首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fatty acid composition of the gill lipids from Gammarus duebeni have been compared in relation to the degree of contamination of the gills by lipophilic materials. The results indicate that at higher levels of gill contamination a greater proportion of polyunsaturated 20:5 fatty acid occurs in the gill phospholipids. We suggest this may be a response to a change in the physical state of the gill membranes resulting from the contamination.  相似文献   

2.
Effective river management strategies require an understanding of how fluvial processes vary both spatially and temporally. Here, we examine the natural range of variability in the Conejos River Valley, southern Colorado, through documentation of terrace morphostratigraphic and sedimentological characteristics as well as through investigation of sediment contributions from headwaters, hillslopes and tributary streams. Additionally, soil development and radiocarbon ages, together with local and regional paleoclimate reconstructions, were used to infer the range of processes acting in this system. Since de‐glaciation, the Conejos River has fluctuated between episodes of bedrock strath formation, aggradation and vertical incision. Morphostratigraphic relationships, soil development and radiocarbon ages enable us to propose a chronology for periods of alluvial deposition (around 8·9–7·6 ka, 5·5 ka and from 3·5 to 1·1 ka), separated by intervals of fluvial incision. We infer potential forcing mechanisms by utilizing multiple working hypotheses. Specifically, we discuss the potential for increases in sediment supply during periods of (1) para‐glacial adjustment, (2) climatic cooling, (3) increased frequency of climate change and (4) increased fire frequency or severity. We also consider the effects of changes in stream discharge and extreme storm occurrence. We conclude that combinations of these processes, operating at different times, have contributed to sediment mobilization since de‐glaciation. Stream and landform morphology also varies longitudinally due to the influence of remnant glacial topography. In particular, valley bottom overdeepening at tributary junctions has resulted in incision and strath formation into unlithified glacial deposits (i.e. fill‐cut terraces) rather than bedrock in some reaches. Overall, the Conejos fluvial system has varied significantly both temporally and spatially since de‐glaciation and appears to be sensitive to changes in sediment supply related to Holocene scale climate fluctuations. This natural range of variability must therefore be a key consideration in any future stream management policies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The VPREMOON seismic reference Moon model (Garcia et al., 2011) has been tested with respect to the thermal regime and chemical composition of the mantle. Based on a self-consistent thermodynamic approach and petrological models of the lunar mantle covering a wide range of concentrations of CaO, Al2O3, and FeO, we convert the P- and S-wave velocity profiles to the temperature–depth profiles. The solution procedure relies on the method of the Gibbs free energy minimization and the equations of state for the mantle material which take into account the effects of phase transformations, anharmonicity, and anelasticity. We find that regardless of the chemical composition, the positive P- and S-wave velocity gradient in the lunar mantle leads to a negative temperature gradient, which has no physical basis. For adequate mantle temperatures, the P- and S-wave velocities should remain almost constant or slightly decrease with depth (especially VS) as a result of the effects of the temperature, which grows faster than pressure. These findings underscore the importance of the relationship of the thermodynamics and physics of minerals with seismology.  相似文献   

4.
The review focuses on the use of primary producers as a biological tool for evaluating the impact of damage by human activity (eutrophication, toxicity) on the aquatic environment. Studies are discussed following a reductionist approach by using algal bioassays (Selenastrum capricornutum). Variations of algal growth potential (AGP) within watersheds show the impact of human activities such as agriculture and urbanization, on water quality. The study of variation of the AGP in time allowed the investigation of the effect of abiotic (temperature, flow rate) and biotic factors (indigenous primary production) on the concentration of nutrients potentially available to phytoplankton. Seasonal changes of the AGP have further shown the impact of non-point (runoff) or point sources (sewage effluents) on the aquatic system. A staggered relationship was observed between AGP values and chlorophyll a content of indigenous phytoplankton. Values obtained in the laboratory by means of this type of approach would therefore appear to be transferably to natural systems. S. capricornutum was also used to identify toxic characteristics of substances (in pure form or used in formulations) and effluents released into the environment. It was shown that the user of bioassays should use care when evaluating results from tests requiring pretreatment such as storage, autoclaving and filtration. Cautious interpretation is also recommended in order to distinguish between effects of growth-limiting essential elements and the presence of toxic substances. In general it appears from this review that the AGP provides helpful information for a sound management of the aquatic environment.  相似文献   

