首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The procedure developed in Smith (1974) to model the radiation source for type III bursts is modified to include scattering of radiation in the source itself. Since the inhomogeneities in the source must have the same statistical properties as the inhomogeneities used in tracing radiation from the source to the observer, these two parts of the type III problem are no longer uncoupled. Thus we use inhomogeneities consistent with the scattering inhomogeneities of Steinberg et al. (1971) and Riddle (1974) and apply the procedure to an archetype ‘fundamental-harmonic’ pair observed at Culgoora on 28 September, 1973 at 0319 UT. We find that it is impossible to model this burst with a source which is homogeneous in the sense that every part of the source has the same energy density in plasma waves. The density inhomogeneities in the source severely hamper amplification of the supposed fundamental. Possible ways out of this dilemma are discussed, including second harmonic pairs and a source with an inhomogeneous distribution of plasma waves. It is concluded that none of the possibilities are completely satisfactory to explain present observations and suggested that critical observations are missing.  相似文献   

2.
The effect of a time-varying radiation flux incident on an ionization front on the generation of ionization-shock front oscillations in the interstellar medium is analyzed analytically and numerically. We take into account both variations in the flux of ionizing radiation directly from the source that produces the ionization front and the absorption of energetic photons by the post-front plasma. Based on our calculations, we show that the time dependence of the radiation flux can be an additional factor (apart from small inhomogeneities in the interstellar medium) that contributes to the amplification of oscillations and to the kinetic energy input to the observed turbulent motions in H II regions.  相似文献   

3.
Day  Roger W. 《Solar physics》1974,34(1):25-32
The possibility of detecting abundance inhomogeneities in the photosphere of the Sun is discussed. These inhomogeneities are postulated to be a result of nuclear reactions caused by high energy protons from solar flares.From our present knowledge of flares and of nuclear reaction cross sections it is found that temporary inhomogeneities in Li-abundance of spectroscopically detectable amounts should not be excluded.Preliminary observations have given negative results.  相似文献   

4.
The features of the relativistic charge particle motion and emission due to the radiative slamping in the strong electromagnetic fields are investigated. It is shown that the radiative force responsible for curvature radiation is associated with the particle drift in an inhomogeneous magnetic field. The adiabatic trajectory is obtained for the relativistic particle, moving in a strong static electron-magnetic field, particle energy being determined by the balance of the work of the electric field and the energy losses through curvature radiation.  相似文献   

5.
We examine the linear growth of density perturbations in homogeneous isotropic (Friedmann) model universes, including the effect of a decoupled radiation pressure field in the modelling. Amplification factors for density perturbations in all models are derived numerically, and it is shown that the effect of radiation pressure is to decelerate the growth of such condensations, thus requiring larger inhomogeneities to be produced at radiation decoupling in order to produce protogalaxies.  相似文献   

6.
A consistent theory of energy exchange between high-energy charged cosmic-ray particles and the random inhomogeneities of a magnetic field frozen in the moving solar wind plasma is developed. It is shown that the mode of the particle energy variations at a given law of plasma velocity variation in space is determined by the specific form of the particle distribution function. The equation for the density of cosmic-ray energy is obtained. Consideration is given to the generation of a charged particle energy spectrum in the course of multiple scatterings by the random inhomogeneities of the magnetic field.  相似文献   

7.
The radiation of a charge rotating in a circle with the constant velocity (in the external magnetic field) in the isotropic plasma with random inhomogeneities of the electron density has been considered. A general expression is obtained for the radiation intensity at thenth harmonic, which is a generalization of the known Shott formula. In the ultra-relativistic case the conditions are clarified under which the inhomogeneity effect on the form of the spectrum of radiation from a particle is essential. An asymptotic formula is derived for the spectral intensity in the region of sufficiently low frequencies. The mechanism of transient radiation in this case is shown to prevail over the synchrotron one.  相似文献   

