首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu  Lushi  Lu  Jilong  Tao  Chunhui  Liao  Shili  Chen  Shengbo 《Natural Resources Research》2021,30(2):971-987

With the depletion of mineral resources on land, seafloor massive sulfide deposits have the potential to become as important for exploration, development and mining as those on land. However, it is difficult to investigate the ocean environment where seafloor massive sulfide deposits are located. Thus, improving prospecting efficiency by reducing the exploration search space through mineral prospectivity mapping (MPM) is desirable. MPM has been used in the exploration for seafloor deposits on regional scales, e.g., the Mid-Atlantic Ridge and Arctic Ridge. However, studies of MPM on ultraslow-spreading ridges on segment scales to aid exploration for seafloor massive sulfide have not been carried out to date. Here, data of water depth, geology and hydrothermal plume anomalies were analyzed and the weights-of-evidence method was used to study the metallogenic regularity and to predict the potential area for seafloor massive sulfide exploration in 48.7°–50.5° E segments on the ultraslow spreading Southwest Indian Ridge. Based on spatial analysis, 11 predictive maps were selected to establish a mineral potential model. Weight values indicate that the location of seafloor massive sulfide deposits is correlated mainly with mode-E faults and oceanic crust thickness in the study area, which correspond with documented ore-controlling factors on other studied ultraslow-spreading ridges. In addition, the detachment fault and ridge axis, which reflect the deep hydrothermal circulation channel and magmatic activities, also play an important role. Based on the posterior probability values, 3 level A, 2 level B and 2 level C areas were identified as targets for further study. The MPM results were helpful for narrowing the search space and have implications for investigating and evaluating seafloor massive sulfide resources in the study area and on other ultraslow-spreading ridges.

  相似文献   

2.
Summary. A simple dynamic model, based on the geometry of mantle divergence and thermal parameters controlling equilibrium size of the axial magma chamber, explains the variation in topography along mid-ocean ridges. Among morphological characters accounted for are: (1) the change from axial-valley to axial-high type ridge crests with increasing spreading rate, (2) the localized occurrence of deeps at ridge-transform intersections, and (3) the correlation of average transform spacing with spreading rate. The model also yields an explanation for anomalous ridge topography associated with oceanic hot spots. Incorporation of smaller-scale bathymetric and ophiolite data into this scheme permits construction of a comprehensive model of ocean crust accretion.  相似文献   

3.
Summary. The East Pacific Rise at 12–15° S is topographically smooth with a crestal horst or linear volcanic peak marking the present axis of spreading. The Galapagos Rise at 14–17° S is topographically rough with a possible central graben marking the extinct spreading axis. The seafloor spreading magnetic anomalies on the East Pacific Rise are of low amplitude, but fracture-zone anomalies at 13–14° S have amplitudes of up to 1250 nT. Anomalies of this amplitude at the magnetic equator must be formed within the fracture zone by some combination of block reversal boundaries, anomalously-high magnetic intensities, and/or anomalously-large thicknesses of the magnetic layers within the fracture zone. Magnetization and major-element chemical analyses of basalts dredged from four locales along the fracture zone indicate that the large magnetic-anomaly amplitudes are caused by the high iron and titanium content of these ferrobasalts. The magnetic-anomaly profiles from the Galapagos Rise and its fracture-zone system are of normal amplitude and are extremely difficult to correlate internally or with the geomagnetic timescale.
Eighty-one heat-flow measurements indicate that the values measured are controlled by sediment thickness. Where the thickness of the sediment blanket is greater than 100 m, high heat flow is measured and possibly is representative of the total heat transfer at the seafloor. Where the sediment thickness is less than 100 m, seawater circulation in the oceanic crust is thought to remove most of the heat convectively; thus causing low conductive heat-flow values to be measured by the usual heat-flow apparatus. The heat loss by convective processes is probably a function also of topographic roughness and sediment permeability.  相似文献   

