首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Low pressure melting experiments on eucritic meteorites demonstrate that the compositions of most eucrites can be generated by low pressure fractionation of pigeonite and plagioclase from liquids similar in composition to the Sioux County and Juvinas eucrites. It is unlikely that the liquids with compositions similar to Sioux County and Juvinas were themselves residual liquids produced by extensive fractionation of more magnesian parental liquids. The compositions of Stannern and Ibitira cannot be produced by fractionation of liquids with compositions similar to other known eucrites. Liquid compositions similar to Stannern, Ibitira, and Sioux County could have been generated by increasing degrees of low pressure partial melting of source regions composed of olivine (~Fo65), pigeonite (~Wo5En65), plagioclase (~An94), Cr-rich spinel, and metal. These source assemblages may have been primitive, undifferentiated material of the basaltic achondrite parent body and the eucrites may represent melts produced in early stages of its melting and differentiation. Further melting in these source regions, after exhaustion of plagioclase, may have produced magnesian liquids from which the magnesian pyroxenes and olivines in howardites, diogenites, and mesosiderites crystallized in closed-system plutonic environments. Most of the cumulate eucrites (e.g. Moama, Moore County, Serra de Magé) could not have equilibrated with liquids similar in composition to known eucrites. These cumulates may have accumulated from liquids produced by extensive fractionation of advanced partial melts of the source regions of eucritic liquids. A depletion in Na, K, and Rb in Ibitira is noted.  相似文献   

2.
Ultra-calcic melt inclusions (UCMI: CaO>13.5 wt% and/or CaO/Al2O3>0.9) are magnesian and near-primary liquids trapped in volcanic phenocrysts from mid-ocean ridges, arcs, back-arcs, and ocean islands. UCMI can be subdivided into two classes based on tectonic association and degree of silica saturation: those from arcs are nepheline normative and those from all other localities (silicic UCMI) are hypersthene normative. Silicic UCMI share a number of common features, including primitive host minerals, low alkali contents, and variable ratios of K2O/TiO2 ranging to high values. Their compositions are not easily derived by partial melting of mantle lherzolite. Accordingly, we have performed a series of partial melting experiments on three clinopyroxenite compositions at 1.0 to 2.0 GPa to investigate the role of partial melting of clinopyroxene-rich lithologies in silicic UCMI genesis. Estimated solidus temperatures for all three compositions are similar to those of normal peridotites, but 1.0 GPa isobaric melt productivities are higher for clinopyroxenite than for peridotite. High degree partial melts of the clinopyroxenites are ultra-calcic and have similarities to silicic UCMI, but the experiments produce ultra-calcic liquids only at melt fractions greater than 30% and temperatures higher than 1,350 °C at 1.0 GPa. Such temperatures are higher than those likely to be prevailing beneath normal mid-ocean ridges, which suggests that some or all silicic UCMI may originate by a process other than simple partial melting of clinopyroxene-rich lithologies. We consider a possible role for partial melting of depleted harzburgite in the genesis of silicic UCMI.  相似文献   

3.
A petrological investigation of abyssal, plagioclase-free spinel peridotite drilled during ODP cruise 153 in the North Atlantic revealed that the peridotite represent refractory, partial residual mantle material that experienced depletion of incompatible trace elements during upper mantle melting. The degree of partial melting as estimated from spinel compositions was c. 12%. Fractionated middle and heavy rare earth elements imply polybaric melting, with c. 1–4% initial melting in the garnet peridotite stability field and subsequent partial melting of ~7–10% in the spinel peridotite stability field. Geothermobarometric investigations revealed that the solid-state equilibration of the spinel peridotite occurred at some 1,100–1,150°C and c. 20–23 kbar, corresponding to an equilibration depth of c. 70?±?5 km and an unusually low thermal gradient of some 11–17°C/km. A thermal re-equilibration of the peridotite occurred at ~850–1,000°C at similar depths. Naturally, the initial mantle melting in the garnet-peridotite stability field must have commenced at depths greater than 70?±?5 km. It is likely that the residual peridotite rose rapidly through the lithospheric cap towards the ridge axis. The exhumation of the abyssal peridotite occurred, at least in parts, via extensional detachment faulting. Given the shallow to moderate dip angles of the fault surfaces, the exhumation of the peridotite from its equilibration depth would imply an overall ridge-normal horizontal displacement of c. 50–160 km if tectonic stretching and detachment faulting were the sole exhumation mechanism.  相似文献   

