首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The pore waters of sediments from a salt marsh along the Delaware estuary have been analyzed for sulfur species and associated trace metals. Since the sediment interface is usually in contact with the atmosphere, the sulfur species are dependent on the production of hydrogen sulfide by sulfate reduction and subsequent oxidation by diffusing oxygen. The most important species observed are hydrogen sulfide, polysulfide ions and thiosulfate. Secondary reactions of hydrogen sulfide and polysulfides with decomposing organic matter yield significant concentrations of both thiols and organic polysulfides. Upon isolation of the sediment from the atmosphere due to tidal inundation, bacterial sulfate reduction becomes the dominant process. This results in the reduction of the polysulfides in agreement with thermodynamic predictions, and suggests that the redox couple sulfide/polysulfide is a good redox indicator under such reducing environments.The concentrations of trace elements Cu and Fe in the pore waters are mainly controlled by sulfide formation. Calculations show that copper is strongly complexed probably with organo-sulfur ligands. Iron might be complexed as such sulfur species to a much lesser extent than copper.  相似文献   

2.
Rates of sea level rise associated with climate change are predicted to increase in the future, potentially altering ecosystems at all ecological levels. Sea level rise can increase the extent of brackish water intrusion into freshwater ecosystems, which in turn can affect the structure and function of resident microbial communities. In this study, we performed a year-long mesocosm experiment using intact tidal freshwater marsh sediment cores to examine the effect of a 5-part per thousand (ppt) salinity increase on the diversity and community composition of sulfate-reducing prokaryotes. We used a clone library approach to examine the dsrA gene, which encodes an important catalytic enzyme in sulfate reduction. Our results indicate that tidal freshwater marshes contain extremely diverse communities of sulfate-reducing bacteria. Members of these communities were, on average, only 71 % similar to known cultured sulfate reducers and 81 % similar to previously sequenced environmental clones. Salinity and associated increases in sulfate availability did not significantly affect the diversity or community composition of sulfate-reducing prokaryotes. However, carbon quality and quantity, which correlated with depth, were found to be the strongest drivers of sulfate-reducing community structure. Our study demonstrates that the sulfate-reducing community in tidal freshwater marsh sediments appears resistant to increased salinity in the face of sea level rise. Additionally, the microorganisms that comprise this sulfate-reducing community appear to be unique to tidal freshwater marsh sediments and may represent novel lineages of previously undescribed sulfate reducers.  相似文献   

3.
Through their physiological effects on ion, oxygen, and carbon balance, respectively, salinity, sulfide, and prolonged flooding combine to constrain the invasion and spread ofPhragmites in tidal wetlands. Initial sites of vigorous invasion by seed germination and growth from rhizome fragments appear limited to sections of marsh where salinity is <10‰, sulfide concentrations are less than 0.1 mM, and flooding frequency is less than 10%. In polyhaline tidal wetlands the invasion sites include the upland fringe and some high marsh creek banks. The zones of potential invasion tend to be larger in marshes occupying lower-salinity portions of estuaries and in marshes that have been altered hydrologically. Owing to clonal integration and a positive feedback loop of growth-induced modification of edaphic soil conditions, however, a greater total area of wetland is susceptible toPhragmites expansion away from sites of establishment. Mature clones have been reported growing in different marshes with salinity up to 45‰, sulfide concentration up to 1.75 mM, and flooding frequency up to 100%. ForPhragmites establishment and expansion in tidal marshes, windows of opportunity open with microtopographic enhancement of subsurface drainage patterns, marsh-wide depression of flooding and salinity regimes, and variation in sea level driven by global warming and lunar nodal cycles. To avoidPhragmites monocultures, tidal wetland creation, restoration, and management must be considered within the context of these different scales of plant-environment interaction.  相似文献   

