首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One-dimensional injection tests were conducted on dry and dense sand columns with a height of 36.5 cm for the injectability evaluation of cement grouts. Three ordinary cement types were pulverized to obtain fine-grained cements having nominal maximum grain sizes of 40, 20 and 10 μm. Suspensions of these cements with water to cement (W/C) ratios of 1, 2 and 3, by weight, were injected into 54 clean, limestone sands with different gradations. Pulverization of the ordinary cements to produce microfine cements extends the range of groutable sands to “medium-to-fine”. Suspension injectability is improved by increasing cement fineness and suspension W/C ratio or by decreasing apparent viscosity and is controlled by the synthesis of the finer portion (d ≤ d25) of the sand gradation. The outcome of the 131 injectability tests conducted is successfully predicted by available groutability criteria at a rate ranging between 51 and 69%. The “new groutability and filtration criteria” proposed in this study, are adapted to the finer 25% of the sand gradation, have successful predictions for 79% of the cases (10–28% higher than those of the existing groutability criteria) and predict successfully the appearance of filtration in 83% of the available cases. The model developed by performing Binary Logistic Regression analyses of the injection test results is considered appropriate for the prediction of injectability of cement grouts in sands because it exhibits a coefficient of multiple determination equal to 0.84 and provides a rate of successful predictions equal to 78% of the available experimental results.  相似文献   

2.
The purpose of this paper is to investigate mechanical and hydraulic properties of sands treated with mineral-based grouts through the results of a laboratory test programme consisting of unconfined compression tests (UCS), triaxial bender element tests (BeT) and constant flow permeability tests in triaxial apparatus. An improved apparatus was set up for obtaining high quality, multiple grouted specimens from a single column. Two selected natural sands having different grain sizes were grouted with two mineral-based silica grouts, resulting in different levels of improvement. The behaviour of the sands treated by mineral grouts, in terms of strength, initial stiffness and permeability, was compared with that exhibited by more traditional silicate grouts. The results of this study indicate that sands treated with mineral grouts result in higher strengths, higher initial shear modulus and lower permeability values than the sands treated with the silicate solution. The effect of grout type, effective confining pressure, and sand particle-size on small-strain shear modulus of grouted sand specimens was evaluated. Based on test results, the small strain shear modulus increment from treated to untreated specimens has been correlated with the unconfined compressive strength, obtaining a unique relationship regardless of grout type and grain-size of tested sands.  相似文献   

3.
4.
It is widely known and well emphasized that the cemented sand is one of economic and environmental topics in soil stabilization. In some instances, a blend of sand, cement and other materials such as fiber, glass, nano particle and zeolite can commercially be available and effectively used in soil stabilization especially in road construction. In regard to zeolite, its influence and effectiveness on the properties of cemented sands systems has not been completely explored. Hence, in this study, based on an experimental program, it has been tried to investigate the potential of a zeolite stabilizer known as additive material to improve the properties of cemented sands. A total number of 216 unconfined compression tests were carried out on cured samples in 7, 28 and 90 days. Results show unconfined compression strength and failure properties improvements of cement sand specimens when cement replaced by zeolite at optimum proportions of 30 % after 28 days due to pozzolanic reaction. The rate of strength improvement is approximately 20–78 and 20–60 % for 28 and 90 days curing times respectively. The efficiency of using zeolite has been enhanced by increasing the cement content and porosity of the compacted mixture. The replacement of cement by natural zeolite led to an increase of the pH after 14 days. Chemical oxygen demand (COD) tests demonstrate that the materials with the zeolite mixture reveal stronger adsorptive capacity of COD in compare to cemented mixture. Scanning electron microscope images show that adding zeolite in cemented sand changes the microstructure (filling large porosity and pozzolanic reaction) that results in increasing strength.  相似文献   