4.
Samples of a primitive mid-ocean ridge basalt (MORB) glass were encapsulated in a mixture of ol (Fo90) and opx (En90) and melted at 10, 15, and 20 kbar. After quenching, the basaltic glass was present as a pool within the ol+opx capsule, but its composition had changed so that it was saturated with ol and opx at the conditions of the experiment. By analyzing the quenched liquid, the location of the ol+opx cotectic in the complex, multicomponent system relevant to MORB genesis was determined.As pressure increases from 1 atm to 10 kbar, the dry ol+opx cotectic moves from quartz tholeiitic to olivine tholeiitic compositions. With further increases in pressure, the cotectic continues to move toward the ol-di-plag join (i.e., toward alkalic compositions). Between 15 and 20 kbar, ol+opx+di-saturated liquids change from tholeiitic to alkalic in character, although part of the ol+opx cotectic is still in the tholeiitic (i.e, hy-normative) part of composition space. At pressures of 10–15 kbar, tholeiitic liquids may be able to fractionate to alkalic liquids on the ol+di cotectic.Primitive MORB compositions come close to but do not actually lie on the ol+opx cotectic under any conditions studied. This suggests that not even the most primitive of known MORBs are primary melts of the mantle. The correspondence of most MORBs to the 1 atm ol+di+plag cotectic suggests that low pressure fractionation was involved in their genesis from parent liquids. Picritic liquids that have been proposed as parents to the MORB suite could equilibrate with harzburgite (or Iherzolite) at 15–20 kbar and thus could be primary. Fractionation of ol from these liquids could yield primitive MORB liquids, but other primary liquids or more complex fractionation paths involving others phases in addition to ol cannot be ruled out. The possibility that these picritic liquids could equilibrate with ol+opx at 25–30 kbar cannot be ruled out.  相似文献   

5.
Experiments in the system high-A1 basalt (HAB)-water have been conducted in the melting range at pressures between 1 atm. and 10 kbar, defining the amphibole stability field and the composition of liquids which coexist with this amphibole. Plagioclase is the anhydrous liquidus phase between 1 atm. and 10 kbar but in the hydrous runs this role is taken by olivine at <7 kbar and then by clinopyroxene at higher pressures. Because amphibole is never on the high-A1 basalt liquidus it is not likely that andesite is derived from primary basalt by pure fractional crystallisation, although as we discuss, other mechanisms including equilibrium crystallisation might implicate amphibole. If primary basaltic magma undergoes closed-system equilibrium crystallisation, then the amphibole field will be intersected at between 50 and 100°C below the liquidus. The compositions of melts coexisting with amphibole alone do not match those of any of the natural andesite or dacitic lavas associated with the particular high-A1 basalt investigated. Like natural andesites, they become rapidly silica enriched, but they also become far more depleted in TiO2 and MgO. However, the compositions of liquids lying directly on the divariant amphibole-out reaction zone, where amphibole +liquid coexist with clinopyroxene or olivine (±plagioclase), do resemble those of naturally occurring low-silica andesites. With increasing temperature pargasitic amphibole breaks down via incongruent melting reactions over a narrow temperature range to form a large volume of relatively low-silica basaltic andesite liquid and a crystalline assemblage dominated by either clinopyroxene or olivine. Our important conclusion is that basaltic andesite liquid will be the product of reaction between cooling, hydrous mafic liquid and anhydrous ferromagnesian phases. The solid reactants could represent earlier cumulates from the same or different magma batches, or they could be peridotite wall-rock material. Because the amphibole-out boundary coexisting with liquid is one of reaction, it will not be traversed so long as the phases on the high temperature side remain. Thus, the assemblage amphibole+clinopyroxene±olivine±plagioclase+liquid is one in which the liquid is buffered (within limits), and results reported here indicate that this buffering generates melts of low-silica andesite composition. When tapped to lower pressures these liquids will rise, eventually to fractionate plagioclase-rich assemblages yielding silicarich andesite and dacite melts. Conversely, the partial melting of hornblende pyroxenite, hornblende peridotite or hornblende gabbro can also yield basaltic andesite liquids. The phase relationships suggested by these experiments are discussed in the light of naturally occurring phenocryst and xenolith assemblages from the east Sunda Arc. Primary magmatic additions to the lithosphere of volcanic arcs are basaltic and voluminous upper crustal andesite in these terranes, complemented by mafic and ultramafic crystalline deposits emplaced in the lower crust or close to the Moho. Together these components constitute total arc growth with a basaltic composition and represent the net accreted contribution to continental growth.  相似文献   