4.
Among the mantle hotspots present under oceanic areas, a large number are located on—or close to—active oceanic ridges. This is especially true in the slow-spreading Atlantic and Indian oceans. The recent availability of worldwide gravity grids and the increasing coverage of geochemical data sets along active spreading centres allow a fruitful comparison of these data with global geoid and seismic tomography models, and allow one to study interactions between mantle plumes and active slow-spreading ridges. The observed correlations allow us to draw preliminary conclusions on the general links between surficial processes, which shape the detailed morphology of the ridge axes, and deeper processes, active in the upper mantle below the ridge axial domains as a whole. The interactions are first studied at the scale of the Atlantic (the Mid-Atlantic Ridge from Iceland to Bouvet Island) from the correlation between the zero-age free-air gravity anomaly, which reflects the zero-age depth of the ridge axis, and Sr isotopic ratios of ridge axis basalts. The study is then extended to a more global scale (the slow ridges from Iceland to the Gulf of Aden) by including geoid and upper-mantle tomography models. The interactions appear complex, ranging from the effect of large and very productive plumes, almost totally overprinting the long-wavelength segmentation pattern of the ridge, to that of weaker hotspots, barely marking some of the observables in the ridge axial domain. Intermediate cases are observed, in which hotspots of medium activity (or whose activity has gradually decreased) located at some distance from the ridge axis produce geophysical or geochemical signals whose variation along the axis can be correlated with the geometry of the plume head in the upper mantle. Such observations tend to preclude the use of a single hotspot/ridge interaction model and stress the need for additional observations in various plume/ridge configurations.  相似文献   

5.
We present the results of a palaeomagnetic study of four mid-Cretaceous limestone sections exposed in northeastern Mexico. The limestones are weakly magnetized and exhibit two- to three-component magnetizations. These magnetization components appear to be carried by both a sulphide mineral and a magnetite-titanomagnetite mineral. The sulphide mineral carries a reverse polarity overprint that often makes it difficult to isolate definitively the higher-unblocking-temperature component. The high-unblocking-temperature component is well defined in the upper portion of the Santa Rosa Canyon section and in the Cienega del Toro section and passes the fold test. The characteristic remanent magnetization (ChRM) inclinations agree well with predicted mid-Cretaceous inclinations for these sites, although the declinations differ by more than 100°. The relative rotation between these two sites probably occurred as the thrust sheets were emplaced during Laramide deformation. At two of the sections, namely Cienega del Toro and the overturned Los Chorros sections, only normal polarity directions are observed. The La Boca Canyon and Santa Rosa Canyon sections exhibit zones of both normal and reverse polarity magnetization. Correlation of these polarity zones with the geomagnetic polarity timescale provides a time framework for lithostratigraphic and palaeoceanographic studies of these sections.  相似文献   

6.
Summary. In this paper we show that: (1) The positions of the Cretaceous palaeomagnetic poles (PP) for South America and Africa exhibit elongated distributions that are due to rapid movement of these continents from the south pole.
(2) The positions of the Middle—late Jurassic virtual geomagnetic poles for South America exhibit an elongated distribution along the meridians 20–200° E; it is suggested that this is due to a rapid shift of South America in Middle—late Jurassic time.
(3) The late early—early late Cretaceous sections of the apparent polar wandering paths for South America and Africa are consistent with South Atlantic seafloor spreading data.
On the basis of the comparison of the reliable late Palaeozoic—late Cretaceous PPs for South America and Africa, taking into account the restrictions established by geological, palaeontological and seafloor spreading data, it is suggested that minor movements could have occurred within Western Gondwana in middle—late Jurassic time along a narrow zone which later became the South Atlantic divergent boundary.
Four 'hairpins' are defined in the late Palaeozoic—late Cretaceous section of the apparent polar wandering path for South America; the two youngest of these can be correlated with the origin of the South Atlantic Ocean basin and the onset of the Andean Orogeny, respectively.
The magnetostratigraphy for the Serra Geral lava flow sequence suggests that some of these flows were poured out rapidly without significant interruption.  相似文献   

7.
Summary. Two sedimentary cores from the western Pacific display a palaeo-magnetic record of the late Cretaceous long normal interval and the boundary reversed interval corresponding to seafloor spreading anomalies 33–34. Near the young end of this reversed interval, a systematic excursion of inclinations is observed in both cores. Samples are very stable to both alternating field and thermal demagnetization. Blocking temperatures and Curie points suggest that the remanence is carried primarily by magnetite, but with an additional contribution from hematite. Approximate sedimentation rates derived from biostratigraphy suggest that the excursion had a duration of between 46 000 and 54 000yr and occurred about 236000–303000 yr before the succeeding polarity reversal. The excursion, thus, may represent an aborted geomagnetic field reversal.  相似文献   

