首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Gliese 876 planetary system consists of two Jupiter-like planets having a nearly commensurate 2:1 orbital periods ratio. Because the semimajor axes of the planets are very small (of the order 0.1 au and 0.2 au, respectively), and the eccentricity of the inner companion is ≃0.3, the mutual perturbations are extremely large. However, many authors claim the long-term orbital stability of the system, at least over 500 Myr for initial conditions found by Rivera & Lissauer. Results of investigations of a migration of initially separated planets into the close 2:1 mean motion resonance lock from Lee & Peale also support the conclusion that the system should be stable for the lifetime of the parent star. Initial conditions of the system, found from non-linear N -body fits by Laughlin & Chambers and Rivera & Lissauer, to the radial velocity curve, formally allow for a variety of orbital configurations of the GJ 876 system, e.g. coplanar, with planetary inclinations in the range [≃30°, 90°], and with relative inclinations of orbital planes as high as 80°. Our work is devoted to the stability investigation of the systems originating from the fitted initial conditions. We study neighbourhoods of these initial states in the orbital parameter space. We found estimations of the 2:1 mean motion resonance width and dynamical limitations on the planetary masses. We also obtain a global representation of the domains of the orbital parameters space in which initial conditions leading to stable evolutions can be found. Our results can be useful in localization of the best, stable fits to the observational data. In our investigations we use the MEGNO technique (the Mean Exponential Growth factor of Nearby Orbits) invented by Cincotta & Simó. It allows us to distinguish efficiently and precisely between chaotic and regular behaviour of a planetary system.  相似文献   

2.
3.
We investigate the dynamics of putative Earth-mass planets in the habitable zone (HZ) of the extrasolar planetary system OGLE-2006-BLG-109L, a close analogue of the Solar system. Our work is inspired by the work of Malhotra & Minton. Using the linear Laplace–Lagrange theory, they identified a strong secular resonance that may excite large eccentricity of orbits in the HZ. However, due to uncertain or unconstrained orbital parameters, the subsystem of Jupiters may be found in a dynamically active region of the phase space spanned by low-order mean-motion resonances. To generalize this secular model, we construct a semi-analytical averaging method in terms of the restricted problem. The secular orbits of large planets are approximated by numerically averaged osculating elements. They are used to calculate the mean orbits of terrestrial planets by means of a high-order analytic secular theory developed in our previous works. We found regions in the parameter space of the problem in which stable, quasi-circular orbits in the HZ are permitted. The excitation of eccentricity in the HZ strongly depends on the apsidal angle of jovian orbits. For some combinations of that angle, eccentricities and semimajor axes consistent with the observations, a terrestrial planet may survive in low eccentric orbits. We also study the effect of post-Newtonian gravity correction on the innermost secular resonance.  相似文献   

4.
5.
In this paper we use recently developed phase-space transport theory coupled with a so-called classical spectral theorem to develop a dynamically exact and computationally efficient procedure for studying escape from a planetary neighbourhood. The 'planetary neighbourhood' is a bounded region of phase space where entrance and escape are only possible by entering or exiting narrow 'bottlenecks' created by the influence of a saddle point. The method therefore immediately applies to, for example, the circular restricted three-body problem and Hill's lunar problem (which we use to illustrate the results), but it also applies to more complex, and higher-dimensional, systems possessing the relevant phase-space structure. It is shown how one can efficiently compute the mean passage time through the planetary neighbourhood, the phase-space flux in, and out, of the planetary neighbourhood, the phase-space volume of initial conditions corresponding to trajectories that escape from the planetary neighbourhood, and the fraction of initial conditions in the planetary neighbourhood corresponding to bound trajectories. These quantities are computed for Hill's problem. We study the dependence of the proportions of these quantities on energy and dimensionality (two-dimensional planar and three-dimensional spatial Hill's problem). The methods and quantities presented are of central interest for many celestial and stellar dynamical applications such as, for example, the capture and escape of moons near giant planets, the formation of binaries in the Kuiper belt and the escape of stars from star clusters orbiting about a galaxy.  相似文献   

