非线性拟合分析,分别获得考虑初始压实度、含水率、上覆压力耦合关联影响的K0膨胀模型以及体积膨胀率与球应力(体积应力)关系的三轴膨胀经验模型。基于K0膨胀模型,提出了压实土膨胀潜势能的定量计算公式,并推导出膨胀土边坡处理层厚度的理论计算方法。基于膨胀体积应变只随球应力变化而不受偏差应力影响的假设条件,分析了同一起始条件下,膨胀土K0模型与三轴膨胀模型的内在关联,并建立了通过K0模型推算三轴应力条件下体积膨胀率的理论方法。试验结果表明:采用多因素耦合的K0膨胀模型预测压实土膨胀势具有较好的准确度及合理性;联系K0模型与三轴膨胀模型的纽带在于假设侧限膨胀全程存在一个平均静止侧压力系数,采用反演方法得到平均侧压力系数呈现随上覆压力增大而减小的趋势,这种变化规律的根本原因则在于侧向膨胀力随上覆压力的增大而减小。  相似文献   

15.
Compacted soilbentonite mixtures are finding wide application as buffer material for waste repositories for their favorable self-sealing qualities. The swelling properties of such materials which serve as a measure of their self-sealing capabilities and, thus, the efficiency of the repository in sealing off their contents from the environment are closely related to the chemistry of the leachate that emanate from the wastes. For this reason, the swelling parameters (namely swelling potential and pressure) of compacted lateritic soil–bentonite mixtures under consideration for use as barrier in municipal waste landfill were evaluated. Series of swelling potential and pressure tests were performed using variable content (0–10 %) of bentonite at predetermined optimum moisture content. Soil mixtures were compacted with British Standard Heavy compactive effort and saturated with processed tap water as well as three leachate solutions of varying ionic strength that were generated in active open dump landfills. Experimental results showed that swelling potential based on the free swell together with the maximum swell pressures of compacted soil mixtures measured at equilibrium increased approximately linearly with increase in the amount of bentonite when inundated with processed tap water and the three leachate solutions. On the other hand, these swelling parameters decreased as the ionic strength of the leachate solutions measured by their electrical conductivity increased for the various soil mixtures. These results provide an insight into the swelling behavior and the possible degradation in the efficiency of the proposed lateritic soil–bentonite mixtures in relation to their use as buffer material in waste landfills.  相似文献   

16.
A series of swelling tests is performed on a typical Nanyang expansive soil with medium swelling capacity compacted at various initial densities and water contents. The swelling tests are separately conducted using the conventional oedometer to confine the lateral swelling of the soil specimens, and using the GDS triaxial apparatus to allow the free volumetric swelling. The multiple nonlinear mathematical method is adopted to obtain the lateral swelling model (i.e. K-0 model), which fully considers the coupled effect of initial degree of compaction, moisture content and overburden pressure on the swelling strain. Also, an empirical model for the relationship between spherical stress and volumetric strain is proposed by triaxial swelling test. Based on the K-0 swelling model, a formula is proposed to quantitatively evaluate the swell potential, and also a theoretical calculation method is derived to determine the processing layer thickness of expansive soil slope. Based on the assumption that volumetric swelling strain only changes with spherical stress and is not affected by the deviatoric stress, the correlations between the K-0 model and triaxial model are analyzed, and a method to calculate the volumetric swelling strain by only employing the K-0 model is given. Experimental results show that the proposed K-0 model with multifactor coupling is reasonable to predict the swelling potential of compacted expansive soil. It is found that the key factor to link the K-0 model and triaxial swelling model is assuming an average static lateral pressure coefficient. The average static lateral pressure coefficient tends to decreases with increasing overburden pressure by inversion method. This tendency of average static lateral pressure coefficient is believed to rely on the fact that lateral swelling pressure decreases with the increase of overburden pressure.  相似文献   

