首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the photometric variability of magnetized stars, particularly neutron stars, accreting through a magnetic Rayleigh–Taylor-type instability at the disc–magnetosphere interface, and compare it with the variability during stable accretion, with the goal of looking for possible quasi-periodic oscillations (QPOs). The light curves during stable accretion show periodicity at the star's frequency and sometimes twice that, due to the presence of two funnel streams that produce antipodal hotspots near the magnetic poles. On the other hand, light curves during unstable accretion through tongues penetrating the magnetosphere are more chaotic due to the stochastic behaviour of the tongues, and produce noisier power spectra. However, the power spectra do show some signs of quasi-periodic variability. Most importantly, the rotation frequency of the tongues and the resulting hotspots are close to the inner-disc orbital frequency, except in the most strongly unstable cases. There is therefore a high probability of observing QPOs at that frequency in longer simulations. In addition, the light curves in the unstable regime show periodicity at the star's rotation frequency in many of the cases investigated here, again except in the most strongly unstable cases which lack funnel flows and the resulting antipodal hotspots. The noisier power spectra result in the fractional rms amplitudes of the Fourier peaks being smaller.
We also study in detail the effect of the misalignment angle between the rotation and magnetic axes of the star on the variability, and find that at misalignment angles  ≳25°  the star's period always appears in the light curves.  相似文献   

2.
We report on the numerical discovery of quasi-periodic oscillations (QPOs) associated with accretion through a non-axisymmetric magnetic boundary layer in the unstable regime, when two ordered equatorial streams form and rotate synchronously at approximately the angular velocity of the inner disc. The streams hit the star's surface producing hotspots. Rotation of the spots leads to high-frequency QPOs. We performed a number of simulation runs for different magnetospheric sizes from small to tiny, and observed a definite correlation between the inner disc radius and the QPO frequency: the frequency is higher when the magnetosphere is smaller. In the stable regime, a small magnetosphere forms and accretion through the usual funnel streams is observed, and the frequency of the star is expected to dominate the light curve. We performed exploratory investigations of the case in which the magnetosphere becomes negligibly small and the disc interacts with the star through an equatorial belt. We also performed investigation of somewhat larger magnetospheres where one or two ordered tongues may dominate over other chaotic tongues. In application to millisecond pulsars, we obtain QPO frequencies in the range of 350–990 Hz for one spot. The frequency associated with rotation of one spot may dominate if spots are not identical or antipodal. If the spots are similar and antipodal, then the frequencies are twice as high. We show that variation of the accretion rate leads to drift of the QPO peak.  相似文献   

3.
We calculate the structure of a force-free magnetosphere which is assumed to corotate with a central star and which interacts with an embedded differentially rotating accretion disc. The magnetic and rotation axes are aligned, and the stellar field is assumed to be a dipole. We concentrate on the case when the amount of field line twisting through the disc–magnetosphere interaction is large , and consider different outer boundary conditions. In general the field line twisting produces field line inflation (e.g. Bardou & Heyvaerts), and in some cases with large twisting many field lines can become open. We calculate the spin-down torque acting between the star and the disc, and we find that it decreases significantly for cases with large field line twisting. This suggests that the oscillating torques observed for some accreting neutron stars could be caused by the magnetosphere varying between states with low and high field line inflation. Calculations of the spin evolution of T Tauri stars may also have to be revised in the light of the significant effect that field line twisting has on the magnetic torque resulting from star–disc interactions.  相似文献   

4.
Reconnection X-winds: spin-down of low-mass protostars   总被引:1,自引:0,他引:1  
We investigate the interaction of a protostellar magnetosphere with a large-scale magnetic field threading the surrounding accretion disc. It is assumed that a stellar dynamo generates a dipolar-type field with its magnetic moment aligned with the disc magnetic field. This leads to a magnetic neutral line at the disc mid-plane and gives rise to magnetic reconnection, converting closed protostellar magnetic flux into open field lines. These are simultaneously loaded with disc material, which is then ejected in a powerful wind. This process efficiently brakes down the protostar to 10–20 per cent of the break-up velocity during the embedded phase.  相似文献   