6.
We perform numerical simulations to study the secular orbital evolution and dynamical structure of the quintuplet planetary system 55 Cancri with the self-consistent orbital solutions by Fischer and coworkers. In the simulations, we show that this system can be stable for at least 108 yr. In addition, we extensively investigate the planetary configuration of four outer companions with one terrestrial planet in the wide region of 0.790AU 〈 a 〈 5.900AU to examine the existence of potential asteroid structure and Habitable Zones (HZs). We show that there are unstable regions for orbits about 4:1, 3:1 and 5:2 mean motion resonances (MMRs) of the outermost planet in the system, and several stable orbits can remain at 3:2 and 1:1 MMRs, which resembles the asteroid belt in the solar system. From a dynamical viewpoint, proper HZ candidates for the existence of more potential terrestrial planets reside in the wide area between 1.0 AU and 2.3 AU with relatively low eccentricities.  相似文献   

7.
The Kozai mechanism often destabilizes high-inclination orbits. It couples changes in the eccentricity and inclination, and drives high inclination, circular orbits to low inclination, eccentric orbits. In a recent study of the dynamics of planetesimals in the quadruple star system HD 98800, there were significant numbers of stable particles in circumbinary polar orbits about the inner binary pair which are apparently able to evade the Kozai instability.
Here, we isolate this feature and investigate the dynamics through numerical and analytical models. The results show that the Kozai mechanism of the outer star is disrupted by a nodal libration induced by the inner binary pair on a shorter time-scale. By empirically modelling the period of the libration, a criteria for determining the high-inclination stability limits in general triple systems is derived. The nodal libration feature is interesting and, although affecting inclination and node only, shows many parallels to the Kozai mechanism. This raises the possibility that high-inclination planets and asteroids may be able to survive in multistellar systems.  相似文献   

8.
We present the secular theory of coplanar N -planet system, in the absence of mean motion resonances between the planets. This theory relies on the averaging of a perturbation to the two-body problem over the mean longitudes. We expand the perturbing Hamiltonian in Taylor series with respect to the ratios of semimajor axes which are considered as small parameters, without direct restrictions on the eccentricities. Next, we average out the resulting series term by term. This is possible thanks to a particular but in fact quite elementary choice of the integration variables. It makes it possible to avoid Fourier expansions of the perturbing Hamiltonian. We derive high-order expansions of the averaged secular Hamiltonian (here, up to the order of 24) with respect to the semimajor axes ratio. The resulting secular theory is a generalization of the octupole theory. The analytical results are compared with the results of numerical (i.e. practically exact) averaging. We estimate the convergence radius of the derived expansions, and we propose a further improvement of the algorithm. As a particular application of the method, we consider the secular dynamics of three-planet coplanar system. We focus on stationary solutions in the HD 37124 planetary system.  相似文献   

9.
10.
11.
12.
In this paper we carry out a quantitative analysis of the three-body systems and map them as a function of decaying time and initial configuration, look at this problem as an example of a simple deterministic system and ask to what extent the orbits are really predictable. We have investigated the behaviour of about 200 000 general Newtonian three-body systems using the simplest initial conditions. Within our resolution these cover all the possible states where the objects are initially at rest and have no angular momentum. We have determined the decay time-scales of the triple systems and show that the distribution of this parameter is fractal in appearance. Some areas that appear stable on large scales exhibit very narrow strips of instability and the overall pattern, dominated by resonances, reminds us of a traditional Maasai warrior shield. Also an attempt is made to recover the original starting configuration of the three bodies by backward integration. We find there are instances where the evolution to the future and to the past lead to different orbits, in spite of time symmetric initial conditions. This implies that even in simple deterministic systems there exists an arrow of time.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
We examine the effects of dynamical evolution in clusters on planetary systems or protoplanetary discs orbiting the components of binary stars. In particular, we look for evidence that the companions of host stars of planetary systems or discs could have their inclination angles raised from zero to between the threshold angles (39.23° and 140.77°) that can induce the Kozai mechanism. We find that up to 20 per cent of binary systems have their inclination angles increased to within the threshold range. Given that half of all extrasolar planets could be in binary systems, we suggest that up to 10 per cent of extrasolar planets could be affected by this mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号