首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ‘COP method’ has been developed for the assessment of intrinsic vulnerability of carbonate aquifers in the frame of the European COST Action 620. This method uses the properties of overlying layers above the water table (O factor), the concentration of flow (C factor) and precipitation (P factor) over the aquifer, as the parameters to assess the intrinsic vulnerability of groundwater. This method considers karst characteristics, such as the presence of swallow holes (C factor) and their catchment areas as well as karstic landforms, as factors which decrease the natural protection provided by overlying layers (O factor). The P factor allows for consideration of the spatial and temporal variability of precipitation, which is considered the transport agent of contamination. Two carbonate aquifers in the South of Spain, Sierra de Líbar (a conduit flow system) and Torremolinos (a diffuse flow system), have been selected for the application and validation of the method and the results have been compared with three methods widely applied in different aquifers around the world (AVI, GOD and DRASTIC). Comparisons with these methods and validation tools (hydrogeological data and tracer test) show the advantages of the COP method in the assessment of vulnerability of karstic groundwaters.  相似文献   

2.
Four methods of groundwater vulnerability mapping have been applied in a Slovene karst catchment and validated by tracer tests. The test site is characterised by high water table fluctuations, manifested in intermittent lakes and variable drainage divides. A first multi-tracer test (two injections) allowed subdivision of the catchment into zones of different degrees of contribution (‘inner zone’ and ‘outer zone’). For vulnerability mapping, only methods that consider the specific nature of karst aquifers such as heterogeneity and duality of infiltration processes, were selected: EPIK, PI, the ‘Simplified Method’ and the ‘Slovene Approach’. For validation, a second multi-tracer test (four injections) was carried out. The time of first detection and the normalised recovery were used as validation criteria. The results suggest that EPIK and the Simplified Method sometimes overestimate vulnerability, while PI and the Slovene Approach tend to deliver more realistic results, at least during low-flow conditions. The Slovene Approach gives the clearest guidance on how to deal with hydrologic variability, for example by assigning lower vulnerability to occasionally active sinking surface waters than to permanent ones. As a conclusion, commonly accepted validation techniques are needed and should be applied by default to evaluate different vulnerability mapping methods and the resulting maps.  相似文献   

3.
A step from resource to source vulnerability mapping is presented, based on the European COST Action 620 approach for karst groundwater protection. Guidelines on vulnerability assessment of the horizontal groundwater flow path within the karst saturated zone (K factor) are proposed. By integrating this into the previously existing COP method for intrinsic resource vulnerability mapping, adequate source protection can be assessed. The proposed “Karst saturated zone (K) factor” assessment considers groundwater travel time (t subfactor), connection and contribution to the source (r subfactor) and active conduit or fissured network (n subfactor). The extended COP method was applied in two carbonate aquifers in southern Spain with different geological, hydrogeological and climate settings. The results are coherent with previous research results of the studied areas. Moreover, they are consistent with the occasional groundwater contamination detected in one of the springs. On the other hand, an absence of contamination, despite high risk, justifies the lower degrees of vulnerability assigned to the sources surveyed. The source vulnerability maps obtained can thus be used as a basis for the delineation of protection zones.  相似文献   

4.
5.
Groundwater in karstic aquifers can be dangerously sensitive to contamination. In this paper, DRASTIC assessment was modified and applied, for the first time, to address the intrinsic vulnerability for karst aquifers. The theoretical weights of two of DRASTIC’s parameters (aquifer media and hydraulic conductivity) were modified through sensitivity analysis. Two tests of sensitivity analyses were carried out: the map removal and the single parameter sensitivity analyses. The modified assessment was applied for the karst aquifers underlying Ramallah District (Palestine) as a case study. The aquifer vulnerability map indicated that the case study area is under low, moderate and high vulnerability of groundwater to contamination. The vulnerability index can assist in the implementation of groundwater management strategies to prevent degradation of groundwater quality. The modified DRASTIC assessment has proven to be effective because it is relatively straightforward, use data that are commonly available or estimated and produces an end product that is easily interpreted.  相似文献   