17.
Analyses were performed on nine different preserved shales, representing in situ states of 5–15 % water content and 0.13–0.42 void ratio. Under varying total suction (controlled humidity), each shale shows well-defined relationships among suction, volume change, water content and saturation, with the lower-porosity shales undergoing less volume and water content change than the higher-porosity shales. A decrease in in situ porosity is also associated with a much higher native state suction as well as full saturation extending to suction values beyond 40 MPa. Only part of the high suction is due to capillary tension. Under direct brine exposure, the shales almost always swell, even when the brine has an equivalent suction greater than the shale. This is likely due to the reduction in some component of the matric suction. The shale pore water is found to equilibrate with the solute content of the surrounding brine, due to ion diffusion. Much or all of the swelling, and water increase, appears to take place in the clay-bound water and not in the main (free water) pore space. The swelling magnitude is consistent with the amount of water content increase. Swelling usually corresponds to less than one additional water layer being added between the clays. Swelling, and water increase, is very small for the low-porosity shales. Some osmotic effects are observable in all the shales, and cation exchange on the clays also takes place. Swelling is best inhibited with potassium, followed by sodium, followed by calcium, for brines of equal water activity ranging from 0.8 to 0.9.  相似文献   

18.
At present, nearly 100 million tonnes of fly ash is being generated annually in India posing serious health and environmental problems. To control these problems, the most commonly used method is addition of fly ash as a stabilizing agent usually used in combination with soils. In the present study, high-calcium (ASTM Class C—Neyveli fly) and low-calcium (ASTM Class F—Badarpur fly ash) fly ashes in different proportions by weight (10, 20, 40, 60 and 80 %) were added to a highly expansive soil [known as black cotton (BC) soil] from India. Laboratory tests involved determination of physical properties, compaction characteristics and swell potential. The test results show that the consistency limits, compaction characteristics and swelling potential of expansive soil–fly ash mixtures are significantly modified and improved. It is seen that 40 % fly ash content is the optimum quantity to improve the plasticity characteristics of BC soil. The fly ashes exhibit low dry unit weight compared to BC soil. With the addition of fly ash to BC soil the maximum dry unit weight (γdmax) of the soil–fly ash mixtures decreases with increase in optimum moisture content (OMC), which can be mainly attributed to the improvement in gradation of the fly ash. It is also observed that 10 % of Neyveli fly ash is the optimum amount required to minimize the swell potential compared to 40 % of Badarpur fly ash. Therefore, the main objective of the study was to study the effect of fly ashes on the physical, compaction, and swelling potential of BC soils, and bulk utilization of industrial waste by-product without adversely affecting the environment.  相似文献   

19.
The factors controlling the expansive nature of the soils and rocks in Northern Oman were studied. Basic geotechnical data from over 40 sites were collected and using empirical relationships, swelling potentials were identified. A laboratory testing program was carried out using undisturbed samples from these swell pressures up to 3.5 MPa, and swell percent values up to 30 were measured. The clay minerals and cations of these samples were determined and Na-smectite was identified as being the main clay-mineral present. Microfabric studies showed generally dense clay matrices. However, these swelling materials exist as impersistent bands with non-swelling soils and rocks which makes prediction of the ground heave problematic.  相似文献   

20.
Expansive soils are considered as a potential natural hazard if they are not adequately treated. Expansive soils have high potential for shrinking and swelling under changing moisture conditions and cause extensive damages to engineering infrastructures. This study is concerned with the suitability of natural ornamental limestone dust to reduce the swelling characteristics of high expansive soils. The results are revealed that the swelling pressure and percent of heave are greatly decreased with increasing the inserted core diameters and mixing percentages of limestone dust. The average reduction percent values of swelling pressure and percent of heave are increased from 2.21% to 43.09% and from 2.56% to 45.64%, respectively, for treated soil samples with increase in limestone dust core diameters from 5 mm to 20 mm (1% to 16% of total soil area). The average reduction percent values of swelling pressure and heave percent are increased from 10.29% to 70.73% and from 22.29% to 82.90%, respectively, for treated soil samples with increase in limestone dust mixing percentages from 10% to 30%. The results are revealed that the enhancement in swelling characteristics of high expansive soils that are treated by ornamental limestone dust is mostly attributed to the replacement of high expansive fine clay particles by non-expansive and non-plastic coarse limestone dust particles, and to the presence of a considerable amount of free lime in limestone dust (4.97% as [Ca(OH)2]) that is responsible for converting the high expansive soils to less expansive soils by pozzolanic reaction. The mixing treatment method is more suitable for surficial and shallow foundation high expansive soil beds, while the compacted limestone dust piles “inserted limestone dust core method” are more suitable for deep foundation high expansive soil beds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号