首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Qianjiangping landslide is a large planar rock slide which occurred in July 14, 2003 shortly after the water level reached 135 m in the Three Gorges Reservoir, China. The landslide destroyed 4 factories and 129 houses, took 24 lives, and made 1,200 people homeless. Field investigation shows that the contributing factors for the landslide are the geological structure of the slope, the previous surface of rupture, the water level rise, and continuous rainfall. In order to reveal the mechanism and failure process of the landslide, numerical simulation was conducted on Qianjiangping slope before sliding. Based on the characteristics and the engineering conditions of the landslide, the topography and the geological profiles of Qianjiangping slope before sliding is reconstructed. The seepage field of Qianjiangping slope before sliding was simulated with the Geostudio software. The results show that ground water table rises and bends to the slope during the rise of water level, and the slope surface becomes partially saturated within the period of continuous rainfall. Using the ground water table obtained above, the failure process of Qianjiangping slope is simulated with the Flac3D software. The results demonstrate that the shear strain increment, displacement, and shear failure area of the slope increased greatly after the water level rose and continuous rained, and the landslide was triggered by the combined effect both of water level rise and continuous rainfall. The development of shear strain increment, displacement, and shear failure area of the slope shows that the landslide was retrogressive in the lower part of the slope and progressive in the upper part of the slope.  相似文献   

2.
This work aims to understand the process of potential landslide damming using slope failure mechanism,dam dimension and dam stability evaluation. The Urni landslide, situated on the right bank of the Satluj River, Himachal Pradesh(India) is taken as the case study. The Urni landslide has evolved into a complex landslide in the last two decade(2000-2016) and has dammed the Satluj River partially since year 2013,damaging ~200 m stretch of the National Highway(NH-05). The crown of the landslide exists at an altitude of ~2180-2190 m above msl, close to the Urni village that has a human population of about 500.The high resolution imagery shows ~50 m long landslide scarp and ~100 m long transverse cracks in the detached mass that implies potential for further slope failure movement. Further analysis shows that the landslide has attained an areal increase of 103,900 ± 1142 m^2 during year 2004-2016. About 86% of this areal increase occurred since year 2013. Abrupt increase in the annual mean rainfall is also observed since the year 2013. The extreme rainfall in the June, 2013; 11 June(~100 mm) and 16 June(~115 mm),are considered to be responsible for the slope failure in the Urni landslide that has partially dammed the river. The finite element modelling(FEM) based slope stability analysis revealed the shear strain in the order of 0.0-0.16 with 0.0-0.6 m total displacement in the detachment zone. Further, kinematic analysis indicated planar and wedge failure condition in the jointed rockmass. The debris flow runout simulation of the detached mass in the landslide showed a velocity of ~25 m/s with a flow height of ~15 m while it(debris flow) reaches the valley floor. Finally, it is also estimated that further slope failure may detach as much as 0.80 ±0.32 million m^3 mass that will completely dam the river to a height of 76±30 m above the river bed.  相似文献   

3.
Based on field investigation of the constituent structure and geological formation of the Maoping landslide, the authors made an in-depth study of the deformation characteristics and triggering mechanism of the reservoir-induced slide through comprehensive analysis of the about 13 years observation data. The Maoping landslide, the largest ancient landslide in Geheyan reservoir, with a volume of 23.5 million m3, is located on the left bank of the Qingjiang River, 66 km upstream of Geheyan dam. In April 1993 reservoir inundation reactivated the landslide, which resulted in relocation of a village of 290 people. Since then the landslide body has been experiencing persistent deformation with an observed maximum displacement of 2841.4 mm up to October 2005. Therefore, further development of deformation of the landslide becomes a great concern for the safety of the reservoir and dam. The analysis results show that the Maoping landslide is an ancient landslide that is an accumulation of several consequent slides along the bank slope and experienced several secondary slumps in its front in later stages. The ongoing deformation of the reactivated landslide is controlled by mechanical properties of materials and hydraulic effects induced by reservoir. The slip process is of creep deformation as a whole, and appears to be attenuating in later stage, which indicates very low possibility of the high-speed slip and integral failure of the slide.  相似文献   

