首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
挥发分(例如H2O、CO2、F、Cl和S)是地幔的重要组成部分,虽然它们在地幔中的含量很低,但是在地幔熔融和熔体演化、地幔不均一、地幔流变学、地幔地震特性和电导率等研究方面具有重要作用。对矿物熔体包裹体和玻璃挥发分的研究已经成为当前的研究热点。其中,熔体包裹体研究凭借其独特的优势成为研究地幔和岩浆挥发分组成的重要手段。熔体包裹体直接捕获了矿物形成时岩浆中的成分,且由于寄主矿物的存在使得熔体包裹体能够保持独立演化而不受外界环境影响,因此能够较为完整地保存岩浆中的挥发分信息。同时,研究熔体包裹体中的挥发分是恢复岩浆喷发前挥发分含量最直接的途径。如果通过现代分析方法(如扫描电镜、电子探针和离子探针等)对熔体包裹体进行详细的岩相学观察以及对后期可能影响熔体包裹体原始挥发组分的作用(地壳混染、岩浆去气、扩散和水化作用)进行评估,并结合实验研究熔体包裹体被捕获后发生的变化而对数据进行矫正,那熔体包裹体对研究岩浆体系中的挥发分将大有可为。基于此,本文系统介绍了熔体包裹体挥发分研究的现状及主要研究内容,主要包括熔体包裹体挥发分的测试方法、挥发分在岩浆中的溶解度、判断挥发分数据可靠性和挥发分研究的经典应用等4个方面。  相似文献   

2.
熔体包裹体是岩浆岩中矿物生长或结晶过程中捕获的少量硅酸盐熔体,成为地球深部过程的重要见证者。因此,有效识别其记录的岩浆演化信息显得十分重要。文章在前人对熔体包裹体研究的基础上,系统梳理其研究方法,总结了5步研究过程:① 利用偏光显微镜,开展详细的岩相学观察以识别具有代表性的熔体包裹体类型;② 为加热实验和成分分析制备样品;③ 利用高温热台,对熔体包裹体进行加热实验使其内部均一化,并测得捕获温度;④ 通过电子探针、二次离子探针、LA-ICP-MS、显微激光拉曼等技术对熔体包裹体中的主、微量元素、同位素以及挥发分组成进行分析测试;⑤ 熔体包裹体数据分析,与全岩成分和相关实验得出的流体成分进行对比。虽然熔体包裹体的研究经历了近百年的发展,但有效还原其代表的初始岩浆信息,仍然是当前研究的难点和热点。尤其是地球系统科学发展引发宜居地球深部过程的探讨,使得开展熔体包裹体分析新方法的探讨成为重中之重。  相似文献   

3.
熔体包裹体研究不仅广泛应用于火山岩和部分侵入岩系统,而且因其具有可以保存岩浆初始挥发分和金属组成的优势,近来也逐步应用于矿床学领域.在介绍熔体包裹体形成机制和捕获后成分改造的基础上,简要归纳了目前常用的熔体包裹体分析方法,以斑岩型Cu-(Mo-Au)和斑岩型Mo成矿系统为例,重点介绍熔体包裹体在矿床学领域的应用,包括成矿金属和挥发分含量的测定,以及熔体-流体分配系数测定等方面.然而,熔体包裹体在捕获后均会受到不同程度的成分改造,且对于大多数造岩矿物内的熔体包裹体,其成分改造的具体机制仍不明了,因此在实际应用过程中,需要对其组成进行具体分析和甄别.随着分析技术的改善和提高,熔体包裹体捕获后具体成分改造机制有待进一步查明,进而推动熔体包裹体的应用.现阶段熔体包裹体在斑岩型Cu-(Mo-Au)和斑岩型Mo成矿岩浆系统的成功应用表明,相比全岩地球化学研究,熔体包裹体已成为研究成矿岩浆体系内成矿金属和挥发分演化的重要手段.   相似文献   