8.
Highly nonadiabatic shock waves are formed at an early stage of a supernova explosion inside a stellar wind because of the large energy losses by direct radiation from the front. The properties of such waves are considered for velocities of (5?25)×103km s?1 and gas densities of 10?17?10?10 g cm?3. A critical energy flux going to “infinity” that separates two modes is shown to exist. If the flux is lower than the critical one, then energy losses cause even an increase in the post-shock temperature. An excess of the flux over its critical value results in an abrupt cooling and in a strong compression of the gas. For the flux equal to the critical one, the post-shock gas velocity matches the isothermal speed of sound. Approximate formulas are given for estimating the degree of gas compression and the post-shock radiation-to-gas pressure ratio at energy losses equal to the critical ones and for the limiting compression.  相似文献   

9.
It is generally believed that the synchrotron radiation of electrons from the internal shock is the main radiation mechanism of the prompt GRB (gamma-ray burst) emission. However, what this model predicts can not explain observations well. In this paper, we confirm that electrons are quickly cooled due to radiation losses and also point out that the synchrotron radiation spectrum presented in previous papers is a relatively rough estimation. We get the precise synchrotron radiation spectrum of fast-cooling electrons by carrying out a numerical calculation, and thereby reasonably explain the observed distribution of low-energy spectral index (α) of long GRBs based on a unified model. In addition, we fit the correlation between α and the peak energy of the νFν spectrum (Ep).  相似文献   

10.
Observations show that small-amplitude prominence oscillations are usually damped after a few periods. This phenomenon has been theoretically investigated in terms of non-ideal magnetoacoustic waves, non-adiabatic effects being the best candidates to explain the damping in the case of slow modes. We study the attenuation of non-adiabatic magnetoacoustic waves in a slab prominence embedded in the coronal medium. We assume an equilibrium configuration with a transverse magnetic field to the slab axis and investigate wave damping by thermal conduction and radiative losses. The magnetohydrodynamic equations are considered in their linearised form and terms representing thermal conduction, radiation and heating are included in the energy equation. The differential equations that govern linear slow and fast modes are numerically solved to obtain the complex oscillatory frequency and the corresponding eigenfunctions. We find that coronal thermal conduction and radiative losses from the prominence plasma reveal as the most relevant damping mechanisms. Both mechanisms govern together the attenuation of hybrid modes, whereas prominence radiation is responsible for the damping of internal modes and coronal conduction essentially dominates the attenuation of external modes. In addition, the energy transfer between the prominence and the corona caused by thermal conduction has a noticeable effect on the wave stability, radiative losses from the prominence plasma being of paramount importance for the thermal stability of fast modes. We conclude that slow modes are efficiently damped, with damping times compatible with observations. On the contrary, fast modes are less attenuated by non-adiabatic effects and their damping times are several orders of magnitude larger than those observed. The presence of the corona causes a decrease of the damping times with respect to those of an isolated prominence slab, but its effect is still insufficient to obtain damping times of the order of the period in the case of fast modes.  相似文献   

11.
This paper presents general relations for the intensity of the resonant transition radiation (RTR) and their detailed analysis. This analysis shows that the spectrum amplitude of the x-mode at some frequencies for high-energy electrons can grow with the magnetic field increase in some interval from zero value; it can even dominate over that for the o-mode. With further magnetic field increase, the intensity of the RTR x-mode decreases in comparison with the intensity of the o-mode and this decrease is higher for higher velocities of energetic electrons. The polarization of the RTR depends on the velocity of energetic electrons, too. For velocities lower than some velocity limit v<v i the RTR emission is unpolarized in a broad interval of magnetic field intensities in the radio source. For reasonable values of indices of the power-law distribution functions of energetic electrons, the RTR is broadband in frequencies (df/f≈0.2−0.4). Furthermore, we show various dependencies of the RTR and its spectral characteristics. Assuming the same radio flux of the transition radiation and the gyro-synchrotron one at the Razin frequency, we estimate the limit magnetic field in the radio source of the transition radiation. Then, we analyze possible sources of small-scale inhomogeneities (thermal density fluctuations, Langmuir and ion-sound waves), which are necessary for the transition radiation. Although the small-scale inhomogeneities connected with the Langmuir waves lead to the plasma radiation, which is essentially stronger than RTR, the inhomogeneities of the ion-sound waves are suitable for the RTR without any other radiation. We present the relations describing the RTR for anisotropic distribution functions of fast electrons. We consider the distribution functions of fast electrons in the form of the Legendre polynomials which depend on the pitch-angle. We analyze the influence of the degree of the anisotropy (an increase of the number of terms in the Legendre polynomial) on spectral characteristics of the RTR. A comparison with previous studies is made. As an example of the use of the derived formulas for the RTR, the 24 December 1991 event is studied. It is shown that the observed decimetric burst can be generated by the RTR in the plasma with the density inhomogeneities at the level 〈ΔN 2〉/N 2=2.5⋅10−5.  相似文献   