4.
A catastrophic rock avalanche–mud flow was triggered by the heavy rainfall in Sichuan, China, on July 27, 2010. A mass of strongly weathered basalts with a volume of ∼480,000 m3 was initiated from a valley side slope and then moved downstream along the valley, entraining a large amount of unconsolidated substrate and bilateral materials and colluviums. The entrainment increased the volume of slide to ∼1.0 million m3 and may also enhance the mobility of the landslide. Approximately 30 min after the first failure, the deposits of the rock avalanche in the steepest part of the valley started to creep slowly down as a mud flow. It reached a small town at the foot of the slope after several hours, causing the damage of 92 houses and the urgent evacuation of 1,500 people. The field investigation, mapping, grain size test, and aerial photo interpretation were applied to analyze the dynamic process and the formation mechanism of the landslide. The strongly weathered and fragmented basalts as well as the most vulnerable combination of joint sets were revealed to be the most contributive factors. The antecedent torrential rainfall is the direct trigger, which affected the slope stability in three aspects: induced debris flow that scoured the toe of the sliding surface of rock avalanche; caused the increase of the slope unit weight, and penetrated into the steep joints reducing the strength of the materials.  相似文献   

5.
Landslide and Tsunami 21 November 2000 in Paatuut,West Greenland   总被引:1,自引:0,他引:1  
A large landslide occurred November 21, 2000 at Paatuut, facing the Vaigat Strait onthe west coast of Greenland. 90 million m3 (260 million tons) of mainly basalticmaterial slid very rapidly (average velocity 140 km/h) down from 1,000–1,400 maltitude. Approximately 30 million m3 (87 million tons) entered the sea, creatinga tsunami with an run-up height of 50 m close to the landslide and 28 m at Qullissat,an abandoned mining town opposite Paatuut across the 20 km wide Vaigat strait. Theevent was recorded seismically, allowing the duration of the slide to be estimated tocirca 80 s and also allowing an estimate of the surface-wave magnitude of the slideof 2.3. Terrain models based on stereographic photographs before and after the slidemade it possible to determine the amount of material removed, and the manner ofre-deposition. Simple calculations of the tsunami travel times are in good correspondencewith the reports from the closest populated village, Saqqaq, 40 km from Paatuut, whererefracted energy from the tsunami destroyed a number of boats. Landslides are notuncommon in the area, due to the geology with dense basaltic rocks overlying poorlyconsolidated sedimentary rocks, but the size of the Paatuut slide is unusual. Based onthe observations it is likely at least 500 years since an event with a tsunami of similarproportions occurred. The triggering of the Paatuut slide is interpreted to be caused byweather conditions in the days prior to the slide, where re-freezing melt water inpre-existing cracks could have caused failure of the steep mountain side.  相似文献   

6.
Li  Yanyan  Feng  Xuyang  Yao  Aijun  Zhang  Zhihong  Li  Kun  Wang  Qiusheng  Song  Shengyuan 《Landslides》2022,19(5):1069-1086

This paper presents a study on an ancient river-damming landslide in the SE Tibet Plateau, China, with a focus on time-dependent gravitational creep leading to slope failure associated with progressive fragmentation during motion. Field investigation shows that the landslide, with an estimated volume of 4.9?×?107 m3, is a translational toe buckling slide. Outcrops of landslide deposits, buckling, toe shear, residual landslide dam, and lacustrine sediments are distributed at the slope base. The landslide deposits formed a landslide dam over 60 m high and at one time blocked the Jinsha River. Optically stimulated luminescence dating for the lacustrine sediments indicates that the landslide occurred at least 2,600 years ago. To investigate the progressive evolution and failure behavior of the landslide, numerical simulations using the distinct element method are conducted. The results show that the evolution of the landslide could be divided into three stages: a time-dependent gravitational creep process, rapid failure, and granular flow deposition. It probably began as a long-term gravitationally induced buckling of amphibolite rock slabs along a weak interlayer composed of mica schist which was followed by progressive fragmentation during flow-like motion, evolving into a flow-like movement, which deposited sediments in the river valley. According to numerical modeling results, the rapid failure stage lasted 35 s from the onset of sudden failure to final deposition, with an estimated maximum movement rate of 26.8 m/s. The simulated topography is close to the post-landslide topography. Based on field investigation and numerical simulation, it can be found that the mica schist interlayer and bedding planes are responsible for the slope instability, while strong toe erosion caused by the Jinsha River caused the layered rock mass to buckle intensively. Rainfall or an earthquake cannot be ruled out as a potential trigger of the landslide, considering the climate condition and the seismic activity on centennial to millennial timescales in the study area.