5.
Relative density is an important state parameter that influences the soil behavior. Preparation of sand specimens with uniform density is critical during large-scale laboratory testing in geotechnical engineering. In this study, the details of a stationary air pluviation device used to prepare uniform sand specimens in a large-size test chamber with dimensions equal to 900 mm × 900 mm × 1000 mm (in length, width, and depth) are provided. The proposed device is found to be simple to construct due to presence of only two diffuser sieves with an ability to produce uniform sand beds in a reasonably quick time. Prior to construction of full-scale pluviation device, a scaled-down model of the device with plan dimensions equal to 300 mm × 300 mm is fabricated to perform calibration studies. The range of densities of two gradations of Indian Standard sand (IS Grade II and IS Grade III) obtained using this device for various heights of fall of sand particles and passing through different opening sizes are provided. Relative density in the range of 53–99 % and 74–99 % is achieved for IS Grade II and III sands, respectively. The spatial uniformity in densities is also assessed, and the coefficient of variation (COV) in the density is found to be less than about 7 %. In addition to pluviation method, uniform sand beds are also prepared using pneumatically-operated vibratory method. The target relative density of sand bed is achieved by adjusting the pressure of compressed air inside the vibrator, and the maximum relative density of IS Grade II and Grade III sands from vibratory method is found to be higher than that from pluviation method for the range of pressures chosen in the study.  相似文献   

6.
In this research, the hydraulic conductivity changes in uniformly graded sands, due to injection pressure increase, were experimentally evaluated using a cell-type radial model. Conducted tests, simulating variation of media permeability at different depths along a recharge well, were monitoring variations of the samples’ hydraulic conductivity at predetermined three different overburden pressures. The startup low pressure inflow was afterward altered by increasing the injection pressure up to the point at which hydraulic conductivity started to change at each run; we called it the threshold injection pressure. The corresponding hydraulic conductivity at such pressure was measured. As the increased permeability was a function of distance to the simulated recharge, it was deemed too beneficial to develop an equation to enable predicting this new hydraulic conductivity at different distances. Findings indicate that in uniformly graded sands under overburden pressure up to 68.64 kPa, the hydraulic conductivity in the threshold injection pressure—compared to its primary amount up to 45 cm from borehole wall—show a remarkable growth. However, this growth rate for greater distances up to 60 cm is negligible. Furthermore, in the threshold injection pressure, the hydraulic conductivity seems not to be time dependent. But, in constant injection pressures above the threshold injection pressure, the hydraulic conductivity shows some sort of time dependency.  相似文献   

7.
8.
水泥稳定粉砂土抗渗性能受粉砂土自身渗透性能、水泥用量、水灰比等因素影响显著,如何在提升其抗渗性能的同时降低水泥用量是提升工程经济效益的关键。通过开展不同水泥偏高岭土掺比、初始用水量、水泥偏高岭土总掺量以及养护龄期条件下的室内渗透试验,研究了上述因素对水泥偏高岭土复合稳定粉砂土抗渗性能的影响规律,探讨了上述因素及无侧限抗压强度与渗透系数之间的经验关系。结果表明:水泥与偏高岭土掺比为5:1时,水泥偏高岭土复合稳定粉砂土抗渗性能最佳,且该掺比不随水泥偏高岭土总掺量的改变而变化;水泥偏高岭土复合稳定粉砂土渗透系数随初始用水量增加呈非线性递增,随水泥偏高岭土总掺量增加和养护龄期发展呈先快后慢降低;基于试验结果归纳提出了4个关于初始用水量、水泥偏高岭土总掺量、养护龄期和无侧限抗压强度的水泥偏高岭土复合稳定粉砂土渗透系数经验模型。研究成果可为水泥稳定粉砂土抗渗性能提升提供理论参考与借鉴。  相似文献   

9.
梁珂  陈国兴  杭天柱  刘抗  何杨 《岩土力学》2020,41(6):1963-1970
根据不同级配的南沙和西沙群岛珊瑚砂最大动剪切模量G0的共振柱试验结果,发现相同有效围压 下不同级配、不同海洋珊瑚砂的G0分布范围存在上、下界限。最大孔隙比emax和最小孔隙比emin是可以综合反映砂类土级配和颗粒形状特性的状态参量,G0界限值与极限孔隙比(emax和emin)状态下的G0外推结果相吻合。相同的 下,珊瑚砂的G0下限值G0min随emax的增大而减小,G0上限值G0max随emin的增大而减小。根据不同 下G0min与emax及G0max与emin关系建立了预测珊瑚砂G0界限值的经验公式,不同孔隙比e状态下的G0可以根据界限值G0min、G0max按相对密实度Dr非线性插值获得。新的G0预测模型对同一类别、不同级配的砂土具有较好的普适性。对于不同类别的砂土,引入与矿物组分有关的系数a对模型进行修正,采用文献中大量的G0试验结果对模型进行了验证,新的G0预测模型的普适性明显优于传统Hardin模型。  相似文献   