6.
We present the results of melting experiments on a moderatelydepleted peridotite composition (DMM1) at 10 kbar and 1250–1390°C.Specially designed experiments demonstrate that liquids extractedinto aggregates of vitreous carbon spheres maintained chemicalcontact with the bulk charge down to melt fractions of  相似文献   

7.
G.B. Piccardo  L. Guarnieri 《Lithos》2011,124(3-4):200-214
Hundred-meter wide cumulate bodies and decimetric dykelets of gabbro-norites are widespread within the distal ophiolitic peridotites from the Jurassic Ligure-Piemontese oceanic basin, now emplaced in the Alpine–Apennine orogenic system. These peridotites derived from the sub-continental mantle of the pre-Triassic Europe–Adria lithosphere and underwent profound modifications of their structural and compositional characteristics via melt–rock interaction during diffuse percolation by porous flow of upwelling asthenospheric melts. Gabbro-norite cumulates show the peculiar association of high forsteritic olivine, high-Mg# clinopyroxenes and orthopyroxenes and high anorthitic plagioclase with respect to mineral compositions in common ophiolitic and oceanic MORB gabbros. Abundance and early crystallization of magnesian orthopyroxene suggests that parental magmas of the gabbro-noritic cumulates were relatively silica-rich basaltic liquids. Clinopyroxenes and plagioclase have anomalously low Sr and LREE, resulting in highly fractionated C1-normalized LREE patterns in clinopyroxenes and negatively fractionated C1-normalized LREE patterns in plagioclases.Modal mineralogy and mineral major and trace element compositions indicate that these gabbro-norites crystallized from MORB-type basaltic liquids that were strongly depleted in Na, Ti, Zr, Sr and other incompatible trace elements relative to any erupted liquids of MORB-type ophiolites and modern oceanic lithosphere. Computed melt compositions in equilibrium with gabbro-norite clinopyroxenes are closely similar to depleted MORB-type single melt increments after 5–7% of fractional melting of a DM asthenospheric mantle source under spinel-facies conditions.Present knowledge on the ophiolitic peridotites of Monte Maggiore indicate that they were formed by interaction of lithospheric mantle protoliths with depleted, MORB-type single melt increments produced by the ascending asthenosphere. Their composition was progressively modified from olivine-saturated to orthopyroxene-saturated by the early reactive melt–peridotite interaction (i.e., pyroxene dissolution and olivine precipitation).Gabbro-norite cumulates marked the change from diffuse porous flow percolation to intrusion and crystallization when cooling by conducive heat loss became dominant on heating by melt percolation. Progressive upwelling and cooling of the host peridotite during rifting caused transition to more brittle conditions and to hydration and serpentinization.The Monte Maggiore peridotite body was then intruded along fractures by variably evolved, Mg–Al- to Fe–Ti-rich gabbroic dykes. Computed melt compositions in equilibrium with clinopyroxenes from less evolved gabbro dykes are closely similar to aggregated MORBs. The event of gabbro intrusion indicates that aggregated MORB-type liquids: i) migrated through and stagnated in the mantle lithosphere and ii) underwent evolution into shallow ephemeral magma chambers to form the parental magmas of the gabbroic dykes and the basaltic lava flows of the Ligurian oceanic crust.  相似文献   

8.
. The granulite complex of Paderu, in the south central sector of the Eastern Ghats belt, India, consists of closely related pelitic granulites and peraluminous granitoids which could be linked via dehydration melting in pelitic and greywacke-like precursors. The pelitic granulites, including high-Mg-Al sapphirine granulites with early deformation microstructures, also record a high-temperature decompression from ~10 to ~8 kbar at ~1,000 °C, preceding isobaric cooling from above 900 to ~600 °C at 8 kbar. Highly magnesian biotite in the pelitic granulites, the presence of spinel in some of the granitoids, and granitoids of two distinct compositions, namely granite and quartz-monzonite, all suggest dehydration melting in highly magnesian pelitic and greywacke-like precursors. Moreover, high-temperature melting in highly magnesian pelitic precursors is indicated by the migmatitic spinel-bearing layers which, besides having significant abundance of quartz and feldspar, also contain aluminous orthopyroxene and cordierite. These melting reactions, occurring above 9 kbar, may constrain the prograde arm of the P-T trajectory. This and the high-temperature decompression constitute a clockwise P-T path. This clockwise P-T path is consistent with the tectonic model in which crustal thickening and granulite metamorphism in the Eastern Ghats belt is interpreted as the result of homogeneous shortening in a compressional setting.  相似文献   