5.
Simulations of a regional (approx. 50 km resolution) circulation model REMOiso with embedded stable water isotope module covering the period 1958‐2001 are compared with the two instrumental climate and four isotope series (δ18O) from western Svalbard. We examine the data from ice cores drilled on Svalbard ice caps in 1997 (Lomonosovfonna, 1250 m asl) and 2005 (Holtedahlfonna, 1150 m asl) and the GNIP series from Ny‐Ålesund and Isfjord Radio. The surface air temperature (SAT) and precipitation data from Longyearbyen and Ny‐Ålesund are used to assess the skill of the model in reproducing the local climate. The model successfully captures the climate variations on the daily to multidecadal times scales although it tends to systematically underestimate the winter SAT. Analysis suggests that REMOiso performs better at simulating isotope compositions of precipitation in the winter than summer. The simulated and measured Holtedahlfonna δ18O series agree reasonably well, whereas no significant correlation has been observed between the modelled and measured Lomonosovfonna ice core isotopic series. It is shown that sporadic nature as well as variability in the amount inherent in precipitation process potentially limits the accuracy of the past SAT reconstruction from the ice core data. This effect in the study area is, however, diminished by the role of other factors controlling δ18O in precipitation, most likely sea ice extent, which is directly related with the SAT anomalies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Variations in the Earth's climate have had considerable impact on society sectors such as energy, agriculture, fisheries, water resources, and environmental quality. This natural climate variability must be documented and understood in order to assess its potential impacts, its predictability and relationships with human-induced changes. Understanding the mechanisms responsible for natural variability proceeds through a strategy based on the use of a hierarchy of climate models and careful data analysis. In this paper, we examine primarily climate fluctuations on interannual-to-decadal time scales and their climate signature in terms of precipitation and temperature. First, space and time characteristics of two of the major variability modes, the Southern Oscillation (and its associated teleconnection patterns) and the North Atlantic Oscillation, are documented with a focus onto the midlatitudes of the Northern Hemisphere. Then, the current hypothesis regarding the nature of these modes (forced, coupled or internal) are reviewed based on both simulation results and statistical data analyses. Next, we address the potential predictability of seasonal surface temperature and land precipitation using an ensemble of atmospheric model simulations forced by observed sea surface temperatures. Finally, we review the relationships between the atmospheric variability modes and the recent low-frequency trends and suggest a possible influence of anthropogenic effects on these low-frequency variations.  相似文献   

8.
Based on three continuous in situ underwater light field measurement under different wind waves conditions in Longgan Lake, Meiliang Bay of Taihu Lake in July 2003 and littoral zone near TLLER in July 2004, respectively, the effects of sediment resuspension caused by wind waves on PAR diffuse attenuation, absorption coefficients and euphotic depths are analyzed. In Longgan Lake, PAR diffuse attenuation coefficients during small, middle and large wind waves were 1.74, 2.02 and 2.45 m-1, respectively, and the corresponding PAR spectral diffuse attenuations ranged from 0.98 to 2.97, 1.34 to 3.95 and 1.80 to 5.40 m-1, respectively. In Meiliang Bay, PAR diffuse attenuation coefficients were 2.63, 3.72, 4.37 m-1 during small, middle and large wind waves. PAR diffuse attenuation coefficients increased by 41% and 66% from small to middle, large wind waves, respectively. Absorption coefficients integrated over the range of PAR of CDOM, phytoplankton were 0.26, 0.28 m-1; 0.76, 0.49 m-1, respectively during middle and large wind waves. Absorption coefficients integrated over the range of PAR of non-algal particulate matter and total suspended particulate matter increased from 0.94 to 1.73 m-1, and from 1.70 to 2.22 m-1, respectively during middle and large wind waves. Relative contributions of absorption coefficients of non-algal particulate matter to total absorption coefficient integrated over the range of PAR were 44.14%, 65.05%, respectively, during middle and large wind waves. PAR euphotic depths decreased by 0.40, 0.19, 0.20 m from middle to large wind waves in Longganhu Lake, Meliang Bay and littoral zone near TLLER. Significant correlations were found between transparency, PAR diffuse attenuation coefficients, euphotic depths and total suspended paniculate matter, wind velocity, wave height. Most significant correlations were found between transparency, PAR diffuse attenuation coefficients, euphotic depths and inorganic suspended paniculate matter but low correlations for chlorophyll a, dissolved organic carbon. Increase of total suspended paniculate matter, especially inorganic suspended paniculate matter caused by wind waves was the dominant factor affecting underwater light field in shallow lakes in the middle and lower reaches of the Yangtze River based on observations at three stations.  相似文献   