  相似文献   

7.
2010年10月21—22日,陕西延炼厂区储油罐下方的斜坡发生缓慢滑移,造成了巨大的经济损失。滑坡发生前当地没有降雨或地震,为探究其形成过程,在边坡上取代表性土样进行土水特征曲线测试、配制不同含水率土样,进行常规三轴试验和直剪试验,以确定土体的非饱和渗透曲线和强度参数。建立边坡滑动前的有限元模型,进行非饱和渗透与非饱和强度的耦合分析,得到凝结水入渗过程中边坡的应力场,据此可得不同时间段的边坡稳定系数,揭示其破坏过程。结果表明,水蒸气凝结水在斜坡内长期滴渗,使得坡体地下水位缓慢上升,地下水位浸润潜在滑面前,稳定系数基本不变,待地下水位开始浸润边坡潜在滑面时,稳定系数开始迅速降低,最终导致斜坡破坏。  相似文献   

8.
This study investigates the causes and failure mechanism of the Aksu landslide that occurred during the construction of the Giresun–Espiye road between KM: 1 + 030–1 + 170 in northern Turkey and recommends proper stabilization techniques. For the purpose of investigating the causes and mechanism of this slope failure, engineering geological mapping, geotechnical investigation and rock mass characterization were performed. From top to bottom, weathered tuffite, tuffite, flysch, and dacitic tuffite were the major units in the study area. The disturbance of the slope by the excavations performed at the toe of the slope (i.e., due to the foundation excavation for the Tünel restaurant building and for the road cut) led to a “translational slide”. The “translational slide” occurred in completely weathered tuffite due to the disturbance of the stability of the slope by the excavations performed at the toe of the slope, particularly for the foundation excavation of the Tünel restaurant building and for the road cut along the Giresun–Espiye road. The rise in the groundwater level was also another important factor that has contributed to the occurrence of the landslide. After establishing the geometry of the landslide in detail, the shear strength parameters of the failure surface were determined by the back analysis method. Sensitivity analyses were performed and landslide failure mechanisms were modeled to quantify the contributing factors that have caused the formation of the Aksu landslide. The influence of an earthquake was investigated through pseudostatic slope stability analysis. Toe buttressing, ground water drainage, and surface water drainage alternatives were considered for stabilizing the slope.  相似文献   

9.
At about 8:30 p.m. on 27 August 2014, a catastrophic rock avalanche suddenly occurred in Fuquan, Yunnan, southwestern China. This landslide and related impulse water waves destroyed two villages and killed 23 persons. The impulse waves occurred after initiation of the landslide, caused by the main part of the slide mass rapidly plunging into a water-filled quarry below the source area. The wave, comprising muddy water and rock debris, impacted the opposite slope of the quarry on the western side of the runout path and washed away three homes in Xinwan village. Part of the displaced material traveled a horizontal distance of about 40 m from its source and destroyed the village of Xiaoba. To provide information for potential landslide hazard zonation in this area, a combined landslide–wave simulation was undertaken. A dynamic landslide analysis (DAN-W) model is used to simulate the landslide propagation before entering the quarry, while Fluent (Ansys Inc., USA) is used to simulate the impulse wave generation and propagation. Output data from the DAN-W simulation are used as input parameters for wave modeling, and there is good agreement between the observed and simulated results of the landslide propagation. Notably, the locations affected by recordable waves according to the simulation correspond to those recorded by field investigation.  相似文献   

10.
Hou  Runing  Chen  Ningsheng  Hu  Guisheng  Han  Zheng  Liu  Enlong 《Landslides》2022,19(2):437-449

Landslides following rainfall occurrence are a widespread phenomenon. The neglect of this phenomenon leads to serious loss of life when disasters occur. At 03:45 (GMT?+?8) on August 21, 2020, a semi-diagenetic landslide occurred in Zhonghai Village, Hanyuan County, China, which occurred 42 h after earlier rainfall. Nine people privately returned to their homes after evacuation of the dangerous area. In this disaster, eight people were lost and one injured. This study explores the failure characteristics, inducement, and mechanisms of the landslide via field investigations, resident interviews, multi-temporal images, field drilling, and geotechnical tests. Hydrological numerical calculations were also performed to uncover the seepage and transfer processes of the groundwater in the slope. Finally, problems in the current community early warning system were analyzed and corresponding suggestions put forward. The results show that the maximum sliding depth of the landslide was 27.5 m, the total area was 80,000 m2, and the sliding volume was about 58,0000 m3, making it a medium-sized deep landslide. In addition to the vertical seepage of rainfall in the landslide area, the downward movement of rainfall in the back and upper catchment areas along the silt sand strata also affected the stability of the landslide. More needs to be done to make the population aware of this lag phenomenon to achieve scientific disaster reduction. This study not only provides a case study of a lagging semi-diagenetic landslide, but also provides insight into hydrological boundary determination and landslide early warning system construction.