9.
The Shiribeshi Seamount off northwestern Hokkaido, the Sea of Japan, is a rear-arc volcano in the Northeast Japan arc. This seamount is composed of calc-alkaline and high-K basaltic to andesitic lavas containing magnesian olivine phenocrysts and mantle peridotite xenoliths. Petrographic and geochemical characteristics of the andesite lavas indicate evidence for the reaction with the mantle peridotite xenoliths and magma mixing between mafic and felsic magmas. Geochemical modelling shows that the felsic end-member was possibly derived from melting of an amphibolitic mafic crust. Chemical compositions of the olivine phenocrysts and their chromian spinel inclusions indicate that the Shiribeshi Seamount basalts in this study was derived from a primary magma in equilibrium with relatively fertile mantle peridotites, which possibly represents the mafic end-member of the magma mixing. Trace-element and REE data indicate that the basalts were produced by low degree of partial melting of garnet-bearing lherzolitic source. Preliminary results from the mantle peridotite xenoliths indicate that they were probably originated from the mantle beneath the Sea of Japan rather than beneath the Northeast Japan arc.  相似文献   

10.
Experimental melting studies were conducted on a nepheline mugearitecomposition to pressures of 31 kbar in the presence of 0–30%added water. A temperature maximum in the near-liquidus stabilityof amphibole (with olivine) was found for a water content of3·5 wt % at a pressure of 14 kbar. This is interpretedto have petrogenetic significance for the derivation of nephelinemugearite magmas from nepheline hawaiite by amphibole-dominatedfractional crystallization at depth within the lithosphericmantle. Synthetic liquids at progressively lower temperaturesrange to nepheline benmoreite compositions very similar to thoseof natural xenolith-bearing high-pressure lavas elsewhere, andsupport the hypothesis that continued fractional crystallizationcould lead to high-pressure phonolite liquids. Independent experimentaldata for a basanite composition modeled on a lava from the sameigneous province (the Newer Basalts of Victoria) permit theinference that primary asthenospheric basanite magmas undergopolybaric fractional crystallization during ascent, and mayevolve to liquids ranging from nepheline hawaiite to phonoliteupon encountering cooler lithospheric mantle at depths of 42–50km. Such a model is consistent with the presence in some evolvedalkalic lavas of both lithospheric peridotite xenoliths indicativeof similar depths and of megacryst suites that probably representdisrupted pegmatitic segregations precipitated from precursoralkalic magmas in conduit systems within lithospheric mantle. KEY WORDS: experiment; high pressure; alkalic magmas; amphibole; nepheline mugearite; basanite; lithosphere  相似文献   

11.
冀东地区位于华北克拉通北缘,学术界对该地区新太古代岩浆作用的成因模式及构造背景一直存在争议,因此对冀东青龙-双山子地区的新太古代变质表壳岩及侵入岩进行了系统的同位素年代学及岩石地球化学研究.锆石LA-MC-ICP-MS U-Pb年代学结果显示变安山岩的形成时代为2 576 Ma,辉长闪长岩-英云闪长岩-石英闪长岩的侵入时代为2 484~2 535 Ma.岩石地球化学特征显示,较早期的变安山岩部分属高镁安山岩类,源自俯冲板片脱水流体交代地幔楔的部分熔融;而稍晚的侵入岩类为具有埃达克质岩石特征的镁闪长岩类,源区具有熔体交代地幔楔部分熔融的特征;整体构成高镁安山岩-埃达克质镁闪长岩组合.结合区域上的同位素年代学及地球化学报道,冀东青龙-双山子地区新太古代应处于活动大陆边缘构造背景.   相似文献   