4.
Tidal marsh functions are driven by interactions between tides, landscape morphology, and emergent vegetation. Less often considered are the diurnal pattern of tide extremes and seasonal variation of solar insolation in the mix of tidal marsh driver interactions. This work demonstrates how high-frequency hydroperiod and water temperature variability emerges from disparate timescale interactions between tidal marsh morphology, tidal harmonics, and meteorology in the San Francisco Estuary. We compare the tidal and residual flow and temperature response of neighboring tidal sloughs, one possessing natural tidal marsh morphology, and one that is modified for water control. We show that the natural tidal marsh is tuned to lunar phase and produces tidal and fortnight water temperature variability through interacting tide, meteorology, and geomorphic linkages. In contrast, temperature variability is dampened in the modified slough where overbank marsh plain connection is severed by levees. Despite geomorphic differences, a key finding is that both sloughs are heat sinks in summer by latent heat flux-driven residual upstream water advection and sensible and long-wave heat transfer. The precession of a 335-year tidal harmonic assures that these dynamics will shift in the future. Water temperature regulation appears to be a key function of natural tidal sloughs that depends critically on geomorphic mediation. We investigate approaches to untangling the relative influence of sun versus tide on residual water and temperature transport as a function of system morphology. The findings of this study likely have ecological consequences and suggest physical process metrics for tidal marsh restoration performance.  相似文献   

5.
This study was undertaken to investigate patterns of pyrite accumulation found in aJuncus roemerianus tidal marsh of north Florida. We speculate that the pattern of pyrite accumulation was caused mainly by the distribution of roots. Sediment cores from living stands (LS), dead stands (DS), and recently killed stands (RKS) were collected and analyzed for dissolved organic carbon (DOC), sulfate, chloride, Cr(II)-reducible sulfide, and biomass of roots and rhizomes. Living roots were distributed mainly in the upper 16 cm and concentrated 4–10 cm below the sediment surface. Pyrite accumulations were significantly different among the three types of sediment cores in the upper 16 cm sediment and follow the descending order of DS (615 μmol cm?3)>RKS (547 μmol cm?3)>LS (368 μmol cm?3). Between 20 cm and 30 cm, pyrite contents approached values of 40 μmol cm?3 and 55 μmol cm?3 in all sediment cores. The degree of pyritization approaches 92–94% between 14 cm and 20 cm where pyrite accumulation was probably limited by available iron. Root distribution also affected the redistribution of iron through iron sulfide formation. Sulfate depletion in the upper 16 cm was higher in RKS (79.3 μmol cm?3) than DS (49.1 μmol cm?3). No significant sulfate depletion was found in LS. Sulfate reduction under DS was likely limited by the readily available substrates. Root distribution had a major influence on pyrite accumulation and sulfate reduction of the marsh, and its effects need to be addressed in studies of wetland sulfur dynamics.  相似文献   

6.
Emerging insects were monitored every 10 days between early May and late August 1993, from tidal pools in three coastal salt marshes on Prince Edward Island, Canada. The salt marsh pools ranged from about 1 m2 to > 1,000 m2 in surface area, and had salinities ranging from 11–27‰ Water temperatures through the study period ranged from 4–46°C. Most of the emerging insects were flies (Diptera; 85%), and two-thirds of these were in the sub-Order Nematocera, mainly Chironomidae, Ceratopogonidae, and Culicidae. Forty-three species of Nematocera were identified, although most of these were rare occurrences, and twelve of the species are undescribed. No consistent relationships were found between abundance or diversity and pool size or marsh for Nematocera species overall, although some species showed a statistical preference for a particular marsh or pool size. Emergence patterns were consistent between marshes for species found in different marshes, but overall patterns were highly variable, depending upon species.  相似文献   

7.
Zonation of salt marsh plants has been widely recognized and studied, but the boundary between salt marsh and adjacent upland plants has seldom been considered. Three hypotheses about the boundary between salt marsh and adjacent upland pasture were tested on Kooragang Island, New South Wales, Australia. First, we hypothesized that increased tidal range resulting from removal of culverts that restricted tidal flow to areas of salt marsh would lead to landward spread of salt marsh into areas previously dominated by pasture. Monitoring results showed an increase in areal cover by salt marsh plants and a decrease in pasture plants along the boundary between salt marsh and pasture in areas affected by culvert removal, while no change could be detected at a reference site unaffected by culvert removal. Second, we hypothesized that the down-gradient distribution of the pasture species Stenotaphrum secundatum (buffalo grass) was restricted by physical conditions, while the up-gradient distribution of the salt marsh species Sarcocornia quinqueflora (samphire) was restricted by competition with pasture species. Results of a reciprocal transplant experiment were consistent with this hypothesis. Third, we hypothesized that the rate of salt marsh spread following culvert removal would be influenced by competition with pasture species. Results of an experiment in which pasture was removed adjacent to a salt marsh affected by culvert removal were consistent with this hypothesis. Results may help guide management of over 1,300 structures that restrict tidal flow to estuarine wetland habitat in New South Wales, Australia.  相似文献   