8.
Changing characteristics of arctic pressure ridges   总被引:1,自引:1,他引:0  
The advent of multibeam sonar permits us to obtain full three-dimensional maps of the underside of sea ice. In particular this enables us to distinguish the morphological characteristics of first-year (FY) and multi-year (MY) pressure ridges in a statistically valid way, whereas in the past only a small number of ridges could be mapped laboriously by drilling. In this study pressure ridge distributions from two parts of the Arctic Ocean are compared, in both the cases using mainly data collected by the submarine “Tireless” in March 2007 during two specific grid surveys, in the Beaufort Sea at about 75° N, 140° W (N of Prudhoe Bay), and north of Ellesmere Island at about 83° 20′ N, 64° W. In the Beaufort Sea the ice was mainly FY, and later melted or broke up as this area became ice-free during the subsequent summer. N of Ellesmere Island the ice was mainly MY. Ridge depth and spacing distributions were derived for each region using the boat's upward looking sonar, combined with distributions of shapes of the ridges encountered, using the Kongsberg EM3002 multibeam sonar. The differing shapes of FY and MY ridges are consistent with two later high-resolution multibeam studies of specific ridges by AUV. FY ridges are found to fit the normal triangular shape template in cross-section (with a range of slope angles averaging 27°) with a relatively constant along-crest depth, and often a structure of small ice blocks can be distinguished. MY ridges, however, are often split into a number of independent solid, smooth blocks of large size, giving an irregular ridge profile which may be seemingly without linearity.Our hypothesis for this difference is that during its long lifetime an MY ridge is subjected to several episodes of crack opening; new cracks in the Arctic pack often run in straight lines across the ridges and undeformed ice alike. Such a crack will open somewhat before refreezing, interpolating a stretch of thin ice into the structure, and breaking up the continuity and linearity of the ridge crest. Many such episodes over a number of years can cause the ridge to become simply a series of blocks. This has implications for ridge strength and for permeability to spilled oil. As the percentage of MY ice in the Arctic diminishes, Arctic ridging will be more and more dominated by FY ridges, and we discuss the implications of this change of character of the ice underside in the light of the statistics that we have generated for the two types of ridge.  相似文献   

9.
The so-called S reflector is a group of bright, continuous reflections underlying the landward-tilted fault blocks of the west Galicia rifted margin, S has been interpreted as the brittle-ductile transition, the lop of an intrusion, a detachment fault, and the crust-mantle boundary. To constrain the internal structure of the reflector, we have carried out detailed analyses of these reflections. We compare the waveforms of the seafloor reflection and its first multiple, both to determine the amplitude of the seafloor reflection and to show (hat the seafloor is in effect a spike in the reflectivity series so that the seafloor reflection can be used as the far-field wavelet, including both source and receiver ghosts. We compare (he waveform of the seafloor and 5 and show that, within the resolution of our data, S is a reflection from a step increase in acoustic impedance. This result is confirmed through complex trace analysis, and in particular the determination of the apparent polarity of S, and the examination of the instantaneous frequency function: S is consistently positive polarity, and shows no significant frequency anomaly. Simple modelling shows that S is very unlikely to be a reflection from a thin layer. We thus conclude that S is probably a single steplike interface. From the varying frequency content of the data, we determine a value for the effective Q between S and the seafloor, and use this to assess the amplitude loss due to attenuation and scattering. We use a comparison between the seafloor and the S reflection to constrain the amplitude of S, and estimate a reflection coefficient for S of at least 0.2 in places, decreasing landwards. By analogy with structures developed in the highly extended regions of the western United States, we consider that the most likely interpretation of S is as a sharp west-dipping detachment fault separating a 'granitic' upper plate from a higher-velocity lower plate, locally probably serpentinized mantle.  相似文献   