12.
The anhydrous melting behaviour of two synthetic peridotite compositions has been studied experimentally at temperatures ranging from near the solidus to about 200° C above the solidus within the pressure range 0–15 kb. The peridotite compositions studied are equivalent to Hawaiian pyrolite and a more depleted spinel lherzolite (Tinaquillo peridotite) and in both cases the experimental studies used peridotite –40% olivine compositions. Equilibrium melting results in progressive elimination of phases with increasing temperature. Four main melting fields are recognized; from the solidus these are: olivine (ol)+orthopyroxene (opx)+clinopyroxene (cpx)+Al-rich phase (plagioclase at low pressure, spinel at moderate pressure, garnet at high pressure)+liquid (L); ol+opx+cpx+Cr-spinel+L; ol+opx+Cr-spinel +L: ol±Cr-spinel+L. Microprobe analyses of the residual phases show progressive changes to more refractory compositions with increasing proportion of coexisting melt i.e. increasing Mg/(Mg+Fe) and Cr/(Cr+Al) ratios, decreasing Al2O3, CaO in pyroxene.The degree of melting, established by modal analysis, increases rapidly immediately above the solidus (up to 10% melting occurs within 25°–30° C of the solidus), and then increases in roughly linear form with increasing temperature.Equilibrium melt compositions have been calculated by mass balance using the compositions and proportions of residual phases to overcome the problems of iron loss and quench modification of the glass. Compositions from the melting of pyrolite within the spinel peridotite field (i.e. 15 kb) range from alkali olivine basalt (<15% melting) through olivine tholeiite (20–30% melting) and picrite to komatiite (40–60% melting). Melting in the plagioclase peridotite field produces magnesian quartz tholeiite and olivine-poor tholeiite and, at higher degrees of melting (30–40%), basaltic or pyroxenitic komatiite. Melts from Tinaquillo lherzolite are more silica saturated than those from pyrolite for similar degrees of partial melting, and range from olivine tholeiite through tholeiitic picrite to komatiite for melting in the spinel peridotite field.The equilibrium melts are compared with inferred primary magma compositions and integrated with previous melting studies on basalts. The data obtained here and complementary basalt melting studies do not support models of formation of oceanic crust in which the parental magmas of common mid-ocean ridge basalts (MORB) are attributed to segregation from source peridotite at shallow depths ( 25 km) to leave residual harzburgite. Liquids segregating from peridotite at these depths are more silica-rich than common MORB.  相似文献   

13.
John Longhi   《Lithos》2005,83(3-4):183-198
Calculations of fractional crystallization (FC) and assimilation fractional crystallization (AFC) at 11 kb for a variety of primitive magmatic compositions and a mafic assimilant demonstrate that none of them has a bulk composition suitable to be parental to massif anorthosites. Mafic compositions thought to be parental to massif anorthosites have Mg′ values of 0.6 to 0.4 and form coherent arrays with moderately steep slopes on plots of TiO2, K2O, and P2O5 versus Mg′. The calculated liquid lines of descent (LLD) of basaltic magmas undergoing FC or AFC processes pass through the arrays of anorthosite parent magma compositions with much shallower slopes than the natural arrays, which indicates that the arrays of natural parental magmas were produced by a process other than FC/AFC. Also, by the time most crystallizing basaltic magmas with or without assimilation reach plagioclase saturation, their residual liquids have Mg′ values that are too low to be parental to anorthosites. MORB-like olivine tholeiites and high-aluminum olivine tholeiites (HAOT) from convergent plate margins do reach plagioclase saturation while sufficiently magnesian, but their Wo (Wollastonite) contents are too high such that they reach plagioclase saturation coexisting only with augite and do not reach orthopyroxene saturation (if at all) until Mg′ is too low. Calculations show it is not possible to produce a high-Al melt from typical mantle peridotites that has sufficient TiO2 to make andesine-type anorthosite.

Calculation of partial melting for an average mafic crustal composition at 11 kbar provides a much closer match to the array of natural parental compositions in terms of minor element concentrations and proportions of mineral components. However, accounting for the entire array requires a more magnesian source composition. Such compositions exist in several crustal xenolith localities. Similar results were obtained using the bulk composition of the Stillwater Complex, which is used as a model mafic source (here the premise is that overdense crustal intrusions might sink back into the mantle). As with the terrain composition, this particular layered intrusion composition is not sufficiently magnesian, however, the fit improves when mixtures of early and late stage portions of the complex (i.e., the denser portions) were run as potential source regions.  相似文献   