6.
Understanding the transference of water resources within hydrogeological systems, particularly in coastal aquifers, in which groundwater discharge may occur through multiple pathways (through springs, into rivers and streams, towards the sea, etc.), is crucial for sustainable groundwater use. This research aims to demonstrate the usefulness of the application of conventional recharge assessment methods coupled to isotopic techniques for accurately quantifying the hydrogeological balance and submarine groundwater discharge (SGD) from coastal carbonate aquifers. Sierra Almijara (Southern Spain), a carbonate aquifer formed of Triassic marbles, is considered as representative of Mediterranean coastal karst formations. The use of a multi-method approach has permitted the computation of a wide range of groundwater infiltration rates (17–60%) by means of direct application of hydrometeorological methods (Thornthwaite and Kessler) and spatially distributed information (modified APLIS method). A spatially weighted recharge rate of 42% results from the most coherent information on physiographic and hydrogeological characteristics of the studied system. Natural aquifer discharge and groundwater abstraction have been volumetrically quantified, based on flow and water-level data, while the relevance of SGD was estimated from the spatial analysis of salinity, 222Rn and the short-lived radium isotope 224Ra in coastal seawater. The total mean aquifer discharge (44.9–45.9 hm3 year?1) is in agreement with the average recharged groundwater (44.7 hm3 year?1), given that the system is volumetrically equilibrated during the study period. Besides the groundwater resources assessment, the methodological aspects of this research may be interesting for groundwater management and protection strategies in coastal areas, particularly karst environments.  相似文献   

7.
Groundwater vulnerability maps were constructed for the surface water catchment area of Tanour and Rasoun spring (north-west of Jordan) using the COP and EPIK intrinsic groundwater vulnerability assessment methods. Tanour and Rasoun springs are the main water resources for domestic purposes within the study area. A detailed geological survey was carried out, and data of lithology, karst features, precipitation, vegetation and soil cover, etc. were gathered from various sources for the catchment area in order to determine the required parameters for each method. ArcGIS software was used for map preparation. In the resulting COP vulnerability map, spatial distribution of groundwater vulnerability is as follows: (1) high (37%), (2) moderate (34.8%), (3) low (20.1%), and (4) very low (8.1%). In the EPIK vulnerability map, only two out of four vulnerability classes characterize the catchment area: very high vulnerable areas (38.4%) and moderately vulnerable areas (61.6%). Due to limited soil thickness, the low vulnerability class is absent within the catchment. The high percentage of very high to moderately vulnerable areas displayed by both the COP and EPIK vulnerability assessment methods are reflected by different pollution events in Tanour and Rasoun karst springs especially during the winter season. The high sensitivity of the aquifer to pollution can be explained by different factors such as: thin or absent soil cover, the high development of the epikarst and karst network, and the lithology and confining conditions of the aquifer.  相似文献   

8.
A simplified methodology for mapping groundwater vulnerability and contamination risk is proposed, and the first application of the methodology, in a mountainous tropical karst area, is presented. The test site is the Tam Duong area, one of the poorest and remotest regions in northern Vietnam. The methodology requires a minimum of input data, which makes it particularly useful for developing countries. Vulnerability is assessed on the basis of two factors, which take into account the duality of recharge processes in karst aquifer systems: the overlying layers (O) and the concentration of flow (C). The risk map is obtained by putting together the vulnerability map and a simplified hazard assessment. The resulting maps provide a basis for groundwater protection zoning and land-use planning. Tracer tests and microbiological data confirmed the vulnerability and risk assessment in the test site.  相似文献   