9.
Based on three continuous in situ underwater light field measurement under different wind waves conditions in Longgan Lake, Meiliang Bay of Taihu Lake in July 2003 and littoral zone near TLLER in July 2004, respectively, the effects of sediment resuspension caused by wind waves on PAR diffuse attenuation, absorption coefficients and euphotic depths are analyzed. In Longgan Lake, PAR diffuse attenuation coefficients during small, middle and large wind waves were 1.74, 2.02 and 2.45 m?1, respectively, and the corresponding PAR spectral diffuse attenuations ranged from 0.98 to 2.97, 1.34 to 3.95 and 1.80 to 5.40 m?1, respectively. In Meiliang Bay, PAR diffuse attenuation coefficients were 2.63, 3.72, 4.37 m?1 during small, middle and large wind waves. PAR diffuse attenuation coefficients increased by 41% and 66% from small to middle, large wind waves, respectively. Absorption coefficients integrated over the range of PAR of CDOM, phytoplankton were 0.26, 0.28 m?1; 0.76, 0.49 m?1, respectively during middle and large wind waves. Absorption coefficients integrated over the range of PAR of non-algal particulate matter and total suspended particulate matter increased from 0.94 to 1.73 m?1, and from 1.70 to 2.22 m?1, respectively during middle and large wind waves. Relative contributions of absorption coefficients of non-algal particulate matter to total absorption coefficient integrated over the range of PAR were 44.14%, 65.05%, respectively, during middle and large wind waves. PAR euphotic depths decreased by 0.40, 0.19, 0.20 m from middle to large wind waves in Longganhu Lake, Meliang Bay and littoral zone near TLLER. Significant correlations were found between transparency, PAR diffuse attenuation coefficients, euphotic depths and total suspended particulate matter, wind velocity, wave height. Most significant correlations were found between transparency, PAR diffuse attenuation coefficients, euphotic depths and inorganic suspended particulate matter but low correlations for chlorophyll a, dissolved organic carbon. Increase of total suspended particulate matter, especially inorganic suspended particulate matter caused by wind waves was the dominant factor affecting underwater light field in shallow lakes in the middle and lower reaches of the Yangtze River based on observations at three stations.  相似文献   