10.
11 million years of Oligocene geomagnetic field behaviour   总被引:2,自引:0,他引:2  
An 11 million year long record of the Oligocene geomagnetic field has been obtained from pelagic sediments of DSDP Hole 522 An average sample spacing of 4 cm yielded approximately one specimen per 4 to 8 kyr. The rock magnetics are remarkabh consistent across the entire interval. Previous work demonstrated a magnetic mineralogy dominated by magnetically stable magnetite. The natural remanent magnetism (NRM) carries an Oligocene polarity timescale that is in excellent agreement with the Oligocene reversal record as determined from marine magnetic anomalies (MMAs), including many of the so-called 'crypto-chrons'. Normalized NRM intensities from the undisturbed portions of the record yield a time series of variations with features consistent with a number of other palaeointensity time series derived from both sedimentary and lava sequences. These features include consistent, major decreases in palaeointensity (DIPs) at reversal boundaries, and occasional DIPs between reversal boundaries that could correspond to lineated 'tiny wiggles' in the MMA records. The data set suggests that the overall field strength was 40 per cent higher in the first half of the Oligocene when the average reversal frequency was 1.6 Myr-1 than in the second half when the reversal frequency was 4 Myr-1. There is also a weak dependence of average field strength on length of polarity interval. Finally, in the three cores suited to spectral analysis (of coherent polarity and relative intensity independent of lithological contamination), there is a persistent ca. 30–50ka periodicity in the variations of the relative intensity, suggesting that the geomagnetic field 'pulses' at about this frequency, not only during the Brunhes (as demonstrated by Tauxe & Shackleton 1994), but in the Oligocene as well.  相似文献   

11.
We describe the evolution of, and vegetation succession on, a previously undescribed landform: transverse dune trailing ridges at El Farallón transgressive dunefield in the state of Veracruz, Mexico. Three-dimensional clinometer/compass and tape topographic surveys were conducted in conjunction with 1 m2 contiguous percent cover and presence/absence vegetation survey transects at eight locations across two adjacent trailing ridges. At the study site, and elsewhere, the transverse dune trailing ridges are formed by vegetation colonization of the lateral margins of active transverse, barchanoidal transverse, and aklé or network dunes. For simplicity, all trailing ridges formed from these dune types are referred to as transverse dune trailing ridges. Because there are several transverse dunes in the dunefield, multiple trailing ridges can be formed at one time. Two adjacent trailing ridges were examined. The shortest length ridge was 70 m long, and evolving from a 2.5 m-high transverse dune, while the longer ridge was 140 m long, and evolving from an 8 m-high dune. Trailing ridge length is a proxy measure of ridge age, since the longer the ridge, the greater the length of time since initial formation. With increasing age or distance upwind, species diversity increased, as well as species horizontal extent and percent cover. In turn, the degree of bare sand decreased. Overall, the data indicate a successional trend in the vegetation presence and cover with increasing age upwind. Those species most tolerant to burial (Croton and Palafoxia) begin the process of trailing ridge formation. Ipomoea and Canavalia are less tolerant to burial and also are typically the next colonizing species. Trachypogon does not tolerate sand burial or deposition very well and only appears after significant stabilization has taken place. The ridges display a moderately defined successional sequence in plant colonization and percentage cover with time (and upwind distance). They are significant geomorphologically as a unique landform in transgressive dunefields, and also because they may be the only remaining indication of transverse dune presence, and net dune migration direction once the dunefield is stabilized and in a final evolutionary state.  相似文献   

12.
Seismic reflection profiles from Mesozoic oceanic crust around the Blake Spur Fracture Zone (BSFZ) in the western North Atlantic have been widely used in constraining tectonic models of slow-spreading mid-ocean ridges. These profiles have anomalously low basement relief compared to crust formed more recently at the Mid-Atlantic Ridge at the same spreading rate. Profiles from other regions of Mesozoic oceanic crust also have greater relief. The anomalous basement relief and slightly increased crustal thickness in the BSFZ survey area may be due to the presence of a mantle thermal anomaly close to the ridge axis at the time of crustal formation. If so, the intracrustal structures observed may be representative of an atypical tectonic regime.  相似文献   