4.
岩浆岩中的熔体包裹体   总被引:15,自引:1,他引:15  
夏林圻 《地学前缘》2002,9(2):403-414
熔体包裹体是岩浆岩矿物生长过程中捕获的天然岩浆珠滴 ,它们有效地保存了大量有关其主矿物形成时周围岩浆介质的物理化学信息 ,所以它们是其主矿物结晶演化史的忠实记录员 ,它们能够提供岩浆系统成分和演化的重要信息。文中对熔体包裹体研究的若干基本原理进行了讨论 ,它们涉及 :(1)熔体包裹体的一般特征 ;(2 )熔体包裹体封闭过程中和封闭后的演化 ;(3)熔体包裹体的均一化研究 ;(4 )熔体包裹体化学成分和挥发组分研究。熔体包裹体研究可以对岩浆岩石学中的一些重要问题进行更为深入的探索 :(1)重建天然岩浆结晶演化的热历史 ;(2 )提供有关岩浆沿下降液相线的成分数据 ;(3)查明天然岩浆结晶演化过程中化学成分的变迁规律 ;(4 )解决岩浆岩石学中的一些疑难问题 ,如岩浆不混溶作用、岩浆混合作用、岩浆混染作用、岩浆中硫的性状、地幔部分熔融和地幔交代作用等方面的问题。将熔体包裹体数据和常规的岩石学、地球化学和实验岩石学信息综合一体 ,可以提高我们模拟岩浆作用过程的能力。熔体包裹体研究已经成为现代岩浆岩石学的一个独立的分支 ,其前景十分广阔。  相似文献   

5.
作者首次于金川含铜镍超基性岩体中发现了岩浆包裹体。本文系统研究了岩浆包裹体特征,阐述了包裹体中橄榄石、斜方辉石、单斜辉石、铬尖晶石等晶相子矿物的化学成分以及F_2、Cl_2,CH_4、H_2S、H_2O、SO_2、CO_2等气相挥发组份。测温结果表明,原生岩浆包裹体的均一化温度介于950—1100℃。各造岩矿物中原生岩浆包裹体的发现,证明金川岩体为岩浆成因。包裹体中不混熔现象的发现,证明各类岩石和矿体是铁质超基性含矿熔浆在液态就地分熔成不同成分的熔体,并在不同的物理化学条件下结晶而成。这些研究对认识成岩成矿的物化条件和成因具有重要意义。  相似文献   

6.
<正>近现代对于熔体包裹体(melt inclusion)的研究已经有50余年,但它们在反映岩浆系统特征方面的价值是直至最近10~15年间才逐渐被火山学家,岩石学家和包裹体学者所意识到。熔体包裹体的研究结果之所以难以被接受主要有以下几个因素:(1)缺乏可靠的分析技术;(2)熔体包裹体捕获后会发生一系列的变化;(3)有的包裹体中熔体存在不均匀的现象;(4)较高的均一温度,很难测定。但随着分析方法的改进和熔体包裹体的系统研究的进展,学者们逐渐确定了熔体包裹体在解开岩浆系统  相似文献   

7.
福建永定大坪铌钽矿化花岗斑岩体位于永定县城南部的大石凹-蓝地火山喷发盆地,对斑岩型铌钽矿床的产出具有重要的指示意义。本文通过岩相学、显微测温和激光拉曼等实验对大坪岩体ZK10001和ZK10401钻孔不同深度岩石样品中的流体和熔体包裹体进行了研究,试图揭示岩体的熔体-流体演化过程,分析铌钽等成矿元素的富集机制。观测结果表明,大坪岩体主要发育气液两相盐水溶液包裹体和硅酸盐熔体包裹体。流体包裹体均一温度集中在175~225℃,盐度集中在3%~7%NaCleq,密度集中在0.75~0.95g/cm~3,成矿流体主要为中低温、低盐度和低密度的流体,总体属于H_2O-NaCl体系。熔体包裹体主要分布于石英斑晶雪球结构的环带中,含有钠长石、石英和钽铁矿等子矿物。熔体包裹体完全均一温度较高,能够代表早期原始岩浆的组成。研究表明,大坪岩体的原始岩浆富铌钽等成矿元素和碱性组分,大坪岩体的铌钽矿化是岩浆高度分异的产物,铌钽的富集过程经历了斑晶阶段和基质阶段等两阶段结晶分异过程:在早期斑晶结晶阶段,少量铌钽矿物与斑晶一起结晶,并被斑晶包裹;岩浆演化晚期发生流体出溶现象,但未分异出大量流体,F等挥发分促进了铌钽在结晶残余熔体中富集,并在基质间隙中沉淀。大坪矿化岩体的存在指示出斑岩型铌钽矿床存在的可能性。  相似文献   

