首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
2.
Based on the multiplied neutron registration with the Magadan neutron monitor, the parameters of the spectrum of variations in the cosmic ray hardness and variation in geomagnetic cutoff rigidity for Forbush decreases and intensity increases, related to registration at a level of solar cosmic ray observation, have been determined using the spectrographic method. Results of an analysis indicate that the spectral index (represented in the power form) increases for Forbush decreases and decreases for increases in CR intensity. In the analyzed cases, geomagnetic cutoff rigidity decreases for intensity increases and Forbush decreases.  相似文献   

3.
The distinguished directions, dependent on the solar wind velocity and IMF line position, exist in the interplanetary space, which results in the nonuniform distribution of phases and the amplitude-phase interrelation of the first cosmic ray anisotropy harmonic. The characteristics of the first anisotropy harmonics, determined for each hour using the global survey method based on the worldwide neutron monitor network from 1957 to 2010, were used to study long-period variations in the cosmic ray anisotropy. The longitudinal distributions of the cosmic ray vector anisotropy and the interrelation between the anisotropy amplitude and phase have been obtained for each year in this time interval. The results evidently demonstrate the anisotropy variations caused by the solar magnetic and activity cycles. The anisotropy distributions at different solar wind velocities have also been studied. Periods with a specific cosmic ray anisotropy behavior are distinguished and discussed. The obtained cosmic ray anisotropy variations agree with the convection-diffusion anisotropy model.  相似文献   

4.
An index of cosmic ray scintillation introduced previously is verified. This procedure has been performed within the scope of the long-term full-scale monitoring of galactic cosmic rays (GCRs) in the real time regime. The 5-min data of the global network of high-latitude neutron monitors at Tixie Bay (Apatity) and Oulu (Finland) stations during the last four solar cycles (cycles 20–23), i.e., during the entire period of data registration with a high (5 min) resolution, have been used. The relationship between the amplitude-frequency-time structure of a precursor in the GCR scintillation index and the soliton-like structure of the heliospheric current sheet during the disturbed period has been established. This indicates that the precursor is of a coherent origin. Only the presence of a coherent process—quasi-week variation—makes it fundamentally possible to predict heliospheric storms. Finally, the justifiability of the effective prediction of heliospheric storms (~80%) has been obtained based on the long-term cosmic ray monitoring during cycle 23.  相似文献   

5.
The method for correcting data from individual neutron monitors at the worldwide network of cosmic ray stations, characterized by the instrument drift and sporadic variations, has been proposed. The correction is performed using the method of spectrographic global survey. The proposed method makes it possible to correct data from the global network of stations immediately during processing and can be used in studies of cosmic-ray intensity long-term variations and in the real-time operation mode.  相似文献   

6.
Variations in the cosmic ray density during the initial phase of the Forbush effect during the first hours after the arrival of the interplanetary shock wave have been studied with the use of data on variations in the cosmic ray density with a rigidity of 10 GV obtained by the global survey method by the world network of neutron monitors in 1957?2012. It is found that behavior of this parameter after the arrival of the shock wave demonstrates high variability. A small (~1/5 of total number), though distinct, group of Forbush effects, in which the density of the cosmic ray increases (not decreases) after the arrival of the shock wave, is defined. As a whole, the initial variation in cosmic ray density is correlated with the Forbush effect magnitude and the strength of the associated geomagnetic disturbance.  相似文献   

7.
All significant events in galactic cosmic rays for the last 55 years have been collected in a Forbush effect database created at the Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation (hereinafter, IZMIRAN) based on data from the global network of neutron monitors. The solar sources of ~800 of these events have been identified. These events were divided into five groups with respect to the heliolongitudes of the associated X-ray solar flares, and typical behavior of their characteristics such as cosmic ray density and anisotropy, was studied independently for each group. The Forbush effect characteristics, which are the most dependent on the source heliolongitude, have been identified.  相似文献   