10.
The warming of the Earth's atmosphere system is likely to change temperature and precipitation, which may affect the climate, hydrology and water resources at the river basins over the world. The importance of temperature change becomes even greater in snow or glacier dominated basins where it controls the snowmelt processes during the late‐winter, spring and summer months. In this study hydrologic responses of streamflow in the Pyanj and Vaksh River basins to climate change are analysed with a watershed hydrology model, based on the downscaled atmospheric data as input, in order to assess the regional climate change impact for the snowfed and glacierfed river basins in the Republic of Tajikistan. As a result of this analysis, it was found that the annual mean river discharge is increasing in the future at snow and glacier dominated areas due to the air temperature increase and the consequent increase in snow/ice melt rates until about 2060. Then the annual mean flow discharge starts to decrease from about 2080 onward because the small glaciers start to disappear in the glacier areas. It was also found that there is a gradual change in the hydrologic flow regime throughout a year, with the high flows occuring earlier in the hydrologic year, due to the warmer climate in the future. Furthermore, significant increases in annual maximum daily flows, including the 100‐year return period flows, at the Pyanj and Vaksh River basins toward the end of the 21st century can be inferred from flood frequency analysis results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
12.
Variability and possible relationship between monthly 1-day maximum/minimum flow from headwater of Tarim River basin, climatic indices and regional climate were detected by Mann–Kendall test, continuous wavelet transform, cross-wavelet and wavelet coherence methods. The results showed that: (1) hydrological extremes have increased during past 50 years, and the trends of 1-day minimum flow were larger than that of 1-day maximum flow. The most significant change occurred in winter; (2) the hydrological extremes exhibited significant 1-year period and 0.5-year period along the whole hydrological series; (3) different circulation indices may influence the trends of hydrological extremes in different river. The area of polar vortex in North American (i25) and area of Northern Hemisphere polar vortex (i5) showed most significant correlation with 1-day maximum flow and 1-day minimum flow in Aksu River, respectively. In Hotan River, the most significant correlated climate indices with 1-day maximum and minimum flow were Southern oscillation index and area of Northern American Subtropical High (i15), respectively. The area of polar vortex in Atlantic and Europe Sector (i35) showed significant relationships with 1-day minimum flow in Yarkand River; (4) regions of shared power at 0.8–1.5 year mode were found between selected climate indices and the hydrological extremes, anti-phase relations were detected for most of the series; (5) the fluctuations of temperature have strong effects on hydrological extremes, and significant coherence between regional climate and extremes was found at 0.7–1.5 year scale. The results of the study provide valuable information for improving the long-term forecasting of the hydrological extremes using its relationship with climate indices.  相似文献   

13.
Himalaya is an active fold and thrust belt formed due to continent-continent collision between the Eurasian and Indian plates. It comprises a 3000 km long chain of mountains that span ∼1000 km across, with major boundary thrusts viz., Main Central Thrust (MCT), Main Boundary Thrust (MBT) and the Main Frontal Thrust (MFT). MFT is marked as mountain front and is the most active thrust; however, evidence of tectonic activity along MCT and MBT also exists.Tectonic activity along MFT created uplifted terraces which now serve as geomorphic archives of past tectonic events. The present study focussed on a glacial-fed river Sankosh that originates in northern Bhutan, and crosses MCT, MBT and MFT before joining the Brahmaputra River in Assam. Due to tectonic uplift, the river shows a deflection at MFT, incising and thus forming four levels of strath terraces. Luminescence chronology, geomorphic studies and analysis of satellite images suggest four levels of terraces T4 (highest level, 195 m asl), T3, T2 and T1 (lowest level, 120 m asl).The quartz was found insensitive for luminescence dating, and thus fading corrected Infra-Red Stimulated Luminescence (IRSL) ages on feldspar minerals were measured that provided ages of 143-77 ka (T4), 65-36 ka (T2) and 35-14 ka (T1), respectively. The T3 terrace was present only on the right bank of the river and could not be accessed. These ages accord with other studies at the Chalsa and Malbazar, North Bengal (west of the study area) and this regional disposition of similar ages suggest that these formed during glacial-interglacial periods. The strath terraces indicate a time-averaged tectonic uplift with a 0.5 mm/year rate over the past 150 ka.  相似文献   