8.
Sulfate reduction rates were measured over the course of a year in the sediments of aJuncus roemerianus marsh located in coastal Alabama. Sulfate reduction rates were typically highest in the surface 0–2 cm and at depths corresponding to peak belowground biomass of the plants. The highest volume-based sulfate reduction rate measured was 1,350 μmol liter-sediment−1 d−1 in September 1995. Areal sulfate reduction rates (integrated to 20 cm depth) were strongly correlated to sediment temperature and varied seasonally from 15.2 mmol SO 4 2− m−2 d−1 in January 1995 to 117 mmol SO 4 2− m−2 d−1 in late August 1995. Despite high sulfate reduction rates porewater dissolved sulfide concentrations were low (<73 μM), indicating rapid sulfide oxidation or precipitation. Sulfate depletion data indicated that net oxidation of sediment sulfides occurred in March through May, following a period of infrequent tidal flooding and during a period of high plant production. Porewater Fe(II) reached very high levels (maximum of 969 μM; mean for all dates was 160 μM), particularly during periods of high sulfate reduction. The annual sulfate reduction rate integrated over the upper 20 cm of sediment was 22.0 mol SO 4 2− m−2 yr−1, which is among the highest rates measured in a wetland ecosystem. Based on literature values of net primary production inJ. roemerianus marshes, we estimate that an amount equivalent to 16% to 90% of the annual belowground production may be remineralized through sulfate reduction.  相似文献   

9.
Many salt marshes in densely populated areas have been subjected to a reduction in tidal flow. In order to assess the impact of tidal flow restriction on marsh sedimentation processes, sediment cores were collected from flow-restricted restricted salt marshes along the Connecticut coast of Long Island Sound. Cores were also collected from unrestricted reference marshes and from a marsh that had been previously restricted but was restored to fuller tidal flushing in the 1970's. High bulk densities and low C and N concentrations were found at depth in the restricted marsh cores, which we attribute to a period of organic matter oxidation, sediment compaction, and marsh surface subsidence upon installation of flow restrictions (between 100 and 200 years before the present, depending on the marsh). Recent sedimentation rates at the restricted marshes (as determined by137Cs and210Pb dating) were positive and averaged 78% (137Cs) and 50% (210Pb) of reference marsh sedimentation rates. The accumulation of inorganic sediment was similar at the restricted and reference marshes, perhaps because of the seasonal operation of the tide gates, while organic sediment accretion (and pore space) was significantly lower in the restricted marshes, perhaps because of higher decomposition rates. Sedimentation rates at the restored marsh were significantly higher than at the reference marshes. This marsh has responded to the higher water levels resulting from restoration by a rapid increase in marsh surface elevation.  相似文献   

10.
The seasonal oscillation in sulfate and chloride concentration profiles in some salt marsh sediments is due to exchange of solutes with water on the surface of the marsh, and to the desiccation of the sediment in summer. Desiccation is manifested by disappearance of surface waters, fluctuations in the location of the water table, and by removal of water from the sediment above the water table. The loss of water from the pore space is commonly accompanied by entry of air into the soil, which oxidizes sulfide. The oxidation causes titratable alkalinity to decrease and results in CO2 degassing.Diffusion models of salinity can account for the observed profiles but only as long as the marsh is maintained inundated. The complexities introduced to the solute transport equations by sediment desiccation invalidate steady-state modeling of solute transport and diagenesis. The concentration profiles of dissolved products of sulfate reduction, such as bicarbonate, require months to reestablish a steady state after being disrupted. If the profiles of dissolved products of sulfate reduction are disrupted seasonally, such as by a seasonal fluctuation in the water table, they may remain transient throughout the year.  相似文献   