8.
Modulation of galactic cosmic rays in cycles 19–23 of solar activity has been determined based on observations of their long-term variations on the ground and in the near-Earth space. The extreme values of long-term variations in cosmic rays, obtained from the data of continuous cosmic radiation monitoring on the ground and in the near-Earth space in the last five solar cycles, have been analyzed. The results are compared with the extrema in the characteristics of solar magnetic fields and the sunspot numbers in these cycles. The similarities and differences in cosmic ray modulation between different cycles are discussed.  相似文献   

9.
Meteorological measurements from Lerwick Observatory, Shetland (60°09′N, 1°08′W), are compared with short-term changes in Climax neutron counter cosmic ray measurements. For transient neutron count reductions of 10–12%, broken cloud becomes at least 10% more frequent on the neutron minimum day, above expectations from sampling. This suggests a rapid timescale (~1 day) cloud response to cosmic ray changes. However, larger or smaller neutron count reductions do not coincide with cloud responses exceeding sampling effects. Larger events are too rare to provide a robust signal above the sampling noise. Smaller events are too weak to be observed above the natural variability.  相似文献   

10.
The Forbush decrease energy spectrum, observed during the growth phase of cycle 24 in 2010–2012, was studied based on the measurements performed with the Kuzmin cosmic ray spectrograph. The data of the 24-NM-64 neutron monitor and muon telescopes, installed at water equivalent levels of 0, 7, 20, and 40 m, was used. The performed analysis indicated that a softer energy spectrum was observed during the growth phase of cycle 24 than during the previous cycle (cycle 23). The conclusion was been drawn that a more turbulent magnetic field with the predominant diffusion mechanism in the formation of the Forbush decreases in the cosmic ray intensity exists in the current cycle (cycle 24).  相似文献   

11.
The intensity of cosmic ray neutrons is inversely correlated with the amount of water present in the surrounding environment. This effect is already employed by around 50 neutron sensors in the COSMOS-UK network to provide daily estimates of soil moisture across the UK. Here, these same sensors are used to automatically provide estimates of snow water equivalent (SWE). Lying snow is typically ephemeral and of shallow depth for most parts of the UK. Moreover, soil moisture is usually high and variable, which acts to increase uncertainties in the SWE estimate. Nevertheless, even under such challenging conditions, both above ground and buried cosmic ray neutron sensors are still able to produce potentially useful SWE estimates. Triple collocation analysis suggests typical uncertainties of less than around 4 mm under UK snow conditions.  相似文献   

12.
Galactic cosmic rays, registered by ground-based neutron monitors, are strongly affected by the heliosphere, i.e., being subjected to solar modulation. Cosmic ray variations are closely related to different solar activity indices and IMF parameters. The longitudinal inhomogeneity of the general solar magnetic field as a star and the manifestation of this inhomogeneity in the magnetic field are considered in the work. It has been established that the longitudinal inhomogeneity of this field, with the dipole distribution of polarities along heliolongitude, mainly contributes to 27-day modulation of galactic cosmic rays.  相似文献   

13.
Geomagnetism and Aeronomy - In this paper, we study the effect of magnetic clouds on variations in the cosmic ray density recorded by neutron monitors. The statistical patterns and characteristic...  相似文献   

14.
Cosmic ray vertical cutoff rigidities at sea level have been calculated, using the trajectory-tracing method, for a number of different epochs. These calculations have been carried out for a world-wide grid of locations, and, in an effort to locate the cosmic ray equator, for a fine grid in the equatorial region. Comparison of the vertical cutoff rigidity values obtained using the International Geomagnetic Reference Field model for 1980.0 with those obtained from previous models shows systematic significant changes in the Atlantic Ocean region and over South America. The differences are greater than those predicted utilizing the older field models with their predicted secular change. The cutoff rigidity values calculated using the new IGRF 1980.0 field model appear to be in better agreement with data from cosmic ray latitude surveys in the Atlantic Ocean region. The changes in the cosmic ray equator are asymmetrical with essentially no changes in the equator position in the Asian and Pacific region, but with significant changes in the South American, Atlantic Ocean and West African regions. Calculations have also been undertaken for different directions of arrival for a satellite orbiting at 400 km altitude using the predicted 1980 field model and the interim 1980 field model adopted in 1981. Some differences have been found.  相似文献   