14.
Dense algal growth on shells of the freshwater mud snail species, Bellamya chinensis, is commonly found. In rice paddy fields of Northeastern Japan, fatty acid biomarkers and carbon stable isotope composition were analyzed to test whether B. chinensis grazes on shell-attached algae. The carbon stable isotope ratio of B. chinensis was positively related to that of shell-attached algae. B. chinensis also assimilated substantial amounts of omega-6 fatty acids, which were abundant in shell-attached algae. Furthermore, the effect of assimilating shell-attached algae on B. chinensis growth was examined in a field experiment. Individuals feeding on shell-attached algae exhibited faster shell growth than those with no access to shell-attached algae of other individuals. Our results demonstrate that B. chinensis growth is enhanced by algal fouling on their own shells, which provides them with a nutritious food source, although very few studies have documented benefits conferred to an organism that hosts an epibiotic species.  相似文献   

15.
The analysis of remotely sensed images provides a powerful method for estimating tree abundance. However, a number of trees have sizes that are below the spatial resolution of remote sensing images, and as a result they cannot be observed and classified. We propose a method for estimating the number of such sub-resolution trees on forest stands. The method is based on a backwards extrapolation of the size-class distribution of trees as observed from the remotely sensed images. We apply our method to a tree database containing around 13,000 tree individuals to determine the number of sub-resolution trees. While the proposed method is formulated for estimating tree abundance from remotely sensed images, it is generally applicable to any database containing tree canopy surface area data with a minimum size cut-off.  相似文献   

16.
We have determined the density evolution of the sound velocity of dhcp-FeHx (x  1) up to 70 GPa at room temperature, by inelastic X-ray scattering and by X-ray diffraction. We find that the variation of VP with density is different for the ferromagnetic and nonmagnetic dhcp-FeHx, and that only nonmagnetic dhcp-FeHx follows Birch's law. Combining our results with Birch's law for iron and assuming an ideal two-component mixing model, we obtain an upper bound of the hydrogen content in the Earth's inner core, 0.23(6) wt.% H, corresponding to FeH0.13(3). The iron alloy with 0.23(6) wt.% H can satisfy the density, and compressional and shear sound velocities of the PREM inner core, assuming that there are no other light elements in the inner core.  相似文献   

17.
Climate change impact assessments conventionally assess just the implications of a change in mean climate due to global warming. This paper compares such effects of such changes with those due to natural multi-decadal variability, and also explores the effects of changing the year-to-year variability in climate as well as the mean. It estimates changes in mean monthly flows and a measure of low flow (the flow exceeded 95% of the time) in six catchments in Britain, using the UKCIP98 climate change scenarios and a calibrated hydrological model. Human-induced climate change has a different seasonal effect on flows than natural multi-decadal variability (an increase in winter and decrease in summer), and by the 2050s the climate change signal is apparent in winter and, in lowland Britain, in summer. Superimposing natural multi-decadal variability onto the human-induced climate change increases substantially the range in possible future streamflows (in some instances counteracting the climate change signal), with important implications for the development of adaptation strategies. Increased year-to-year variability in climate leads to slight increases in mean monthly flows (relative to changes due just to changes in mean climate), and slightly greater decreases in low flows. The greatest effect on low flows occurs in upland catchments.  相似文献   