5.
We have carried out global three‐dimensional magnetohydrodynamic simulations of the star‐disc interaction region around a young solar‐type star. The magnetic field is generated and maintained by dynamos in the star as well as in the disc. The developing mass flows possess non‐periodic time‐variable azimuthal structure and are controlled by the nonaxisymmetric magnetic fields. Since the stellar field drives a strong stellar wind, accretion is anti‐correlated with the stellar field strength and disc matter is spiraling onto the star at low latitudes, both contrary to the generally assumed accretion picture. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
An analytic model is presented for the inner structure of an accretion disc in the presence of a strong stellar magnetic field. The model is valid inside the radius at which the electron scattering opacity starts to exceed the Kramers opacity. It illustrates how the increasing stellar poloidal field leads to an elevated disc temperature, ultimately causing a breakdown in the vertical equilibrium owing to rapidly increasing radiation pressure which cannot be balanced by the vertical stellar gravity. Viscous instability also occurs. The solution gives an accurate representation of numerical results, and enables useful expressions to be derived for the radius at which the disc is marginally thin and the radius at which viscous instability occurs. The disruption mechanism appears to have general validity for accretion discs around strongly magnetic stars.  相似文献   

7.
The radial structure of a thin accretion disc is calculated in the presence of a central dipole magnetic field aligned with the rotation axis. The problem is treated using a modified expression for the turbulent magnetic diffusion, which allows the angular momentum equation to be integrated analytically. The governing algebraic equations are solved iteratively between 1 and 104 stellar radii. An analytic approximation is provided that is valid near the disruption radius at about 100 stellar radii. At that point, which is approximately 60 per cent of the Alfvén radius and typically about 30 per cent of the corotation radius, the disc becomes viscously unstable. This instability results from the fact that both radiation pressure and opacity caused by electron scattering become important. This in turn is a consequence of the magnetic field which leads to an enhanced temperature in the inner parts. This is because the magnetic field gives rise to a strongly enhanced vertically integrated viscosity, so that the viscous torque can balance the magnetic torque.  相似文献   

8.
We have investigated the influence of the r-mode instability on hypercritically accreting neutron stars in close binary systems during their common envelope phases, based on the scenario proposed by Brown et al. On the one hand, neutron stars are heated by the accreted matter at the stellar surface, but on the other hand they are also cooled down by the neutrino radiation. At the same time, the accreted matter transports its angular momentum and mass to the star. We have studied the evolution of the stellar mass, temperature and rotational frequency.
The gravitational-wave-driven instability of the r-mode oscillation strongly suppresses spinning up of the star, the final rotational frequency of which is well below the mass-shedding limit, in fact typically as low as 10 per cent of that of the mass-shedding state. On a very short time-scale the rotational frequency tends to approach a certain constant value and saturates there, as long as the amount of accreted mass does not exceed a certain limit to collapse to a black hole. This implies that a similar mechanism of gravitational radiation to that in the so-called 'Wagoner star' may work in this process. The star is spun up by accretion until the angular momentum loss by gravitational radiation balances the accretion torque. The time-integrated dimensionless strain of the radiated gravitational wave may be large enough to be detectable by gravitational wave detectors such as LIGO II.  相似文献   

9.
For accretion on to neutron stars possessing weak surface magnetic fields and substantial rotation rates (corresponding to the secular instability limit), we calculate the disk and surface layer luminosities general relativistically using the Hartle & Thorne formalism, and illustrate these quantities for a set of representative neutron star equations of state. We also discuss the related problem of the angular momentum evolution of such neutron stars and give a quantitative estimate for this accretion driven change in angular momentum. Rotation always increases the disk luminosity and reduces the rate of angular momentum evolution. These effects have relevance for observations of low-mass X-ray binaries.  相似文献   

10.
The problem of the effect of a strongly magnetic star on a surrounding accretion disc is considered. For stellar rotation periods greater than a critical value, a numerical solution is found for a steady disc with turbulent magnetic diffusion, including electron scattering opacity and radiation pressure. Inside the corotation radius, the extraction of disc angular momentum by magnetic coupling to the star becomes strong and this leads to enhanced viscous stress and dissipation. The resulting elevated temperature causes electron scattering opacity and radiation pressure to become significant further from the star than in the absence of its magnetic field. The disc ends as its height increases rapidly due to the large central pressure, its density decreases and magnetically induced viscous instability occurs.  相似文献   