14.
Near liquidus experiments on peridotite and other olivine normative compositions from 1.7 to 6 GPa confirm the applicability of exchange-based empirical models of Ni and Co partitioning between olivine and silicate liquids with compositions close to the liquidus of peridotite. Given that most estimates of lunar bulk composition are peridotitic, the partitioning models thus lend themselves to calculation of olivine compositions produced during the early stages of magma ocean crystallization. Calculation of olivine compositions produced by fractional crystallization of a model lunar magma ocean, initially 700 km deep, reveals a prominent maximum in Ni concentration versus fraction crystallized or Mg’ (molar MgO/(MgO + FeO)), but a pattern of monotonically increasing Co concentration. These patterns qualitatively match the puzzling patterns of Ni and Co concentrations observed in lunar rocks in which forsteritic olivines in magnesian suite cumulates have lower Ni and Co abundances than do less magnesian olivines from low-Ti mare basalts, and olivines from the ferroan anorthosite suite (FAS) have lower Ni, but similar Co to mare basalt olivines.The Ni and Co abundances in olivines from the magnesian suite cumulates can be reconciled in terms of fractional crystallization of a deep magma ocean which initially produces a basal dunite comprised of the hottest and most magnesian olivine overlain by an olivine-orthopyroxene (harzburgite) layer that is in turn overlain by an upper zone of plagioclase-bearing cumulates. The ultramafic portion of the cumulate pile overturns sending the denser harzburgite layer, which later becomes a portion of the green glass source region, to the bottom of the cumulate pile with Ni- and Co-rich olivine. Meanwhile, the less dense, but hottest, most magnesian olivines with much lower Ni and Co abundances are transported upward to the base of the plagioclase-bearing cumulates where subsequent heat transfer leads to melting of mixtures of primary dunite, norite, and gabbronorite with KREEP (a K-REE-P enriched component widely believed to be derived from the very latest stage magma ocean liquid). These hybrid melts have Al2O3, Ni, and Co abundances and Mg’ appropriate for parent magmas of the magnesian suite. Ni and Co abundances in the FAS are consistent with either direct crystallization from the magma ocean or crystallization of melts of primary dunite-norite mixtures without KREEP.  相似文献   

15.
 Geochemical data have been interpreted as requiring that a significant fraction of the melting in MORB source regions takes place in the garnet peridotite field, an inference that places the onset of melting at ≥80 km. However, if melting begins at such great depths, most models for melting of the suboceanic mantle predict substantially more melting than that required to produce the 7±1 km thickness of crust at normal ridges. One possible resolution of this conflict is that MORBs are produced by melting of mixed garnet pyroxenite/spinel peridotite sources and that some or all of the “garnet signature” in MORB is contributed by partial melting of garnet pyroxenite layers or veins, rather than from partial melting of garnet peridotite. Pyroxenite layers or veins in peridotite will contribute disproportionately to melt production relative to their abundance, because partial melts of pyroxenite will be extracted from a larger part of the source region than peridotite partial melts (because the solidus of pyroxenite is at lower temperature than that of peridotite and is encountered along an adiabat 15–25 km deeper than the solidus of peridotite), and because melt productivity from pyroxenite during upwelling is expected to be greater than that from peridotite (pyroxenite melt productivity will be particularly high in the region before peridotite begins melting, owing to heating from the enclosing peridotite). For reasonable estimates of pyroxenite and peridotite melt productivities, 15–20% of the melt derived from a source region composed of 5% pyroxenite and 95% peridotite will come from the pyroxenite. Most significantly, garnet persists on the solidus of pyroxenite to much lower pressures than those at which it is present on the solidus of peridotite, so if pyroxenite is present in MORB source regions, it will probably contribute a garnet signature to MORB even if melting only occurs at pressures at which the peridotite is in the spinel stability field. Partial melting of a mixed spinel peridotite/garnet pyroxenite mantle containing a few to several percent pyroxenite can explain quantitatively many of the geochemical features of MORB that have been attributed to the onset of melting in the stability field of garnet lherzolite, provided that the pyroxenite compositions are similar to the average composition of mantle-derived pyroxene-rich rocks worldwide or to reasonable estimates of the composition of subducted oceanic crust. Sm/Yb ratios of average MORB from regions of typical crustal thickness are difficult to reconcile with derivation by melting of spinel peridotite only, but can be explained if MORB sources contain ∼5% garnet pyroxenite. Relative to melting of spinel peridotite alone, participation of model pyroxenite in melting lowers aggregate melt Lu/Hf without changing Sm/Nd ratios appreciably. Lu/Hf-Sm/Nd systematics of most MORB can be accounted for by melting of a spinel peridotite/garnet pyroxenite mantle provided that the source region contains 3–6% pyroxenite with ≥20% modal garnet. However, Lu/Hf-Sm/Nd systematics of some MORB appear to require more complex melting regimes and/or significant isotopic heterogeneity in the source. Another feature of the MORB garnet signature, (230Th)/(238U)>1, can also be produced under these conditions, although the magnitude of (230Th)/(238U) enrichment will depend on the rate of melt production when the pyroxenite first encounters the solidus, which is not well-constrained. Preservation of high (230Th)/(238U) in aggregated melts of mixed spinel peridotite/garnet pyroxenite MORB sources is most likely if the pyroxenites have U concentrations similar to that expected in subducted oceanic crust or to pyroxenite from alpine massifs and xenoliths. The abundances of pyroxenite in a mixed source that are required to explain MORB Sm/Yb, Lu/Hf, and (230Th)/(238U) are all similar. If pyroxenite is an important source of garnet signatures in MORB, then geochemical indicators of pyroxenite in MORB source regions, such as increased trace element and isotopic variability or more radiogenic Pb or Os, should correlate with the strength of the garnet signature. Garnet signatures originating from melts of the garnet pyroxenite components of mixed spinel peridotite/garnet pyroxenite sources would also be expected to be stronger in regions of thin crust. Received: 15 February 1995/Accepted: 7 February 1996  相似文献   