8.
阿巴宫富磷灰石磁铁矿床位于新疆阿尔泰南缘地区克朗盆地,具有Kiruna型铁矿典型特征。本文对矿床中磷灰石和石英中的包裹体进行了详细的岩相学观察、对流体包裹体进行了显微测温和激光拉曼成分研究,并测定了磷灰石和石英的氢、氧同位素以及硫化物的硫同位素组成。结果表明,不同成矿阶段磷灰石中的包裹体具有明显不同的特征,代表了不同的熔体和流体系统,且流体由早阶段到晚阶段具有一定的演化规律。第一和第二成矿阶段磷灰石中主要为熔融包裹体、流体包裹体和单矿物包裹体,成矿流体分别是高温(主要为290~460℃)中盐度(10.36%~17.79%NaCleqv)和中温(主要为230~290℃)中盐度(16.99%~22.4%NaCleqv)的富Ca2+的H2O-NaCl体系,是富挥发分的Fe-P熔体在结晶过程中捕获熔体和流体的结果。第三成矿阶段的磷灰石和石英中的包裹体特征相似,主要为熔体-流体包裹体、液相包裹体、含液体CO2三相包裹体、含子矿物H2O-NaCl型多相包裹体和含子矿物H2O-CO2-NaCl型多相包裹体。成矿流体温度变化于160~320℃,中低盐度(1.06%~23.1%NaCleqv),少量高盐度变化于33.5%~42%NaCleqv,属H2O-CO2-NaCl体系,是岩浆-热液阶段出溶的流体发生沸腾作用的结果。磷灰石和石英的δD较为接近,分别为-139‰~-118‰和-145‰~-104‰。成矿流体的δ18OH2O值显示以岩浆水为主,从早阶段(4.9‰~9.1‰)向晚阶段(1.5‰~6.0‰)有降低的趋势。硫化物的δ34S(0.4‰~5.2‰)表明硫来自深部岩浆。结合阿巴宫富磷灰石磁铁矿床的地质特征,认为矿床的形成与不混溶作用的发生有关,早阶段成矿是碳酸盐围岩的加入导致富挥发分Fe-P熔体与富Si熔体发生不混溶,由富Fe-P熔体发生分离结晶和堆晶作用形成;晚阶段成矿是富Fe-P熔体演化晚期,由于减压降温导致流体出溶并发生大规模的不混溶(沸腾),即在岩浆-热液过渡阶段由熔体结晶形成。  相似文献   

9.
熔体包裹体均一实验是利用熔体包裹体研究原始岩浆演化和挥发分组成的基础。目前,开展包裹体均一温度实验的设备主要为Linkam系列的高温热台,而热液金刚石压腔(HDAC)是近年来才被应用到熔体包裹体均一实验中的。文章以义兴寨金矿床石英斑岩为例,对比研究了Linkam TS1500高温热台和HDAC在熔体包裹体均一实验应用中的优劣。利用Linkam TS1500高温热台得出熔体包裹体的均一温度范围为943~1190℃,而HDAC的测试结果为780~890℃。实验研究表明:HDAC能够在加热的同时提供接近熔体捕获条件的外压,更适于开展富挥发分的高内压熔体包裹体的均一实验。实验过程中得到的熔体包裹体固相初熔温度范围,可为估算义兴寨金矿床石英斑岩原始岩浆晚期结晶的压力提供依据。  相似文献   

10.
岩浆到热液演化的包裹体记录——以骑田岭花岗岩体为例   总被引:3,自引:2,他引:1  
骑田岭花岗岩是燕山期花岗岩早期多阶段侵入复式岩体,岩石化学的研究表明它是富碱的、高分异的A型花岗岩,形成于板内拉张的构造环境。在其第二阶段中细粒黑云母花岗岩内广泛发育着厘米级至米级似伟晶岩囊状体和石英晶洞, 它们是富挥发份岩浆固结的产物,代表岩石形成过程经历了明显的岩浆-热液过渡阶段。包裹体显微岩相学研究在骑田岭黑云母花岗岩的石英中发现熔体-流体包裹体和流体包裹体共存,这一结果进一步证实骑田岭中细粒黑云母花岗岩中的似伟晶岩囊状体和石英晶洞是花岗质熔体在岩浆-热液过渡阶段的产物。显微测温结果显示,熔体-流体包裹体的捕获温度大于530℃,说明岩浆热液过渡阶段的温度不低于该温度;闪锌矿中流体包裹体的均一温度在285~417℃之间,盐度为11.7% NaCleqv,代表了成矿流体的温度和盐度;流体包裹体的均一温度为172~454℃,代表热液阶段流体的温度。从中细粒黑云母花岗岩到似伟晶岩囊状体再到石英晶洞,岩浆-热液体系经历了富挥份熔体→熔体+高盐度流体→高盐度流体→低盐度流体的完整演化过程,形成了CaCl2-NaCl-H2O-CO2体系的岩浆热液流体。包裹体岩相学及激光拉曼探针分析结果显示,在流体包裹体和多晶熔体-流体包裹体中含有长石、方解石、金红石及金属氧化物等子矿物,暗示其所捕获的流体具有较强的成矿能力。  相似文献   