11.
We use three-dimensional magnetohydrodynamic simulations to study the structure of the boundary layer between an accretion disc and a non-rotating, unmagnetized star. Under the assumption that cooling is efficient, we obtain a narrow but highly variable transition region in which the radial velocity is only a small fraction of the sound speed. A large fraction of the energy dissipation occurs in high-density gas adjacent to the hydrostatic stellar envelope, and may therefore be reprocessed and largely hidden from view of the observer. As suggested by Pringle , the magnetic field energy in the boundary layer is strongly amplified by shear, and exceeds that in the disc by an order of magnitude. These fields may play a role in generating the magnetic activity, X-ray emission and outflows in disc systems where the accretion rate is high enough to overwhelm the stellar magnetosphere.  相似文献   

12.
We present a simple physical mechanism that can account for the observed stellar mass spectrum for masses M ∗≳0.5 M . The model depends solely on the competitive accretion that occurs in stellar clusters where each star's accretion rate depends on the local gas density and the square of the accretion radius. In a stellar cluster, there are two different regimes depending on whether the gas or the stars dominate the gravitational potential. When the cluster is dominated by cold gas, the accretion radius is given by a tidal-lobe radius. This occurs as the cluster collapses towards a ρ  ∝  R −2 distribution. Accretion in this regime results in a mass spectrum with an asymptotic limit of γ =−3/2 (where Salpeter is γ =−2.35) . Once the stars dominate the potential and are virialized, which occurs first in the cluster core, the accretion radius is the Bondi–Hoyle radius. The resultant mass spectrum has an asymptotic limit of γ =−2 with slightly steeper slopes ( γ ≈−2.5) if the stars are already mass-segregated. Simulations of accretion on to clusters containing 1000 stars show that, as expected, the low-mass stars accumulate the majority of their masses during the gas-dominated phase whereas the high-mass stars accumulate the majority of their masses during the stellar-dominated phase. This results in a mass spectrum with a relatively shallow γ ≈3/2 power law for low-mass stars and a steeper power law for high-mass stars −2.5≲ γ ≤−2 . This competitive accretion model also results in a mass-segregated cluster.  相似文献   

13.
A full numerical solution is found for the effect of a strongly magnetic star on its accretion disc, for the case of magnetic buoyancy diffusion. As in the previously considered case of turbulent diffusion, the disc becomes disrupted when magnetic and viscous stresses become comparable. A magnetically induced temperature elevation leads to electron scattering opacity and radiation pressure becoming significant far from the stellar surface, with consequent viscous instability and vertical disruption of the disc. This, together with the previous turbulent case, suggests that such a disruption mechanism owing to strongly magnetic accretors is generally operable.  相似文献   

14.
We present preliminary results of our X‐shooter survey in star forming regions. In this contribution we focus on subsamples of young stellar and sub‐stellar objects (YSOs) in the Lupus star forming region and in the TW Hya association. We show that the X‐shooter spectra are suitable for conducting several parallel studies such as YSO + disk fundamental parameters, accretion and outflow activity in the very low‐mass (VLM) and sub‐stellar regimes, as well as magnetic activity in young VLM YSOs, and Li abundance determinations. The capabilities of X‐shooter in terms of wide spectral coverage, resolution and limiting magnitudes, allow us to assess simultaneously the accretion/outflow, magnetic activity, and disk diagnostics, from the UV and optical to the near‐IR, avoiding ambiguities due to possible YSO variability (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We address the problem of plasma penetration of astrophysical magnetospheres, an important issue in a wide variety of contexts, ranging from accretion in cataclysmic variables to flows in protostellar systems. We point out that under well-defined conditions, penetration can occur without any turbulent mixing (driven, for example, by Rayleigh–Taylor or Kelvin–Helmholtz instabilities) caused by charge polarization effects, if the inflowing plasma is bounded in the direction transverse to both the flow velocity and the magnetic field. Depolarization effects limit the penetration depth, which nevertheless can, under specific circumstances, be comparable to the size of the magnetosphere. We discuss the effect of ambient medium on plasma propagation across the stellar magnetic field and determine the criteria for deep magnetosphere penetration. We show that, under conditions appropriate to magnetized white dwarfs in AM Her type cataclysmic variables, charge polarization effects can lead to deep penetration of the magnetosphere.  相似文献   