11.
Patterns of nekton occurrence on the salt marsh surface at high tide and in an adjacent intertidal creek pool at low tide were used to investigate movements of nekton in an intertidal basin. Paired collections were made in North Inlet estuary, SC on 67 dates over 9 years. Comparisons of high- and low-tide total abundance indicated that what remained in the creek pool at low tide was representative of the nekton on the flooded marsh. Of the 64 taxa collected, the same 8 species ranked in the top 10 in both the high- and low-tide collections. Abundances of most resident species were positively correlated with the area of marsh flooded, but mummichog (Fundulus heteroclitus), the most abundant resident, was not. Abundances of young-of-the-year transient species were not related to the extent of tidal flooding. Some transient species used the flooded marsh but did not occupy the pool at low tide, and others found in the pool did not use the marsh. Differences in abundance, biomass, and length between the marsh and pool collections indicated differences in the tendency of species and life stages to retreat downstream of the pool to the subtidal channel. Proportionately more of the nekton that were present on the flooded marsh left the intertidal basin when large changes in temperature and salinity occurred between high and low tides. More transients left the basin following higher tides, but more residents did not. The results demonstrate a wide range of taxonomic and ontogenetic patterns among nekton using intertidal salt marsh basins and the underappreciated importance of intertidal creek pools as alternative low-tide refuges.  相似文献   

12.
Data on abundance and isotopic composition of porewater and sedimentary sulfur species are reported for relatively uncontaminated and highly contaminated fine-grained anoxic sediments of St. Andrew Bay, Florida. A strong contrast in amount and composition of sedimentary organic matter at the two sites allows a comparative study of the historical effects of increased organic loading on sulfur cycling and sulfur isotopic fractionation. In the contaminated sediments, an increase in organic loading caused increased sedimentary carbon/sulfur ratios and resulted in higher rates of bacterial sulfate reduction, but a lower efficiency of sulfide oxidation. These differences are well reflected in the isotopic composition of dissolved sulfate, sulfide, and sedimentary pyrite. Concentration and isotopic profiles of dissolved sulfate, organic carbon, and total sulfur suggest that the anaerobic decomposition of organic matter is most active in the upper 8cm but proceeds at very slow rates below this depth. The rapid formation of more than 90% of pyrite in the uppermost 2 cm which corresponds to about 3 years of sediment deposition allows the use of pyrite isotopic composition for tracing changing diagenetic conditions. Sediment profiles of the sulfur isotopic composition of pyrite reflect present-day higher rates of bacterial sulfate reduction and lower rates of sulfide oxidation, and record a profound change in the diagenetic cycling of sulfur in the contaminated sediments coincident with urban and industrial development of the St. Andrew Bay area.  相似文献   

13.
The sulfide-oxidizing symbiotic tubeworm Lamellibrachia luymesi is a dominant member of deep-sea hydrocarbon seep ecosystems on the Gulf of Mexico seafloor. This tubeworm forms large aggregations that can live for centuries and provide habitat for an assortment of associated fauna. Previous studies have suggested that persistence of these tubeworms for such long time periods is contingent upon their ability to supply sediments with sulfate. To examine this hypothesis, we characterized the tubeworm’s geochemical environment using pore water peepers and compared the measured depth profiles with those predicted by a sulfur diffusion-reaction-supply model. We found a large range of sulfide concentrations in the tubeworm habitat, indicating that this species can live under conditions of both high and low sulfide availability. In sediments rich in hydrocarbons, we found compelling evidence that tubeworms enhance microbial sulfide production, likely through a combination of sulfide uptake and sulfate release through their root-like structures buried in the sediment. Our in situ empirical data combined with the results of the geochemical model corroborate previous physiological studies that indicate that tubeworms release between 70% and 90% of the sulfate produced during sulfide oxidation by their symbionts across their roots into the surrounding sediment. In sediments low in hydrocarbon content, sulfide production is hydrocarbon-limited rather than sulfate-limited, and our model predicts that tubeworm growth could be limited by low sulfide availability.  相似文献   