18.
Temperature observations at 25 sites in the 2000 km2 Dee catchment in NE Scotland were used, in conjunction with geographic information system (GIS) analysis, to identify dominant landscape controls on mean monthly maximum stream temperatures. Maximum winter stream temperatures are mainly controlled by elevation, catchment area and hill shading, whereas the maximum temperatures in summer are driven by more complex interactions, which include the influence of riparian forest cover and distance to coast. Multiple linear regression was used to estimate the catchment‐wide distribution of mean weekly maximum stream temperatures for the hottest week of the 2‐year observation period. The results suggested the streams most sensitive to high temperatures are small upland streams at exposed locations without any forest cover and relatively far inland, while lowland streams with riparian forest cover at locations closer to the coast exhibit a moderated thermal regime. Under current conditions, all streams provide a suitable thermal habitat for both, Atlantic salmon and brown trout. Using two climate change scenarios assuming 2·5 and 4 °C air temperature increases, respectively, temperature‐sensitive zones of the stream network were identified, which could potentially have an adverse effect on the thermal habitat of Atlantic salmon and brown trout. Analysis showed that the extension of riparian forests into headwater streams has the potential to moderate changes in temperature under climate change. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Sediments deposited during glacial-interglacial cycles through the Early to Mid-Pleistocene in the North Sea are chronologically poorly constrained. To contribute to the chronology of these units, amino acid racemization (AAR) and strontium (Sr) isotope analyses have been performed on samples from four shallow borings and one oil well along a transect in the northern North Sea. D/L Asp (aspartic acid) values obtained through reverse-phase liquid chromatography in the benthic foraminiferal species Elphidium excavatum is focused on because of consistent results and a good stratigraphic distribution of this benthic species. For the Early Pleistocene, an age model for the well 16/1–8, from the central part of the northern North Sea based on Sr ages allows for dating of the prograding wedges filling the pre-Quaternary central basin. A regional calibration curve for the racemization of Asp in Elphidium excavatum is developed using published ages of radiocarbon-dated samples and samples associated with the previously identified Bruhnes/Matuyama (B/M) paleomagnetic boundary and a Sr age from this study. Based on all the available geochronological evidence, samples were assigned to marine oxygen isotope stages (MIS) with uncertainties on the order of 10–70 ka.Sr ages suggest a hiatus of <2 million years (Ma) possibly due to non-deposition or low sedimentation between the Utsira Formation (Pliocene) and the Early Pleistocene. An increase in sedimentation rates around 1.5 ± 0.07 Ma (∼MIS 51) may partly be due to sediment supply from rivers from the south-east and partly due to the extension of ice sheet around 1.36 ± 0.07 Ma from the Norwegian coast to the central North Sea. A possible basin-wide glaciation occurred around 1.1 Ma (∼ MIS 32) (upper regional unconformity/top of unit Q4 in this study), resulting in erosion and regional unconformity. Two interglacials in the Norwegian Channel have been dated: the Radøy Interglacial to 1.07 ± 0.01 Ma (possibly MIS 31, the ‘super interglacial’), and the Norwegian Trench Interglacial to 0.50 ± 0.02 Ma (possibly MIS 13). A massive till unit identified at the same stratigraphic level in all shallow borings may partly represent an extensive MIS 12 glaciation. This study shows that the combined use of amino acid racemization data and Sr isotope chronology can refine the chronological ambiguities of Quaternary North Sea sediments related partly to the impact of glacial processes.  相似文献   

20.
In the context of climate change and variability, there is considerable interest in how large scale climate indicators influence regional precipitation occurrence and its seasonality. Seasonal and longer climate projections from coupled ocean–atmosphere models need to be downscaled to regional levels for hydrologic applications, and the identification of appropriate state variables from such models that can best inform this process is also of direct interest. Here, a Non‐Homogeneous Hidden Markov Model (NHMM) for downscaling daily rainfall is developed for the Agro‐Pontino Plain, a coastal reclamation region very vulnerable to changes of hydrological cycle. The NHMM, through a set of atmospheric predictors, provides the link between large scale meteorological features and local rainfall patterns. Atmospheric data from the NCEP/NCAR archive and 56‐years record (1951–2004) of daily rainfall measurements from 7 stations in Agro‐Pontino Plain are analyzed. A number of validation tests are carried out, in order to: 1) identify the best set of atmospheric predictors to model local rainfall; 2) evaluate the model performance to capture realistically relevant rainfall attributes as the inter‐annual and seasonal variability, as well as average and extreme rainfall patterns. Validation tests show that the best set of atmospheric predictors are the following: mean sea level pressure, temperature at 1000 hPa, meridional and zonal wind at 850 hPa and precipitable water, from 20°N to 80°N of latitude and from 80°W to 60°E of longitude. Furthermore, the validation tests show that the rainfall attributes are simulated realistically and accurately. The capability of the NHMM to be used as a forecasting tool to quantify changes of rainfall patterns forced by alteration of atmospheric circulation under climate change and variability scenarios is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号