  相似文献   

11.
Since the impoundment of the Three Gorges Reservoir in June 2003, a number of new landslides have occurred and existing landslides have been made worse. The 1,260 × 104 m3 Baishuihe landslide, located at 56 km west of the Three Gorges Dam, began to deform more noticeably after the first impoundment in early July 2003. The sliding of the two blocks comprising the landslide, one an active block and the other a relatively stable block, became apparent after approximately 5 years of monitoring. Field recordings show that the landslide displacement is affected by the combined effects of the rainfall and water level in the reservoir. These effects have been investigated in the present paper, including the deformation characteristics (movement pattern, direction, displacement and velocity) earmarking the temporal evolution of the active block. Based on a practical creep model of a large rock slide, alert velocity thresholds for pre-alert, alert and emergency phases have been computed corresponding to the imminence of failure. The alert velocity thresholds are being proposed to be included as a part of an early-warning system of an emergency plan drawn up to minimize the adverse impact in the event of landslide failure. The emergency plan is intended to be implemented as a risk management tool by the relevant authorities of the Three Gorges Reservoir in the near future.  相似文献   

12.
Zhao  Bo  Wang  Yunsheng  Wu  Junfeng  Su  Lijun  Liu  Jiangwei  Jin  Gang 《Natural Hazards》2021,106(1):459-485

A good understanding of seismic giant landslides could provide favourable guidance for seismic stability evaluation of nearby slopes. Here, an excellent example of a catastrophic seismic landslide named the Mogangling giant landslide (MGL), located upstream along the Dadu River and triggered by the 1786 Moxi M 7.75 earthquake, is analysed for its deposit characteristics, failure mechanism and dammed lake. The MGL, with a volume of approximately 4500?×?104 m3, 450 m long and 1000 m wide, blocked the Dadu River completely and caused over 100 000 deaths when the landslide dam broke. The MGL occurred on the upper part of a narrow granite ridge; a potentially unstable wedge-shaped rock mass was separated from the remaining massif by unloading fissures and an active fault (Detuo fault) that just crossed the slope foot. The Moxi earthquake coupled with strong site amplification triggered the MGL, which blocked the Dadu River; the elevation of the dam crest was approximately 130 m higher than the present river level. The dammed lake had a volume of approximately 9.504?×?108 m3, an area of 19.91 km2 and a length of approximately 31 km; the peak flow of the outburst flood was larger than 7100 m3/s. After hundreds of years of concave bank erosion, the deposit is divided into the right bank deposit (main deposit) and left bank deposit (residual deposit).

  相似文献   

13.
Yao  Jiaming  Lan  Hengxing  Li  Langping  Cao  Yiming  Wu  Yuming  Zhang  Yixing  Zhou  Chaodong 《Landslides》2022,19(3):703-718

The Sichuan-Tibet railway goes across the Upper Jinsha River, along which a large number of large historical landslides have occurred and dammed the river. Therefore, it is of great significance to investigate large potential landslides along the Jinsha River. In this paper, we inspect the deformation characteristics of a rapid landsliding area along the Jinsha River by using multi-temporal remote sensing, and analyzed its future development and risk to the Sichuan-Tibet railway. Surface deformations and damage features between January 2016 and October 2020 were obtained using multi-temporal InSAR and multi-temporal correlations of optical images, respectively. Deformation and failure signs obtained from the field investigation were highly consistent. Results showed that cumulative deformation of the landsliding area is more than 50 cm, and the landsliding area is undergoing an accelerated deformation stage. The external rainfall condition, water level, and water flow rate are important factors controlling the deformation. The increase of rainfall, the rise of water level, and faster flow rate will accelerate the deformation of slope. The geological conditions of the slope itself affect the deformation of landslide. Due to the enrichment of gently dipping gneiss and groundwater, the slope is more likely to slide along the slope. The Jinsha River continuously scours the concave bank of the slope, causing local collapses and forming local free surfaces. Numerical simulation results show that once the landsliding area fails, the landslide body may form a 4-km-long dammed lake, and the water level could rise about 200 m; the historic data shows that landslide dam may burst in 2–8 days after sliding. Therefore, strategies of landslide hazard mitigation in the study area should be particularly made for the coming rainy seasons to mitigate risks from the landsliding area.