14.
A fundamental question in ecology is how biological interactions and biogeographic processes interact to determine the biodiversity of local sites. We quantified patterns of plant species diversity on transects across elevation at 59 salt marsh sites in Georgia and 49 sites in Texas. Although these regions have similar climates and floras, we anticipated that diversity might differ because of differences in tidal regime. Diversity was measured at global, regional, site, and plot scales to consider processes occurring at all levels. Species pools were similar between regions. Texas had greater diversity at the site and plot scales, suggesting that processes occurring at the site scale differed. The greater diversity of Texas sites and plots was associated with wider distributions of individual species across the marsh landscape and proportionally more middle marsh (a high diversity zone) and less low marsh (a low diversity zone) than in Georgia marshes. Preliminary data suggested that these differences were not due to differences in salinity regime or standing biomass between regions, leaving differences in tidal regime as the most plausible hypothesis accounting for differences in plant diversity. We speculate that the less-predictable tidal regime in Texas leads to temporal variation in abiotic conditions that limit the ability of any one species to competitively exclude others from particular marsh zones.  相似文献   

15.
Tidal freshwater marshes around the world face an uncertain future with increasing water levels, salinity intrusion, and temperature and precipitation shifts associated with climate change. Due to the characteristic abundance of both annual and perennial species in these habitats, even small increases in early growing season water levels may reduce seed germination, seedling establishment, and late-season plant cover, decreasing overall species abundance and productivity. This study looks at the distribution of tidal freshwater marsh plant species at Jug Bay, Patuxent River (Chesapeake Bay, USA), with respect to intertidal elevation, and the relationship between inundation early in the growing season and peak plant cover to better understand the potential impacts and marsh responses to increased inundation. Results show that 62% of marsh plant species are distributed at elevations around mean high water and are characterized by narrow elevation ranges in contrast with species growing at lower elevations. In addition, the frequency and duration of inundation and water depth to which the marsh was exposed to, prior to the growing season (March 15–May 15), negatively affected peak plant cover (measured in end-June to mid-July) after a threshold value was reached. For example, 36 and 55% decreases in peak plant cover were observed after duration of inundation threshold values of 25 and 36% was reached for annual and perennial species, respectively. Overall, this study suggests that plant communities of tidal freshwater marshes are sensitive to even small systematic changes in inundation, which may affect species abundance and richness as well as overall wetland resiliency to climate change.  相似文献   

16.
Aboveground live standing crop of giant cutgrass (Zizaniopsis miliacea) populations in similar freshwater tidal and impounded nontidal marshes were almost identical (peaking at 1,039 g per m2 in each). The mortality, however, was greater in the tidal marsh resulting in significantly (95% level) greater annual production of aboveground cutgrass in the tidal (1,530±103 g per m2 per yr) than the impounded (1,172±88 g per m2 per yr) marsh, a 31% difference which we consider to be a measure of tidal subsidy. Belowground production also was found to average higher in the tidal marsh, but estimates were not as satisfactory as the aboveground results due to sampling difficulties. Combined annual above and belowground net production comes to an estimated 2,048 ±101 g per m2 per yr for the tidal and 1,481±219 for the impounded cutgrass marsh. The potential of freshwater tidal marshes for tertiary treatment of wastes is briefly discussed.  相似文献   

17.
The restoration of a 20 ha tidal marsh, impounded for 32, yr, in Stonington, Connecticut was studied to document vegetation change 10 yr after the reintroduction of tidal flushing. These data were then compared to a 1976 survey of the same marsh when it was in its freshest state and dominanted byTypha angustifolia. Currently,T. angustifolia remains vigorous only along the upland borders and in the upper reaches of the valley marsh. Live coverage ofT. angustifolia has declined from 74% to 16% and surviving stands are mostly stunted and depauperate. Other brackish species have also been adversely effected, except forPhragmites australis which has increased. In contrast, the salt marsh speciesSpartina alterniflora has dramatically expanded, from <1% to 45% cover over the last decade. Locally, high marsh species have also become established, covering another 20% of the marsh.  相似文献   