9.
溶地下水脆弱性评价“二元法”及其在重庆金佛山的应用   总被引:8,自引:4,他引:8  
岩溶地下水脆弱性评价是基于保护岩溶含水层从而有效地管理和利用地下水提出的有效方法和手段。我国西南岩溶区极大多数地区缺少应有的地下水保护带,地下水比较容易受到污染。本文论述了一种脆弱性的评价的简单方法— —基于径流特征和覆盖层厚度的二元法,并利用该法对重庆金佛山典型岩溶区进行了地下水脆弱性评价。结果表明,药池坝洼地和生态石林区脆弱性较高。究其原因,尽管药池坝洼地底部土壤层覆盖较厚,但存在地表径流集中排向落水洞,生态石林分布区地表裂隙、溶沟发育,可直接接受雨水入渗,因而污染物极易通过降雨和地表径流过程进入含水层。这一方法输入数据量小,对岩溶含水层普遍适用,为地下水资源可持续利用和土地利用管理提供了强有力的工具。   相似文献   

10.
A small karst aquifer of great structural complexity has been subjected to significant resource withdrawal over recent decades. This exploitation aroused social conflict due to the effect it has had on emblematic springs. This research has analysed piezometric data collected over the course of 12 years and the spatial hydrochemical data supplied by the main water points associated with it. The spatial and temporal evolution of the main chemical species in the groundwater and the hydrogeochemical processes affecting them have been studied, modelling them with the programme PHREEQC. These data suggest a complicated model of hydrogeological function with sectors storing water at different depths and connected to each other locally as determined by the geological structure.  相似文献   

11.
Aquifer recharge can be determined by conventional methods such as hydrodynamic or hydrologic balance calculations, or numerical, hydrochemical or isotopic models. Such methods are usually developed with respect to detrital aquifers and are then used on carbonate aquifers without taking into consideration their hydrogeological particularities. Moreover, such methods are not always easy to apply, sometimes requiring data that are not available. Neither do they enable determination of the spatial distribution of the recharge. For eight regions in southern Spain, the APLIS method has been used to estimate the mean annual recharge in carbonate aquifers, expressed as a percentage of precipitation, based on the variables altitude, slope, lithology, infiltration landform, and soil type. The aquifers are representative of a broad range of climatic and geologic conditions. Maps of the above variables have been drawn for each aquifer, using a geographic information system; thus they can be superimposed to obtain the mean value and spatial distribution of the recharge. The recharge values for the eight aquifers are similar to those previously calculated by conventional methods and confirmed by discharge values, which corroborates the validity of the method.  相似文献   

12.
The carbonate aquifers of Lora and Mingo form part of the hydrogeological unit of Sierra de Estepa (SE Spain). By means of time series analysis and a 1D numerical groundwater model, groundwater exploitation was quantified and the mean annual recharge in both systems was estimated (2001–2004). During this period, the Lora and Mingo aquifers received an average groundwater recharge of 0.29 × 106 m3/year and 0.14 × 106 m3/year, respectively, whereas an average of 0.34 × 106 m3/year and 0.21 × 106 m3/year, respectively, was extracted. These conditions led to a conspicuous lowering of the water table in both systems. In addition, the analysis of the evolution of the main hydrogeochemical parameters of the groundwater showed that the increased pumping rates produced an increase in total dissolved solids, and chloride and sodium ions in both aquifers. In the case of the Lora aquifer, the only ion that presented decreased levels was nitrate. The results show that groundwater pumping in both aquifers should not exceed the mean annual recharge of 0.29 × 106 m3/year and 0.14 × 106 m3/year in the Lora and Mingo aquifers, respectively. Nevertheless, it would be advisable to reduce pumping rates to below these values in order to restore piezometric levels and improve groundwater quality for different uses in the future.  相似文献   