  相似文献   

14.
The 12 March 2001 landslide at a slate quarry in Okayama, Japan killed three workers. Composite studies based on field surveys of the landslide slope, interviews with local residents and quarry workers, and inspections of hydrological and seismological data have been used to clarify the causes of this slide and its movements. The results indicate that the landslide was enabled firstly by the steepness of the slope, which had been undercut by river; secondly, the structure was that of a dip-slope that was prone to deep-seated slides along bedding planes; thirdly, numerous joints and faults were present. Surprisingly, rainfall, earthquakes, and explosions do not appear to have played any role in the triggering of this slide. The interviews demonstrated that the frequency of precursory failures increased over a period of several hours before the 12 March 2001 landslide. Inspection of the seismograph records and the eyewitness evidence both indicate that the main part of the landslide consisted of two phases of slope failure within 23 s. After the slide, the frequency of the failures gradually decreased with time over a period of several days. Three new terms are proposed for landslides: foreslide, mainslide, and afterslide, following the terms foreshock, main shock, and aftershock used in seismology.  相似文献   

15.
何坤  胡卸文  马国涛  刘波  梅雪峰  王蛟  杨群 《岩土力学》2020,41(10):3443-3455
受前期14 d持续累计350.6 mm降雨影响,2018年7月19日盐源玻璃村一巨型玄武岩古滑坡体发生大规模复活,复活体积为1 390×104 m3,损坏房屋186间,造成重大经济损失。基于现场调查、无人机航测、钻探揭露、物理力学试验及数值模拟分析,在查明滑坡体地质结构、失稳特征基础上,对其影响因素及复活机制进行了探讨。研究结果表明,破碎岩土体及地形地貌是滑坡复活的孕灾基础,持续降雨及其引起的地下水位升高是滑坡复活的诱发因素。复活滑坡可分为主滑区和侧滑区两种破坏模式不同的区域。降雨作用下滑坡体内渗流场明显变化,孔隙水压力增大,导致7月13日古滑坡体开始发生变形,稳定性系数逐渐降低。受微地貌约束,主滑区具有多级、多次失稳,渐进破坏的特点。侧滑区斜坡前缘临空条件受坡脚主滑坡控制,在主滑坡运动过程中,侧滑区坡体位移量、最大剪切应变增量逐渐增大,塑性区扩展,破坏过程表现出与主滑坡一定的关联性和滞后性。分析表明,受地下水长期影响,滑带土体强度逐渐削弱,降雨导致坡体渗流作用加剧,抗剪强度降低,从而诱发滑坡复活。  相似文献   

16.
The Todagin Creek landslide is located at 57.61° N 129.98° W in Northwest British Columbia. A seismic station 90 km north of the landslide recorded the event at 1643 hours coordinated universal time (UTC; 0943 hours Pacific daylight time (PDT)) on October 3, 2006. The signal verifies the discovery and relative time bounds provided by a hunting party in the valley. The landslide initiated as a translational rock slide on sedimentary rock dipping down slope at 34° and striking parallel to the valley. The landslide transformed into a debris avalanche and had a total volume estimated at 4 Mm3. An elevation drop of 771 m along a planar length of 1,885 m resulted in a travel angle (fahrb?schung) of 21.3°. The narrowest part of the landslide through the transport zone is 345 m. The widest part of the divergent toe of the landslide reaches a width of 1,010 m. Landslide debris impounded a lake of approximately 32 ha and destroyed an additional 67 ha of forest. The impoundment took 7 to 10 days to fill, with muddied waters observed downstream on October 13. No clear linkage exists with precipitation and temperature records preceding the landslide, but strong diurnal temperature cycles occurred in the days prior to the event. The Todagin Creek area appears to have an affinity for large landslides with the deposits of three other landslides >5 Mm3 observed in the valley.  相似文献   