12.
In a previous paper the equations of small cosmological perturbations of a theory of gravitation in flat space-time are derived. They are applied to a homogeneous, isotropic, nonsingular cosmological model with radiation, matter and background field. At the beginning of the universe small spherically symmetric inhomogeneities on almost all scales can arise by instability. Later on the density contrast of dust grows exponentially during a short time epoch. The solution during this time period is given analytically.  相似文献   

13.
On the basis of an analysis of the instability of drift caused by density and magnetic field inhomogeneities in plasmas with finite β, the effect of the instability on the excitation of kinetic Alfven wave (KAW) is probed. In the kinetic theory, which correctly treats the effect of the finite Larmor radius and the wave-particle resonant interaction, the motion of the ions is described with the Vlasov equation and the motion of electrons, with the kinetic drift equation. Comparing the effects by inhomogeneities in the density and in the magnetic field in plasmas with finite β, we found that the drift instability is more easily excited by the former, and in the instability so excited, the energy transfer is more intense. This energy transfer provides the physical basis for the excitation of KAW. As shown by numerical solutions, KAWs can be widely excited and produced in the magnetosphere, especially in the cusp of the magnetosphere, in the magnetopause and in the boundary layers of plasma sheets, where inhomogeneities are obvious. The results of the present work further illustrate that the KAW plays an important role in the energy transfer in magnetospheric regions.  相似文献   

14.
It is proposed that the spectra of so-called 'MeV blazars' can be explained in terms of previously developed models of the external Comptonization of accretion disc radiation, provided that the structure of the inner and outer parts of the accretion disc is different. The electron acceleration is saturated by the inverse Compton losses in the inner geometrically thick disc and the outer geometrically thin disc at different maximum energies; this causes the appearance of two spectral components, one strongly peaked in the MeV energy range and the other of a power-law type extending through the GeV energy range. The spectra, computed in terms of such a simple geometrical model, are in good agreement with observations of the MeV blazar PKS 0208−512. They are consistent with the transient appearance of a strong MeV peak, the power-law spectrum in the EGRET energy range, and a possible cut-off at high energies.  相似文献   

15.
It is well known that the application of Newtonian dynamics to an expanding spherical region leads to the correct relativistic expression (the Friedmann equation) for the evolution of the cosmic scalefactor. Here, the cosmological implications of Milgrom's modified Newtonian dynamics (MOND) are considered by means of a similar procedure. Earlier work by Felten demonstrated that in a region dominated by modified dynamics the expansion cannot be uniform (separations cannot be expressed in terms of a scalefactor) and that any such region will eventually recollapse regardless of the initial expansion velocity and mean density. Here I show that, because of the acceleration threshold for the MOND phenomenology, a region dominated by MOND will have a finite size which, in the earlier Universe ( z >3), is smaller than the horizon scale. Therefore, uniform expansion and homogeneity on the horizon scale are consistent with MOND-dominated non-uniform expansion and the development of inhomogeneities on smaller scales. In the radiation-dominated era, the amplitude of MOND-induced inhomogeneities is much smaller than that implied by observations of the cosmic background radiation, and the thermal and dynamical history of the Universe is identical to that of the standard big bang model. In particular, the standard results for primordial nucleosynthesis are retained. When matter first dominates the energy density of the Universe, the cosmology diverges from that of the standard model. Objects of galaxy mass are the first virialized objects to form (by z =10), and larger structure develops rapidly. At present, the Universe would be inhomogeneous out to a substantial fraction of the Hubble radius.  相似文献   