11.
浙江洋滨黄玉花岗质斑岩的包裹体研究   总被引:1,自引:1,他引:1  
浙江洋滨黄玉花岗质斑岩的石英斑晶中含有大量原生包裹体,作者对其进行了大量的均一温度、盐度、化学成分等方面的测试工作,在此基础上,将这些包裹体划分为熔融包裹体、羟基化硅酸盐熔体—流体包裹体、不均一捕获多相包裹体、液相包裹体(包括高盐度液相包裹体和低盐度液相包裹体)、气相包裹体等五大类型。并按岩浆阶段、岩浆解聚阶段、岩浆/流体不混溶阶段、热液为主阶段探讨了本区包裹体的形成机制,为本区黄玉花岗质斑岩的岩浆成因解释提供了有力的依据  相似文献   

12.
赵斌  赵劲松  许德如 《岩石学报》2017,33(6):1841-1858
矽卡岩矿床各种硅酸盐矿物中熔融包裹体和流体-熔融包裹体的显微测温资料和相成分让我们提出过大量矽卡岩是岩浆成因的建议。在本文中,我们提供沿长江中下游成矿带的许多矽卡岩矿床包含在石榴子石和辉石里的熔融包裹体和流体-熔融包裹体的激光拉曼分析结果,目的是证明所研究的并与Cu-Fe-Au矿床共生的矽卡岩系岩浆成因。我们的研究结果显示,熔融包裹体只含固体相和微量气相。流体-熔融包裹体除了含大量固相外,还含微量流体和气相以及没有被仪器检测到的气体。固体相与包裹体寄主矿物相同或类似。流体相主要为水或盐水溶液和包括C6H6、C3H6、C3H8、CH4、CO2和O2的气体。我们提出,熔融包裹体和流体-熔融包裹体是原始岩浆的最好代表。这就证明,矽卡岩组合是由一个原生岩浆直接结晶而成。此外,我们还讨论了岩浆矽卡岩形成的温度、分布范围和规模、形成机制和与Cu-Fe-Au矿化作用的联系。  相似文献   

13.
本文将报道中国北方主要矽卡岩型矿床矿物熔融包裹体和流体-熔融包裹体的激光拉曼分析结果。研究目的是确认这些矿化矽卡岩矿物是否含熔融包裹体和流体-熔融包裹体,获取有关它们相态特征和相组成以及它们的分布状况(是局部的、偶然性的,还是广泛的)的信息。文章对邯邢铁矿、蒙库铁矿和杨家杖子钼矿等9个矿床12块标本中石榴石、辉石和方解石或白云石中23个包裹体进行了共聚焦激光拉曼光谱仪分析。拉曼分析结果表明,所研究的矽卡岩矿物均含熔融包裹体和/或流体-熔融包裹体,它们是岩浆矽卡岩的直接证据。结合本文激光拉曼分析结果、地质背景和其他地区岩浆矽卡岩矿物包裹体测温学研究,对所研究矽卡岩的形成机制和岩浆矽卡岩对中国北方某些矽卡岩型矿床的制约进行了讨论。认为含有熔融包裹体和/或流体-熔融包裹体的矿化矽卡岩系岩浆成因,其分布范围广泛,规模不小。中国北方某些矽卡岩型矿床的时空分布和规模受控于该地区分布的岩浆矽卡岩。希望本文有助于拓宽矽卡岩型矿床成矿规律研究和深部找矿勘探的思路。  相似文献   