16.
Fluid-absent melting experiments on a biotite (20 wt.%) andhornblende (2 wt.%) bearing tonalitic gneiss were conductedat 6 kbar (900–975C), 10 kbar (875–1075C), and14 kbar (950–975C) to study melt productivity from weaklyperaluminous quartzofeldspathic metamorphic rocks. At 6 kbar,biotite dehydration–melting is completed at 975C viaincongruent melting reactions that produce orthopyroxene, twooxides, and {small tilde}25 wt.% granitic melt. At 6 kbar, hornblendedisappears at 900C, probably in reaction with biotite. At 10kbar, biotite dehydration–melting produces <10 wt.%melt up to 950C via incongruent melting reactions that produceorthopyroxene, garnet, and granitic melt. Hornblende disappearsin the satne temperature interval either by resorption or byreaction with biotite. Widespread biotite dehydration–meltingoccurs between 950 and 975C and produces orthopyroxene, twooxides, and {small tilde}20 wt.% fluorine-rich (up to 0•31wt.%) granitic melt. At 14 kbar only a trace of melt is presentat 950C, and the amounts of hornblende and biotite are virtuallythe same as in the starting material. At 975C, hornblende isgone and {small tilde}10 wt.% granitic melt is produced by meltingof both biotite and hornblende. Our results show that hornblende-bearing assemblages cannotgo through dehydration–melting on their own (althoughthey can in combination with biotite) if the Ca content in thesource rock is too low to stabilize clinopyroxene. In such rocks,hornblende will either resorb or melt by reaction with biotite.Under fluid-absent conditions, intrusion of hot, mantle-derivedmagmas into the lower crust is necessary to initiate widespreaddehydration–melting in rocks with compositions similarto those discussed here. We argue that the high thermal stabilityof biotite in our starting material is caused mainly by theincorporation of fluorine. The relatively high F content inbiotite in the starting material (0•47 wt.%) suggests thatthe rock has experienced dehydroxylation in its past. F enrichmentby a previous fluid-absent partial melting event is excludedbecause of the lack of phases such as orthopyroxene and garnetwhich would have been produced. Our experiments show that thedehydration–melting of such F-enriched biotite producesF-rich granitic liquids, with compositions within the rangeof A-types granites, and leaves behind a granulitic residuedominated by orthopyroxene, quartz, and plagioclase. This studytherefore supports the notion that A-type granites can be generatedby H2O-undersaturated melting of rocks of tonalitic composition(Creaser et al., 1991), but does not require that these sourcerocks should be residual after a previous melting event.  相似文献   

17.
A new technique that allows extraction of liquids from peridotite at degrees of melting as low as 0.2 wt% is presented. Microfractures that formed in the graphite sample container at the beginning of the experiments were used as traps for the liquid phase. Glass-filled cracks (or 'microdikes') unaffected by quench crystallisation were produced in all experiments and were analysed using standard electron microprobe techniques. Reversal experiments demonstrated that, at moderate degrees of melting (4.4 and 6.5 wt%), the segregated liquid was in equilibrium with the neighbouring peridotite. At very low degrees of melting (0.3 wt%), the liquid in the microdikes failed to fully equilibrate with the peridotite after 5 days and the sandwich technique was used in combination with the microdike technique to approach more closely the equilibrium composition of near-solidus partial melts. The microdike technique was used to study melting of a depleted peridotite at 1 GPa and 1,220 to 1,360 °C.Editorial responsibility: T.L. Grove  相似文献   