13.
14.
The study of the intrinsic vulnerability of groundwater resources to pollution is an effective tool to control their quality degradation and contribute to their protection. It is used to delimit the vulnerable zones which do not withstand a large flow of pollutants introduced from the soil surface. Three methods of assessing the intrinsic vulnerability of groundwater: DRASTIC (Depth to water table, Recharge, Aquifer, Soil type, Topography, Impact of zone vadose, Hydraulic conductivity), DRSTI, and GOD (Groundwater occurrence, Overall aquifer class and Depth of water table) coupled with a geographic information system (GIS) are applied to the groundwater of Beni Amir, and they are compared in order to adopt the method which better characterizes the vulnerability of the aquifer to pollution. The validation of this application was made by measurements of the nitrate levels in the aquifer. Because the pollution of groundwater, in this plain, is a direct consequence of agricultural activities characterized by an intensive fertilizer application. The results clearly show that the rate of the coincidence, between the measured nitrate concentrations and the different classes of vulnerability of three methods, is 81.81, 54.54, 72.72, and 27.27%, respectively, for methods DRASTIC (classification of Engel et al. (Int Assoc Hydrol Sci Publi 235:521–526, 1996)), DRASTIC (classifications of Aller et al. (1987)), DRSTI, and GOD. Of this rate of coincidences, the DRASTIC method, with the classification of Engel et al. (Int Assoc Hydrol Sci Publi 235:521–526, 1996), allows a finer assessment and turns out the most representative of the study area.  相似文献   

15.
In order to study the function, hydrodynamic behavior, and hydraulic properties of the karst aquifers in Izeh, southwest Iran, time series analysis was applied to the precipitation, spring discharge, and piezometric head data of two representative karst systems of Zagros (Ilam-Sarvak and Asmari Formations). Time series analysis was applied to two karst aquifers, those of Asmari and Ilam-Sarvak Formations. The daily precipitations of anticlines were estimated based on the precipitation–elevation function which was applied on digital elevation model (DEM) of the area. The mean estimated daily precipitations were considered in bivariate time series analysis as input data of each karst system. The total length of time series was about 2.7 years, extending from May 2007 to December 2009. During the research, several one-parameter probe data loggers were installed, which daily measure the water surfaces in karst aquifers. Time series analysis was applied for describing Izeh karst aquifers with a focus on both univariate (autocorrelation and spectral analysis) and bivariate (cross-correlation, gain function, and coherency function) methods. The results show that Asmari karst aquifer in Kamarderaz Anticline has a large storage capacity. Because of lacking a well-organized karst network, in the Asmari karst aquifer, baseflow dominates with low contribution of quick-flow. In the Ilam-Sarvak karst aquifer (Shavish and Tanush Anticlines), the karstification occurred in fractures and small diameter conduits, which caused to quick-flow between dense limestone. The Ilam-Sarvak karst aquifer could be regarded as a transition between two extreme types of karst, e.g., highly karstified system and in the opposite, extremely diffused one. The analysis of well hydrograph in Ilam-Sarvak karst aquifer shows that the karst aquifer has a low storage capacity. Unlike Asmari karst aquifer, the fractures and small diameter conduits in Ilam-Sarvak karst aquifer are more enhanced, producing a better developed karst network. Contrary to the typical karst systems, however, diffuse flow and conduit flow coexist in the Asmari Formation.  相似文献   

16.
17.
La Gomera (Canary Islands, Spain) does not show water scarcity like other islands of the Archipelago. However, the study of its aquifers is paramount as nearly 60 % of the water supplies are covered with spring water. According to the currently accepted hydrogeological model, La Gomera presents an upper aquifer consisting of perched groundwater bodies. Below this hydrogeological unit, the General Saturated Zone or basal groundwater is placed. The model also establishes the presence of flows through them. Many perched groundwater bodies are located under Garajonay National Park where most of the springs are found. Therefore, if upper and lower aquifers are truly connected and new wells are built, the new extractions could affect Garajonay ecosystems. With the aim of identifying spring groups and related potential areas of water transfer, hydrochemical and statistical analyses (principal component analysis and cluster analysis) have been applied. This study shows the great compositional variability of groundwaters, precluding the identification of spring groups, hydrochemical patterns and, therefore, the transfer areas with no possibility of assessing the potential impact of a water demand increase on the Garajonay National Park ecosystems from the present data. Only the springs belonging to group II of the cluster analysis could indicate a transfer area. The lack of conclusive results could be due to: (1) great compositional variability of volcanic materials; (2) unequal influence of marine aerosols; (3) irregular distribution of rainfall; (4) different grades of soils development; and (5) the occurrence of partially disconnected water bodies giving as a result a complex hydrogeological system.  相似文献   