10.
In order to isolate the effect of grain size and cementation on the mechanical behaviour of poorly consolidated granular rock, we prepared synthetic rock samples in which these two parameters were varied independently. Various proportions of sand, Portland cement and water were mixed and cast in a mold. The mixture was left pressure-free during curing, thus ensuring that the final material was poorly consolidated. We used two natural well-sorted sands with grain sizes of 0.22 and 0.8 mm. The samples were mechanically tested in a uniaxial press. Static Young's modulus was measured during the tests by performing small stress excursions at discrete intervals along the stress–strain curves. All the samples exhibited nonlinear elasticity, i.e., Young's modulus increased with stress. As expected, we found that the uniaxial compressive strength increased with increasing cement content. Furthermore, we observed a transition from grain size sensitivity of strength at cement content less than 20–30% to grain size independence above this value. The measured values of Young's modulus are well explained by models based on rigid inclusions embedded in a soft matrix, at high cement content, and on cemented grain-to-grain contacts, at low cement content. Both models predict grain size independence in well-sorted cemented sands. The observed grain size sensitivity at low cement content is probably due to microstructural differences between fine- and coarse-grained materials caused by small differences in grain sorting quality.  相似文献   

11.
Optimization of calcium-based bioclogging and biocementation of sand   总被引:1,自引:0,他引:1  
Bioclogging and biocementation can be used to improve the geotechnical properties of sand. These processes can be performed by adsorption of urease-producing bacterial cells on the sand grain surfaces, which is followed by crystallization of calcite produced from the calcium salt and urea solution due to bacterial hydrolysis of urea. In this paper, the effect of intact cell suspension of Bacillus sp. strain VS1, suspension of the washed bacterial cells, and culture liquid without bacterial cells on microbially induced calcite precipitation in sand was studied. The test results showed that adsorption/retention of urease activity on sand treated with washed cells of Bacillus sp. strain VS1 was 5–8 times higher than that treated with culture liquid. The unconfined compressive strength of sand treated with the suspension of washed cells was 1.7 times higher than that treated with culture liquid. This difference could be due to fast inactivation of urease by protease which was present in the culture liquid. The adsorption of bacterial cells on sand pretreated with calcium, aluminum, or ferric salts was 29–37 % higher as compared with that without pretreatment. The permeability of sand varied with the content of precipitated calcium. For bioclogging of sand, the content of precipitated calcium had to be 1.3 % (w/w) or higher. The shear strength of biotreated sand was also dependent on the content of precipitated calcium. To achieve an unconfined compressive strength of 1.5 MPa or higher, the content of precipitated calcium in the treated sand had to be 4.2 % (w/w) or higher. These data can be used as the reference values for geotechnical applications such as bioclogging for reducing the permeability of sand and biocementation for increasing the shear strength of soil.  相似文献   

12.
In this study, a series of sand packed columns were used to investigate the mobility of multiwall carbon nanotubes (MWCNTs) in unsaturated porous media under unfavorable conditions for deposition. The flow through column experiments were designed to assess water content, flow rate, and grain size effect on the mobility of MWCNTs. It was found that variation in water content had no significant effect on retention of MWCNTs until it was lowered to 16 % effective saturation. Thick water films, high flow rate, and repulsive forces between MWCNTs and porous media made MWCNTs highly mobile. Different porous media grain sizes (D 50 = 150–300 μm) were used in this study. The mobility of MWCNTs slightly decreased in finer grain sands, which was deemed to be an effect of increase in surface area and the number of depositional sites, in combination with low-pore water velocity. However, physical straining was not observed in selected fine-grain sands and aspect ratio of MWCNTs had low impact on mobility. Variations in pore-water velocity were produced by both changes in water saturation and in flow rate. At high pore-water velocities, the MWCNTs were generally mobile. However, for the combination of low-pore water velocity with either low water saturation or small grain size, some retention of MWCNTs was observed. Hence, low velocity in combination with flow through smaller pores increased MWCNT deposition.  相似文献   