16.
I show in this paper that two types of magnetic torques can appear in the interaction between an accretion disc and a magnetic accretor. There is the well-known torque resulting from the difference in angular velocity between the accretion disc and the star, but in addition there is a torque coming from the interaction between the stellar magnetic field and the disc's own magnetic field. The latter form of magnetic torque decreases in strength more slowly with increasing radius, and will therefore dominate at large radii. The direction of the disc field is not determined by the difference in angular velocity between the star and the disc as in the Ghosh &38; Lamb model, but rather is a free parameter. The magnetic torque may therefore either spin up or spin down the star, and the torque changes sign if the magnetic field in the disc reverses. I suggest that this mechanism can explain the torque reversals that have been observed in some disc-fed X-ray pulsars.  相似文献   

17.
We present X‐shooter observations of two brown dwarf candidates. We focus on the determination of stellar parameters and their errors. The targets, an accreting class II and a non‐accreting class III objects, are members of the σ Orionis star‐forming region. We derive the spectroscopic spectral types from the VIS spectrum and the stellar parameters. We find that the uncertainties on the stellar parameters have a minor effect on the determination of the mass accretion rate for the accreting star, thus confirming that the discrepancies between the mass accretion rate estimates found with different (simultaneous) tracers are probably due to different physical conditions where the accretion/wind indicators are produced (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Stellar magnetic fields govern key aspects of the evolution of a young star, from controlling accretion to regulating the angular momentum evolution of the system. Spectro‐polarimetric studies of T Tauri stars have revealed a surprising range of magnetic field topologies. Meanwhile multi‐wavelength campaigns have probed T Tauri star systems from stellar photosphere to inner disk, allowing us to study magnetospheric accretion in unprecedented detail. We review recent results and discuss their implications for understanding the evolution of young stars (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Summary. Soft X–ray Transients (SXRTs) have long been suspected to contain old, weakly magnetic neutron stars that have been spun up by accretion torques. After reviewing their observational properties, we analyse the different regimes that likely characterise the neutron stars in these systems across the very large range of mass inflow rates, from the peak of the outbursts to the quiescent emission. While it is clear that close to the outburst maxima accretion onto the neutron star surface takes place, as the mass inflow rate decreases, accretion might stop at the magnetospheric boundary because of the centrifugal barrier provided by the neutron star. For low enough mass inflow rates (and sufficiently short rotation periods), the radio pulsar mechanism might turn on and sweep the inflowing matter away. The origin of the quiescent emission, observed in a number of SXRTs at a level of , plays a crucial role in constraining the neutron star magnetic field and spin period. Accretion onto the neutron star surface is an unlikely mechanism for the quiescent emission of SXRTs, as it requires very low magnetic fields and/or long spin periods. Thermal radiation from a cooling neutron star surface in between the outbursts can be ruled out as the only cause of the quiescent emission. We find that accretion onto the neutron star magnetosphere and shock emission powered by an enshrouded radio pulsar provide far more plausible models. In the latter case the range of allowed neutron star spin periods and magnetic fields is consistent with the values recently inferred from the properties of kHz quasi-periodic oscillation in low mass X–ray binaries. If quiescent SXRTs contain enshrouded radio pulsars, they provide a missing link between X–ray binaries and millisecond pulsars. Received 4 November 1997; Accepted 15 April 1998  相似文献   

20.
The stability properties of magnetized discs rotating with angular velocity Ω = Ω( s ,  z ), dependent on both the radial and the vertical coordinates s and z , are considered. Such a rotation law is adequate for many astrophysical discs (e.g., galactic and protoplanetary discs, as well as accretion discs in binaries). In general, the angular velocity depends on height, even in thin accretion discs. A linear stability analysis is performed in the Boussinesq approximation, and the dispersion relation is obtained for short-wavelength perturbations. Any dependence of Ω on z can destabilize the flow. This concerns primarily small-scale perturbations for which the stabilizing effect of buoyancy is strongly suppressed due to the energy exchange with the surrounding plasma. For a weak magnetic field, instability of discs is mainly associated with vertical shear, whilst for an intermediate magnetic field the magnetic shear instability, first considered by Chandrasekhar and Velikhov, is more efficient. This instability is caused by the radial shear which is typically much stronger than the vertical shear. Therefore the growth time for the magnetic shear instability is much shorter than for the vertical shear instability. A relatively strong magnetic field can suppress both these instabilities. The vertical shear instability could be the source of turbulence in protoplanetary discs, where the conductivity is low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号