16.
We discuss the properties of gamma-ray radiation accompanying the acceleration of cosmic rays via the converter mechanism. The mechanism exploits multiple photon-induced conversions of high-energy particles from charged into neutral state (namely, protons to neutrons and electrons to photons) and back. Because a particle in the neutral state can freely cross the magnetic field lines, this allows to avoid both particle losses downstream and reduction in the energy gain factor, which normally takes place due to highly collimated distribution of accelerated particles. The converter mechanism efficiently operates in relativistic outflows under the conditions typical for Active Galactic Nuclei, Gamma-Ray Bursts, and microquasars, where it outperforms the standard diffusive shock acceleration. The accompanying radiation has a number of distinctive features, such as an increase of the maximum energy of synchrotron photons and peculiar radiation beam-pattern, whose opening angle is much wider at larger photon energies. This provides an opportunity to observe off-axis relativistic jets in GeV–TeV energy range. One of the implications is the possibility to explain high-latitude unidentified EGRET sources as off-axis but otherwise typical relativistic-jet sources, such as blazars.  相似文献   

17.
《New Astronomy Reviews》2002,46(2-7):71-74
We present radio images of two giant quasars from the Molonglo/1 Jy sample, and make a comparative study of giant radio sources selected from the literature with 3CR radio sources of smaller sizes to investigate the evolution of giant sources, and test their consistency with the unified scheme. The luminosity-size diagram shows that the giant sources are less luminous than smaller-sized sources, consistent with evolutionary scenarios where the giants have evolved from the smaller sources, losing energy as they expand. For the giant sources the equipartition magnetic fields are smaller, and inverse-Compton losses with the microwave background radiation dominates over synchrotron losses, while the reverse is true for the smaller sources. The giant radio sources have core strengths similar to those of smaller sources of similar total luminosity; hence their large sizes are unlikely to be due to stronger nuclear activity. The radio properties of the giant radio galaxies and quasars are consistent with the unified scheme.  相似文献   

18.
《New Astronomy》2007,12(1):38-46
This paper reports the study of the cold-feedback heating in cooling flow clusters. In the cold-feedback model the mass accreted by the central black hole originates in non-linear over-dense blobs of gas residing in an extended region (r  5–30 kpc); these blobs are originally hot, but then cool faster than their environment and sink toward the center. The intra-cluster medium (ICM) entropy profile must be shallow for the blobs to reach the center as cold blobs. I build a toy model to explore the role of the entropy profile and the population of dense blobs in the cold-feedback mechanism. The mass accretion rate by the central black hole is determined by the cooling time of the ICM, the entropy profile, and the presence of inhomogeneities. The mass accretion rate determines the energy injected by the black hole back to the ICM. These active galactic nucleus (AGN) outbursts not only heat the ICM, but also change the entropy profile in the cluster and cause inhomogeneities that are the seeds of future dense blobs. Therefore, in addition to the ICM temperature (or energy), the ICM entropy profile and ICM inhomogeneities are also ingredients in the feedback mechanism.  相似文献   

19.
The effect of radiation losses on the dispersion and damping of magnetohydrodynamic waves in the solar corona is studied. The conditions are determined under which radiation losses are most appreciable. A damping of kink modes of coronal loops with plasma temperatures within 106–106.3 K and 106.3–107 K are compared. It is concluded that the radiation damping dominates in the temperature range 106–106.3 K, which can cause the observed fast damping of kink oscillations of coronal loops. Radiation losses should be taken into account in full magnetohydrodynamic equations with radiative transfer.  相似文献   

20.
A model for the radiation source for type III solar radio bursts which includes random density fluctuations is reviewed. This methodology is applied to the burst of 28 September, 1973, 03:19 UT which is an archetype fundamental-harmonic pair. It is found that for scattering inhomogeneities consistent with those necessary to explain the observed sizes of the sources, it is impossible to amplify fundamental radiation in a source with a spatially uniform energy density in plasma waves; i.e., it is impossible to interpret this burst as a fundamental-harmonic pair from such a source. However, the supposed fundamental has fine structure similar to type IIIb bursts and since it is very difficult to explain these features except as fundamental radiation, it is concluded that there must be small clumps of intense plasma waves in the source which allow the fundamental to be amplified. These results are also applied to the hectometric burst of 19 July, 1971 for which a steep rise in brightness is observed between 10 and 50 R 0. It is argued that the most plausible explanation of this rise is that the density inhomogeneities become sufficiently weak to allow the fundamental to be amplified in this range.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号