13.
A theoretical model of cement suspensions flow in granular porous media considering particle filtration is presented in this paper. Two phenomenological laws have been retained for the filtration rate and the intrinsic permeability evolution. A linear evolution with respect to the volume fraction of cement in the grout has been retained for the filtration rate. The intrinsic permeability of the porous medium is looked for in the form of a hyperbolic function of the porosity change. The model depends on two phenomenological parameters only. The equations of this model are solved analytically in the one‐dimensional case. Besides, a numerical resolution based on the finite element method is also presented. It could be implemented easily in situations where no analytical solution is available. Finally, the predictions of the model are compared to the results of a grout injection test on a long column of sand. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
曾溅辉  王洪玉 《地质论评》2001,47(6):590-595
静水条件下背斜圈闭系统石油运移和聚集的模拟实验表明:(1)不同砂层组合方式的背斜圈闭系统中,油的运移方向、路径和通道不同,其中,均质和反韵律砂层组成的背斜圈闭系统油的运移方向、路径和通道比较简单,而正韵律组成的背斜圈闭系统中油的运移方向、路径和通道比较复杂;(2)油的充注速率对油的运移方向、路径和通道具有重要的影响,当充注速率较小时,油仅在一些渗透率较高的砂层中运移,当充注速率较大并超过渗透率较高的砂层的运载能力时,则油可以进入一些渗透率较低的砂层;(3)运载层的岩性组合和渗透率级差以及油充注速率和充注方向等对油气运移的散失量和运移效率产生重要的影响,一般来说,反韵律砂层组成的背斜圈闭系统中油的运聚效率较高,均质砂层组成的背斜圈闭系统次之,而正韵律砂层组成的背斜圈闭系统中油的运聚效率比较低;(4)油的运移形式表现为跳跃和脉动的特点。  相似文献   

15.
袁涛  蒋中明  刘德谦  熊小虎 《岩土力学》2018,39(4):1311-1316
为深入认识渗透变形对粗粒土渗透性及压缩性的影响,利用自主研发的加载式大型渗透变形仪对不同级配的粗粒土试样进行渗透变形全过程试验及侧限压缩对比试验,获得了不同试件产生渗透变形的临界水力梯度、渗透系数演化规律及损伤变化特性。研究成果表明:渗透变形过程中渗流路径中下游部位产生了渗透挤密效应,引起局部渗透性降低;在后期增加的水头作用下,先前产生渗透挤密部位的渗透性逐渐增大。试样产生渗透变形后,压缩模量减小;颗粒级配不同,渗透破坏引起的压缩损伤程度亦不相同。试件产生渗透变形后,在重力和渗透力作用下,试件结构将产生重构现象。  相似文献   

16.
曾庆军  莫海鸿  潘泓  李茂英 《岩土力学》2006,27(Z2):585-590
天然软土尤其三角洲地区的淤泥或淤泥质黏土常含砂,以含细砂或粉细砂为主,系统研究水泥土强度与含砂量的关系,为水泥土性能改良、强度设计及水泥土搅拌法施工提供直接依据。选取珠江三角洲两处典型的淤泥、淤泥质黏土,按天然含水率配制试验用土,掺加不同含量的细砂制成含砂水泥土试件,养护到不同龄期,对其进行无侧限抗压强度试验,得到了水泥土强度与含砂量及其他关联影响因素关系的变化规律。主要结论是:细砂颗粒在水泥土中起到了细骨料的作用,有利于提高水泥土强度;考虑水泥土的含砂量、水土质量比、水泥掺入比和实际水灰比等因素,得到了含砂淤泥水泥土强度估算公式;在不含砂淤泥水泥土中掺入2 %干细砂时其强度约提高25 %,掺入15 %~25 %干细砂则可提高40 %~60 %。  相似文献   