18.
Recharge to an aquifer can be estimated by first calculating the effective rainfall using a soil moisture budgeting technique, and then by applying a recharge coefficient to indicate the proportion of this effective rainfall that contributes to groundwater recharge. In the Republic of Ireland, the recharge coefficient is determined mainly by the permeability and thickness of the superficial deposits (subsoils) that overlie the country’s aquifers. The properties of these subsoils also influence groundwater vulnerability, and a methodology has been developed for determining the recharge coefficient using the groundwater vulnerability classification. The results of four case studies have been used to develop a quantified link between subsoil permeability, aquifer vulnerability, recharge and runoff. Recharge and runoff coefficients are each classed into three groupings: high, intermediate and low. A high recharge coefficient equates to a low runoff coefficient, and vice versa. A GIS-based tool enables preliminary estimates of recharge to be made using these recharge coefficient groupings. Potential recharge is calculated as the product of effective rainfall and recharge coefficient. The actual recharge is then calculated taking account of the ability of the aquifer to accept the available recharge. The methodology could be applied to other temperate climate zones where the main aquifers have a substantial covering of superficial deposits.  相似文献   

19.
Mexico City relies on groundwater for most of its domestic supply. Over the years, intensive pumping has led to significant drawdowns and, subsequently, to severe land subsidence. Tensile cracks have also developed or reactivated as a result. All such processes cause damage to urban infrastructure, increasing the risk of spills and favoring contaminant propagation into the aquifer. The effects of ground deformation are frequently ignored in groundwater vulnerability studies, but can be relevant in subsiding cities. This report presents an extension to the DRASTIC methodology, named DRASTIC-Sg, which focuses on evaluating groundwater vulnerability in urban aquifers affected by differential subsidence. A subsidence parameter is developed to represent the ground deformation gradient (Sg), and then used to depict areas where damage risk to urban infrastructure is higher due to fracture propagation. Space-geodetic SqueeSAR data and global positioning system (GPS) validation were used to evaluate subsidence rates and gradients, integrating hydrogeological and geomechanical variables into a GIS environment. Results show that classic DRASTIC approaches may underestimate groundwater vulnerability in settings such as the one at hand. Hence, it is concluded that the Sg parameter is a welcome contribution to develop reliable vulnerability assessments in subsiding basins.  相似文献   

20.
This paper shows the results of a comparative study involving application of the vulnerability mapping methods known as AVI, GOD, DRASTIC and EPIK to a pilot carbonate massif in southern Spain, namely the Torremolinos aquifer. The main objectives of the study were to determine which methods are most suitable for diffuse flow carbonate aquifers such as in southern Spain, and to evaluate variations in the degree of vulnerability associated to the rainfall variations that normally occur in a Mediterranean climate. According to three of the above methods, the aquifer is moderately vulnerable, but the AVI method evaluated it as highly vulnerable—this, however, is improbable. The vulnerability maps reflect the great importance of geology-related parameters (mainly those concerned with lithology) and, to a lesser degree, that of the depth of the groundwater table which is related to the rainfall. After this latter parameter, it is possible to distinguish between humid and dry climatic situations; thus, vulnerability increases in a humid year, especially according to the GOD and AVI methods. In conclusion, the GOD method seems the most adequate of the methods applied in this work for vulnerability mapping of diffuse flow carbonate aquifers in the Mediterranean domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号