13.
The seafloor topography of a slow-spreading ridge shows a number of well-documented regularities at the ridge segment scale as the result of the complex interplay between ridge-axis magmatic and tectonic processes. This paper describes the results of a detailed analysis of the seafloor topography of the Mid-Atlantic Ridge near the Atlantis transform, where marine gravity data provide independent, although non-unique, constraints on subseafloor density structure. Using a combined topography and gravity data set, we identified the specific contributions of subseafloor density structure to the seafloor topography. We show that the observed along-axis deepening (0.3–0.8 km) from the midpoint of a ridge segment towards the non-transform offsets in the study area can be explained by the vertical deflection of a zero-age plate in response to along-axis crustal thickness variations. However, this effect can only account for 50–60 per cent of the observed 1.5–1.7 km deepening towards the Atlantis transform, suggesting the presence of significant stresses in the lithosphere near a transform. Results of plate flexural calculations also predict a more elevated rift flank at the inside corner of the ridge–transform intersection than at the conjugate outside corner. Such an asymmetry in rift flank topography is calculated to be greatest near a transform fault with a significant volume of deep transform valley and when adjacent plates across the transform fault are mechanically decoupled or only weakly coupled. Together these results illustrate the complex interplay between various tectonic processes at a slow-spreading ridge.  相似文献   

14.
Transient electromagnetic responses in seafloor with triaxial anisotropy   总被引:2,自引:0,他引:2  
Electrical anisotropy of young oceanic crust at mid-ocean ridges is detectable by observation of the rate and geometry of the diffusion of electromagnetic fields. The anisotropy in electrical properties arises from the presence of conductive seawater in an interconnected network of mostly ridge-parallel cracks. In this paper, we first justify the choice of a triaxial model to represent young oceanic crust, with three distinct electrical conductivities in the vertical, strike and spreading directions. We then present an algorithm to calculate the transient electromagnetic responses generated by an electric dipole source over such a triaxially anisotropic seafloor. We show that if the transient passages are measured with three distinct electric dipole-dipole configurations, it is possible to discern all three unknown conductivities independently of each other.  相似文献   

15.
Knowledge of the age of undated events is not null if a time-order relationship can be found among these events. The knowledge of such a time-ordered sequence can be formalized by using non-informative (uniform) prior probability densities for the ages of undated events and Bayes' theorem to introduce the time-order relationship condition. We show that the conditional probability densities of the ages of events of unknown age are given by various forms of Euler's beta distribution. These distributions yield an estimate of the probability for an undated event to occur in a given age interval.
  We use this method to propose appropriate probabilistic representations of our actual knowledge of the dating of the magnetic polarity reversals during the Cenozoic. These representations take into account the uncertainties arising from irregularities in accretion process and from the quality of a few calibration points. Both types of uncertainties generate large ambiguities in the age of magnetic reversals, which should be taken into consideration when the geomagnetic polarity timescale is used for dating purposes. We propose to use the entropy function to quantify these ambiguities.  相似文献   

16.
江苏近海辐射状沙脊地貌的发育   总被引:3,自引:0,他引:3  
万延森 《地理研究》1988,7(2):41-49
本文阐述江苏近海辐射状沙脊的分布和形态特征,划分了沙脊和潮谷的地貌类型,讨论了沙脊地貌的发育规律。  相似文献   

17.
Anomalous seismic crustal structure of oceanic fracture zones   总被引:2,自引:0,他引:2  
Summary. The seismic structure of crust found within fracture zones falls outside the range of velocity structures observed for normal oceanic crust in the North Atlantic. The crust in fracture zones is frequently very thin and is characterized by low crustal velocities and by the conspicuous absence of a refractor with a velocity typical of oceanic layer 3. Anomalous crust is present in both large- and small-offset fracture zones. Since they are among the most common tectonic features in the ocean basins, and are particularly closely spaced on slow-spreading ridges, fracture zones represent a major source of seismic crustal heterogeneity. We interpret the anomalous crust as a thin, intensely fractured, faulted and hydrothermally altered basaltic and gabbroic section overlying ultramafics that, in places, are extensively serpentinized. The unusually thin crust found within fracture zones and the gradual crustal thinning over a distance of several tens of kilometres on either side of the fracture zones can be explained by two main processes; firstly the cold lithosphere edge opposite the spreading centre at the ridgetransform intersection modifies the normal intrusive and extrusive processes of the spreading centre leading to the accretion of an anomalous and thin igneous section; and secondly each spreading ridge segment is fed from a separate subcrustal magma supply point, so as the magma flows laterally down the spreading centre it generates a crustal section of decreasing thickness, culminating in the very thin crust of the fracture zones at either end of the ridge segment.  相似文献   