17.
董玉祥 《沉积学报》2002,20(4):656-662
现代海岸风成砂的粒度特征是海岸风沙研究的重要问题,本文以我国温带海岸为研究区域,利用 136个现代海岸风成砂样数据,通过粒度组成、平均粒径、标准偏差和偏差、峰态等粒度参数分析了其粒度特征。结果表明,我国温带海岸的现代风成砂并非过去认为的几乎全由分选很好的细砂组成,是以正偏为主,粒度参数的地域差异明显,并随沙丘类型、规模及距海岸线的远近不同等而变化。与海滩砂比较,风成砂具有普遍含有粉沙、略细、多正偏、峰态偏窄等特点,但利用粒度参数散点图和因子分析法二者均无法区分。我国温带海岸现代海岸风成砂粒度参数的上述特征与其特有的发育条件和演化过程密切相关,其中主要与季风气候特征显著、形成时间短、风力作用时间有限以及风沙活动空间狭小并受到水力与重力作用的干扰等有关。  相似文献   

18.
This paper presents a simple three‐dimensional (3D) Distinct Element Method (DEM) for numerical simulation of the mechanical behavior of bonded sands. First, a series of micro‐mechanical tests on a pair of aluminum rods glued together by cement with different bond sizes were performed to obtain the contact mechanical responses of ideally bonded granular material. Second, a 3D bond contact model, which takes into account the influences of bond sizes, was established by extending the obtained 2D experimental results to 3D case. Then, a DEM incorporating the new contact model was employed to perform a set of drained triaxial compression tests on the DEM bonded specimens with different cement contents under different confining pressures. Finally, the mechanical behavior of the bonded specimens was compared with the available experimental results. The results show that the DEM incorporating the simple 3D bond contact model is able to capture the main mechanical behavior of bonded sands. The bonded specimen with higher cement content under lower confining pressure exhibits more pronounced strain softening and shear dilatancy. The peak and residual strengths, the apparent cohesion and peak/residual friction angles, and the position and slope of the critical state line increase with increase in cement content. Microscopically, bond breakage starts when the system starts to dilate and the maximum rate of bond breakage coincides with the maximum rate of dilation. Bond breakage is primarily due to tension‐shear failure and the percentage of such failures is independent of both confining pressure and cement content. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The Kaluganga River Estuary is one of the main sources of construction sand in Sri Lanka. Salt water intrusion along this estuary due to extensive sand mining has increased over the years. Thus, the focus of the current research is to understand the relationship between river sand mining, salt water intrusion, and the resultant effects on construction sand. Two surveys were conducted along the Kaluganga Estuary along an 11 km stretch from the river mouth at predetermined intervals to measure depth water quality profiles, and to collect sediment samples. These surveys were carried out during maximum spring tide; first in a dry period and then in a wet period, to understand hydrographic effects on the quality of river sands. Sand samples were analysed for absolute chloride content and grain size distribution. Results showed significant salt water intrusion during the dry period, averaging 2,307 μS cm?1 in surface waters throughout the surveyed 11 km stretch along with 3,818 μS cm?1 (average) in bottom waters up to 5.6 km upstream from the river mouth causing above normal chloride content in the bottom sandy sediments. The high chloride content in bottom sands was recorded up to 5.5 km from the river mouth making them unsuitable for construction purposes. However, during wet period, salt water intrusion levels in the bottom waters were insignificant (average 61 μS cm?1) and the chloride content in bottom sediments was very low. This study highlighted the requirement for regulations on river estuary sandmining for construction purposes.  相似文献   

20.
对砂土压缩过程中微观结构的提取,有利于认识其在压缩变形和破坏中的微观机制。为实现对砂土压缩固结过程中微观结构的固定、提取和量化,本文设计了一种砂土压缩过程中微观结构提取技术,其主要由环氧树脂胶注入装置和改进的固结仪砂样采集盒两部分组成。在砂土压缩固结试验中,采用步进电机推动注射器中蓝色环氧树脂胶,通过预设的硅胶软管,从透水石底部进入压缩中的砂样。待环氧树脂胶固结后,制作薄片,并用光学显微镜拍摄得到其微观结构图像。应用该技术,能实现砂土在压缩过程中微观结构的固定和提取。本文对3种不同粒径和级配的石英砂进行压缩和固化试验,以介绍该提取技术。在获取其微观图像后,进一步采用PCAS软件对微观结构进行定量分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号