15.
The characteristics of relativistic solar protons have been obtained using the methods of optimization based on the data of ground detectors of cosmic rays during the event of December 13, 2006, which occurred under the conditions of solar activity minimum. The dynamics of relativistic solar protons during the event has been studied. It has been indicated that two populations (components) of particles exist: prompt and delayed (slow). The prompt component with a hard energy spectrum and strong anisotropy manifested itself as a pulse-shaped enhancement at Apatity and Oulu stations, which received particles with small pitch-angles. The delayed component had a wider pitch-angle distribution, as a result of which an enhancement was moderate at Barentsburg station and at most neutron monitors of the worldwide network. The energy spectra obtained from the ground-based observations are in good agreement with the direct measurements of solar protons on balloons and spacecraft.  相似文献   

16.
This paper describes a method, which makes it possible to eliminate the effect of snow cover from the neutron component of secondary cosmic radiation. For many circumpolar, high-latitude, and mountain stations, where cosmic rays are continuously registered, it is exclusively important to take the presence of snow into consideration. Comparisons are made for manual and automated measurements, which are corrected for the snow effect based on the developed algorithm. The described method was tested for a number of cosmic ray stations where considerable snow masses are accumulated during the winter period near or above a detector: Magadan, Mount Hermon, Jungfraujoch, and Nain.  相似文献   

17.
The unit for detecting thermal neutrons, which makes it possible to study variations in cosmic rays of the interplanetary and geophysical origin, has been created at the high altitude cosmic ray station (3340 m above sea level) near the Earth’s crust fault. It has been established that variations in thermal neutrons are of the same nature as high-energy variations registered with a neutron supermonitor in the absence of seismic activity. The flux of thermal neutrons from the Earth’s crust during seismic activity in December 2006 has been registered for the first time. The flux value is higher than the background level by 5–6%. The method for detecting the flux of thermal neutrons from the Earth’s crust with the simultaneous registration of high-energy neutrons has been proposed.  相似文献   

18.
The variations in the rigidity spectrum and anisotropy of cosmic rays in December 2006 have been studied based on the surface measurements of the cosmic ray intensity at the global network of stations, using the method of global spectrographic survey. It has been indicated that the highest degree of anisotropy (to ~50%) with the maximal intensity of particles with a rigidity of 4 GV in the direction from the Sun (an asymptotic direction of about ?25° and 160°) was observed at 0400 UT on December 13. The parameters of the cosmic ray rigidity spectrum, which reflect the electromagnetic characteristics of the heliospheric fields during the studied period, have been determined when the surface and satellite measurements of protons in the energy range from several megaelectronvolts to several tens of gigaelectronvolts were jointly analyzed. The observed anisotropy and variations in cosmic rays in a wide energy range have been explained based on an analysis of the results.  相似文献   

19.
Using the optimization methods, the characteristics of relativistic solar protons (RSPs) have been obtained from the data of ground-based cosmic ray detectors in the event of January 20, 2005, which was the largest event in the last 50 years since the event of February 23, 1956. The RSP dynamics during the event has been studied. The existence of two populations (components) of particles, fast and delayed (slow) has been shown. The fast component with a hard exponential energy spectrum and strong anisotropy was shown as a giant pulselike enhancement at several southern polar stations. The delayed component had a power-law energy spectrum and a wider pitch-angle distribution, which caused the enhancement effect at the majority of stations at the global network.  相似文献   

20.
A joint analysis of paleodata on variations in cosmic ray fluxes, solar activity, geomagnetic field, and climate during the period from ~10000 to ~100000 years ago has been performed. Data on the time variations in the concentration of 14C and 10Be cosmogenic isotopes, which are generated in the Earth’s atmosphere under the action of cosmic ray fluxes modulated by solar activity and geomagnetic field variations, were used to detect variations in solar activity and the geomagnetic dipole. Information about climate changes has been obtained mainly from variations in the concentration of stable isotopes in the natural archives. A performed analysis indicates that the variations in cosmic ray fluxes under the action of variations in the geomagnetic field and solar activity are apparently one of the most effective natural factors of long-term climate changeability on a large time scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号