18.
The basaltic achondrite, shergottite, nakhlite, and chassignite meteorites appear to define a petrological and geochemical sequence. Assuming that they developed from basaltic liquids produced by low pressure partial melting of plagioclase peridotites, their petrological and chemical distinctions can be understood in terms of the compositional differences between their source periodites. The source regions of basaltic achondrite magmas were alkali-poor, metal-bearing peridotites in which pigeonite and/or orthopyroxene was the only pyroxene. By simultaneously increasing the ratio of high-Ca pyroxene to low-Ca pyroxene, the alkali content of the feldspar, the oxidation state, and the overall volatile content of the basaltic achondrite source peridotite, peridotites capable of yielding the parent liquids of the shergottites can be produced. Further increases can produce peridotites capable of yielding the parent liquids of the nakhlites and chassignites.Addition of a volatile-rich component to the volatile-poor type of peridotite required for the source regions of the eucrites appears to be capable of producing the required series of peridotites. Alternatively, progressive volatile-loss from a volatile-rich material, possibly of roughly cosmic composition, could have produced this sequence of peridotites. A simple two-component model of planetary compositions is, to a first approximation, consistent with the petrology and chemistry of these igneous meteorite groups.  相似文献   

19.
Manganese contents and the iron/manganese ratio of igneous rocks have been used as a method of probing the heterogeneity in the Earth’s mantle during melting of peridotite and pyroxenite lithologies. Most previous work has assumed that changes in these parameters require differences in either source lithology or composition based on experiments indicating that manganese is slightly incompatible during melting and that the iron/manganese ratio is fixed by the presence of olivine. However, the presence of volatiles in the mantle drives melting at lower temperatures and with different compositions than in volatile-free systems, and thus the partitioning of Fe and Mn may in fact vary. We have produced silicate liquids in equilibrium with a peridotite assemblage under hydrous conditions at 3 GPa that show that Mn can also be unexpectedly compatible in garnet at 1375 °C and that Mn partitioning between solids and liquids can be strongly affected by temperature and liquid composition. The compatibility of Mn in garnet provides a mechanism for large variations of Mn contents and the Fe/Mn ratio in silicate melts that solely involves melting of mantle peridotite with only small compositional changes. Correlations between Mn variations and other indices indicative of melting in the presence of garnet may provide a means of more completely understanding the role of garnet at high pressures in peridotite melting.  相似文献   

20.
The Lherz orogenic lherzolite massif (Eastern French Pyrenees) displays one of the best exposures of subcontinental lithospheric mantle containing veins of amphibole pyroxenites and hornblendites. A reappraisal of the petrogenesis of these rocks has been attempted from a comprehensive study of their mutual structural relationships, their petrography and their mineral compositions. Amphibole pyroxenites comprise clinopyroxene, orthopyroxene and spinel as early cumulus phases, with garnet and late-magmatic K2O-poor pargasite replacing clinopyroxene, and subsolidus exsolution products (olivine, spinel II, garnet II, plagioclase). The original magmatic mineralogy and rock compositions were partly obscured by late-intrusive hornblendites and over a few centimetres by vein–wallrock exchange reactions which continued down to subsolidus temperatures for Mg–Fe. Thermobarometric data and liquidus parageneses indicate that amphibole pyroxenites started to crystallize at P ≥ 13 kbar and recrystallized at P < 12 kbar. The high AlVI/AlIV ratio (>1) of clinopyroxenes, the early precipitation of orthopyroxene and the late-magmatic amphibole are arguments for parental melts richer in silica but poorer in water than alkali basalts. Their modelled major element compositions are similar to transitional alkali basalt with about 1–3 wt% H2O. In contrast to amphibole pyroxenites, hornblendites only show kaersutite as liquidus phase, and phlogopite as intercumulus phase. They are interpreted as crystalline segregates from primary basanitic magmas (mg=0.6; 4–6 wt% H2O). These latter cannot be related to the parental liquids of amphibole pyroxenites by a fractional crystallization process. Rather, basanitic liquids mostly reused pre-existing pyroxenite vein conduits at a higher structural level (P ≤ 10 kbar). A continuous process of redox melting and/or alkali melt/peridotite interaction in a veined lithospheric mantle is proposed to account for the origin of the Lherz hydrous veins. The transitional basalt composition is interpreted in terms of extensive dissolution of olivine and orthopyroxene from wallrock peridotite by alkaline melts produced at the mechanical boundary layer/thermal boundary layer transition (about 45–50 km deep). Continuous fluid ingress allowed remelting of the deeper veined mantle to produce the basanitic, strongly volatiles enriched, melts that precipitated hornblendites. A similar model could be valid for the few orthopyroxene-rich hydrous pyroxenites described in basalt-hosted mantle xenoliths. Received: 15 September 1999 / Accepted: 31 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号