18.
Fishes and invertebrate macrofauna (nekton) were sampled biweekly (July through October 1985) from the surface of tidal freshwater marshes. Samples were collected with flume nets at three different stream orders (orders 2, 3 and 4+) along a marsh stream order gradient. Twenty-five species of fishes (5,610 individuals, 17.072 kg preserved wet weight) representing 13 families, and three species of invertebrates (19,570 individuals, 13.026 kg preserved wet weight) were collected. The most abundant species were grass shrimp (Palaemonetes pugio), mummichogs (Fundulus heteroclitus), banded killifish (F. diaphanus), inland silversides (Menidia beryllina), and blue crabs (Callinectes sapidus). Invertebrate catches (mostly grass shrimp and blue crabs) were not significantly different among stations. Total numbers of fishes were significantly greater at both headwater (order 2) and main creek (order 3) stations than river (order 4+) stations, but catches of headwater and main creek stations were not significantly different. The relationship between marsh stream order and fish abundance may partly be related to the distribution of submerged aquatic vegetation (SAV) within marsh tidal creeks. Submerged aquatic vegetation decreases in abundance with increasing stream order. Some species may use SAV as a refuge from predators or as a foraging area during low tide when the marsh surface is inaccessible. The presence of SAV in tidal creeks may enhance the habitat value of adjacent marshes.  相似文献   

19.
Hummock-hollow microtopography is characteristic of many freshwater wetland systems. It is comprised of elevated, vegetated hummocks and lower elevation hollows; the latter are usually unvegetated, with reducing conditions in sediments unfavorable for plant growth. This microtopography is also often found in interior regions of brackish marshes, where flood duration is high and salinity fluctuations are prominent. Previous investigation showed this spatial patterning to be relatively stable over time and suggested that these microenvironments are produced by the plants themselves. This study investigates the possible mechanisms and controlling factors of this microtopography and considers the effect of different salinity regimes. We examined microtopographic variability of vegetation and sediment biogeochemistry in two interior tidal marshes, a freshwater-oligohaline marsh and a mesohaline marsh, both of which exhibited fine-scale spatial variability. Within a 2-yr period, the freshwater-oligohaline site demonstrated a labile response of both vegetation and sediment chemistry to interannual variability in salinity and sulfide concentrations, whereas the microscale spatial variability of the mesohaline system persisted. Geochronological assessment of the mesohaline marsh, where microtopographic variability was relatively stable, supported the hypothesis that the formation of the hummock-hollow topography is driven by the plants, rather than developing as a result of underlying physical variability. We propose that brackish marsh vegetation alters the sedimentary environment in such a way as to maximize growth under high-stress, variable conditions. The adaptive advantage of this strategy was illustrated in the accretion rates measured at the higher salinity marsh, which were indistinguishable between the interior hummock sediments and those of an adjacent homogeneous bank marsh.  相似文献   

20.
Topsail Sound is a marsh-filled barrier lagoon in southeastern North Carolina. This study quantified changes within a 477-ha tidal marsh located landward of Lea and Coke islands in southern Topsail Sound. Aerial photographs from 1949, 1966, and 1984 were enlarged, and sample areas of salt marsh were digitized and compared. Since 1949, Old Topsail Inlet has migrated southwest 1.2 km. As the inlet migrated, new Spartina alterniflora marsh colonized 33.2 ha of intertidal sand flats within the inlet flood tidal delta, adjacent islands, and primary tidal creeks. Landward of the flood tidal delta, site specific gains and losses of marsh were recorded. It is estimated that since 1949, approximately 34.1 ha of the marsh area occupying the zone landward of the flood tidal delta has drowned. This loss of marsh, combined with the colonization of marsh mentioned above, resulted in a net decrease of 1 ha in the total area of marsh. This study provides evidence that, although lagoonal marshes may be drowning as a result of soil waterlogging, reduced sediment supply, and sea-level rise, potential marsh environments are created by oceanic inputs of sand when inlets migrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号