17.
Green Lake Landslide is an ancient giant rock slide in gneiss and granodiorite located in the deeply glaciated Fiordland region of New Zealand. The landslide covers an area of 45 km2 and has a volume of about 27 km3. It is believed to be New Zealand's largest landslide, and possibly the largest landslide of its type on Earth. It is one of 39 known very large (106–107 m3) and giant (≥108 m3) postglacial landslides in Fiordland discussed in the paper. Green Lake Landslide resulted in the collapse of a 9 km segment of the southern Hunter Mountains. Slide debris moved up to 2.5 km laterally and 700 m vertically, and formed a landslide dam about 800 m high, impounding a lake about 11 km long that was eventually infilled with sediments. Geomorphic evidence supported by radiocarbon dating indicates that Green Lake Landslide probably occurred 12 000–13 000 years ago, near the end of the last (Otira) glaciation. The landslide is described, and its geomorphic significance, age, failure mechanism, cause, and relevance in the region are discussed, in relation to other large landslides and recent earthquake-induced landslides in Fiordland. The slope failure occurred on a low-angle fault zone undercut by glacial erosion, and was probably triggered by strong shaking (MM IX–X) associated with a large (≥ M 7.5–8) earthquake, on the Alpine Fault c. 80 km to the northwest. Geology was a major factor that controlled the style and size of Green Lake landslide, and in that respect it is significantly different from most other gigantic landslides. Future large earthquakes on the Alpine Fault in Fiordland are likely to trigger more very large and giant landslides across the region, causing ground damage and devastation on a scale that has not occurred during the last 160 years, with potentially disastrous effects on towns, tourist centres, roads, and infrastructure. The probability of such an event occurring within the next 50 years may be as high as 45%.  相似文献   

18.
Stability analysis of Surabhi landslide in the Dehradun and Tehri districts of Uttaranchal located in Mussoorie, India, has been simulated numerically using the distinct element method focusing on the weak zones (fracture). This is an active landslide on the main road toward the town centre, which was triggered after rainfall in July–August 1998. Understanding the behaviour of this landslide will be helpful for planning and implementing mitigation measures. The first stage of the study includes the total area of the landslide. The area identified as the zone of detachment is considered the most vulnerable part of the landslide. Ingress of water and increased pore pressures result in reduced mobilized effective frictional resistance, causing the top layer of the zone of detachment to start moving. The corresponding total volume of rock mass that is potentially unstable is estimated to 11.58 million m3. The second stage of this study includes a 2D model focussing only on the zone of detachment. The result of the analyses including both static and dynamic loading indicates that most of the total displacement observed in the slide model is due to the zone of detachment. The discontinuum modelling in the present study gives reasonable agreement with actual observations and has improved understanding of the stability of the slide slope.  相似文献   

19.
A full-scale landslide experiment was conducted to clarify the failure process of a landslide triggered by rainfall, using a loose sandy soil. The experiment used a 23-m long and about 8-m high flume, consisting of three parts: an upper 30° slope section, a lower 10° slope section, and a horizontal section at the foot of the slope. The flume was sprinkled at a constant intensity of 100 mm/h. The landslide occurred first in the upper slope about 154 min after the sprinkling started, following a creep movement within 41 min. The sliding mass slid to a stop in about 5 s, compressing soils in the lower gentle slope and horizontal sections. The dynamic process related to slide movement and the fluctuation of subsurface water pressures during failure were measured and analyzed. Sequential visual observations provided a clear record of the slip surface during failure. The rapid increase of subsurface water pressure in the slope and horizontal soil layers was also recorded during failure. It was inferred that the increased water pressures in the upper slope resulted from collapse of loose soil structure during shearing in the translational slide, whereas those in the lower portion of the slope and horizontal sections resulted from a mix of soil compression and shearing by the sliding mass.  相似文献   

20.
On November 4, 2007, a large block slide occurred on the south face of the Cerro La Pera at San Juan Grijalva (SJG), northwest Chiapas, Mexico. The SJG landslide has an area of 1.11 km2 and a volume of 50 Mm3, making it one of the largest landslide of its type in the twentieth century. The landslide created a dam over 80 m high and 1,170 m wide across the Grijalva River, backing up the water and forming a 49 km2 lake. Landslide-generated tsunamis up to 15 m high destroyed the village of SJG, and the newly formed lake flooded 21 villages located upstream. The landslide killed 16 people and caused around 3,600 to be evacuated with incalculable economic losses. It was perhaps the most catastrophic landslide in the history of Mexico. The probable trigger of the landslide was cumulative precipitation of about 67% of the average annual rainfall over the preceding 30 days. The associated potentially causative factors include a M4.5 earthquake that occurred 5 days before the landslide and a water-level drawdown at the Grijalva River generated by the release of water from the Pe?itas dam located 14 km downstream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号