18.
A palaeomagnetic study comprising the directional results from 289 individual lava flows, sampled along eight sections in the Palaeocene basalts of West Greenland, is reported. The eight individual sections are correlated using lithostratigraphical marker horizons to form a single composite profile. Generally, the lithological correlation is in good agreement with the record of geomagnetic secular variation.
  The total composite palaeomagnetic profile represents a stratigraphic thickness of 1.6  km through the Vaigat Formation, which is the lowermost of the two volcanic formations formed during the main stage of plateau volcanism. Only two polarity zones are found in the composite profile, suggesting a very short duration for the West Greenland main plateau-building volcanism. 40Ar/39Ar dates support a high extrusion rate and also indicate that the lower normal polarity zone is Chron C27n and that the upper reverse polarity zone is Chron C26r.
  The C27n–C26r transition is fully recorded along one of the sections (Nuusap Qaqqarsua), with intermediate directions covering a 200  m thick succession of lavas. A combined palaeomagnetic, field and geochemical study along this profile showed good agreement; that is, geochemically and geologically derived single magmatic events show groupings of the palaeomagnetic directions. Supposing a duration for the geomagnetic transition of 5000 years, the eruption frequency during this period was as high as one flow every 80 years.  相似文献   

19.
Summary. The temperature field and rates of cooling and solidification of the oceanic crust and upper mantle at an ocean ridge have been calculated as a function of spreading rate. The thermal model of the accretion process incorporates latent heat release associated with solidification of the basalt. liquid forming the ocean crust and uses a heat supply boundary condition on the vertical ridge axis model boundary. It is assumed that while oceanic layer 2 cools rapidly by hydrothermal circulation, oceanic layer 3 cools predominantly by conduction. Basalt liquid injection into the upper part of oceanic layer 3 is shown to solidify instantaneously while that injected into lower crustal levels takes up to 0.4 Myr to solidify. Material solidifying instantaneously is interpreted as corresponding to the dolerite unit of the ocean crust while that taking a finite time to cool is interpreted as corresponding to the gabbroic unit. The rate of cooling of the crust is shown to be faster for slower spreading rates and consequently the thicknesses of the dolerite and gabbro units are predicted to thin and thicken respectively with increase in spreading rate. The width of the molten region, or magma chamber, within the crust at the ridge axis is shown to be approximately proportional to spreading rate with chamber half widths of 1.5 and 10.0 km for half spreading rate of 1.0 and 6.0 cm yr−1. Below a critical half spreading rate of about 0.65 cm yr−1 no molten region exists and the crust is entirely doleritic.  相似文献   

20.
Summary. Palaeomagnetic results from Part I of this study and their analysis in Part II are combined to eliminate bias from the Cenozoic apparent polar wander path for Australia – a bias due to non-dipole components in past geomagnetic fields or, for poles calculated from hot-spot data, due to the motion of hot spots relative to the Earth's rotational axis. This path is extended in approximately bias-free form to the late Mesozoic, and indicates a significant change in the drift direction of the continent between 26 and about 60 Ma.
The bias-corrected Australian path is used, first, with seafloor spreading data for the Southern Ocean to derive a corresponding late Mesozoic–Cenozoic pole path for Antarctica. The latter shows that the Antarctic drift direction reversed in the early Tertiary. It is suggested that the early Tertiary directional changes of both Australia and Antarctica are part of a global reorganization of plates during the Eocene, postulated by Rona & Richardson, Cande & Mutter and Patriat & Achache.
Next, the Australian path is compared with hot-spot data from the African and Australian plates, indicating a movement of the hot spots relative the Earth's rotational axis during the Cenozoic. The direction of this movement is found to be consistent with previous results from other parts of the world.
Finally, the Australian path is used together with non-dipole components in the geomagnetic field to explain a prominent westward displacement of the mid- and late Cenozoic poles of India relative to those of Australia.
Because of uncertainties in the original poles and in the analysis, the present results are likely to contain appreciable errors. Nevertheless, their consistency with independent findings supports the dipole-quadrupole model of Part II for mid- and late Cenozoic geomagnetic fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号