14.
The Zaldívar porphyry copper deposit, Northern Chile, consists of two major intrusions, the 290 Ma Zaldívar, and the more recent Miocene (38.7 Ma) Llamo porphyry. Five types of inclusions have been identified in quartz phenocrysts from Llamo porphyry, including melt inclusions (M), and four types of fluid inclusions, called MS (multi solids), B (brines), G (vapor-rich) and W (aqueous), respectively.Melt remnants, well preserved as M-inclusions, homogenize around 1000 °C. They show a rhyolitic composition, comparable to the most evolved acidic rhyolitic end member found elsewhere in the regional magmatism and to worldwide volcanic rhyolitic glass. High silica content in some inclusions can, however, be due to partial remelting of the quartz host during the heating run. Copper content in the same inclusions ranges between 0.03 and 0.57 wt.%, with an average concentration of 0.10 wt.%, suggesting a major magmatic source for the copper (orthomagmatic model).MS inclusions, which contain a number of solids at room temperature, mostly H2O-bearing phases (system NaCl–KCl–((Fe, Mg, Cu)Cl)–H2O, average salinity 70 wt.% NaCl equiv.), homogenize at magmatic temperatures (around 1000 °C). They represent the first fluids to have exsolved from the magma at depth, at a pressure of about 2 kbar. Their high homogenization temperature, comparable to values measured for melt inclusions (1000 to 1050 °C), may indicate trapping of MS and M inclusions in host phenocrysts from an immiscible mixture of silicate melt and highly saline fluids expelled from the magma during the early stage of quartz crystallization.The data indicate a magmatic origin for copper, as well as extremely high melt temperatures. These features are interpreted by magmatic differentiation of mantle-derived primitive melts, corresponding to major changes in the tectonic regime of the Andean margin, which occurred in Miocene times.  相似文献   

15.
岩浆包裹体化学成分研究   总被引:8,自引:1,他引:8  
岩浆包裹体化学成分研究难度较大,为了获得可信的数据,应当注意:1.非演化型岩浆包裹体的化学成分可以代表其初始成分。演化型岩浆包裹体应先均一、淬火后再行测定。2.均一演化型岩浆包裹体应严格遵守加热规则,否则过热作用会使包裹体壁部分熔化,造成淬火后所测包裹体成分与其真正的初始成分并不相当。3.实测资料证明,“边界层效应”对于岩浆包裹体化学成分影响微不足道。4.岩浆包裹体的化学成分只能代表其主矿物结晶时周围岩浆的成分,即仅相当于岩浆液相线上的一个点。5。把显微冷热台测温、激光喇曼探针和电子探针分析技术结合使用,对查明单个包裹体中挥发组分的性状和浓度具有很大的潜力和前途。  相似文献   

16.
黑龙江乌拉嘎金矿是我国陆相火山岩区的重要金矿之一。构造位置处于古亚洲构造域与滨太平洋构造域交接复合部位的东北缘,矿体主要分布于团结沟斜长花岗斑岩接触带部位的隐爆角砾岩带和黑龙江群变质岩的层间裂隙中。斜长花岗斑岩的石英斑晶中发育3类包裹体:熔体包裹体、原生的L-V包裹体(及少量的L-V-S包裹体)和次生的L-V包裹体。玻璃质熔体包裹体相当于酸性殘浆的成分(SiO2达69.5%~73.8%),其捕获温度大于800℃。石英斑晶中次生L-V包裹体均一温度集中在210~350℃、盐度5%~7%NaCleqv,代表了次火山岩浆热液的特征,与黄铁矿-早期白色玉髓状石英阶段中Q1的包裹体均一温度范围很接近,而盐度略高于白色玉髓状石英Q1的。乌拉嘎金矿的金成矿可划分3个成矿阶段,发育盐水溶液包裹体:(1)黄铁矿-早期白色玉髓状石英阶段,包裹体均一温度为154~355℃,集中在190~330℃,盐度为1.3%~8.2%NaCleqv,密度为0.53~0.88g/cm3。(2)烟灰色玉髓状石英-多金属硫化物阶段,石英中包裹体均一温度为159~196℃,集中在170~190℃,盐度为2.2%~3.2%NaCleqv,密度0.79~0.92g/cm3。(3)碳酸盐-石英阶段,方解石中包裹体均一温度集中在170~270℃;盐度0.5%~2.9%NaCleqv。成矿流体以中低温、低盐度、贫CO2的盐水体系为特征,与国内外陆相火山-次火山热液矿床十分相似。石英斑晶中熔体、流体包裹体及其共存反映了次火山岩浆活动晚期,由硅酸盐熔体通过不混溶产生含矿的盐水溶液的可能,说明了金成矿与斑岩的成因联系,乌拉嘎金矿应该属于陆相火山-次火山活动有关的中低温浅成热液金矿床。  相似文献   

17.
Silicate-melt inclusions in magmatic rocks: applications to petrology   总被引:20,自引:0,他引:20  
Maria-Luce Frezzotti   《Lithos》2001,55(1-4):273-299
Silicate-melt inclusions in igneous rocks provide important information on the composition and evolution of magmatic systems. Such inclusions represent accidentally trapped silicate melt (±immiscible H2O and/or CO2 fluids) that allow one to follow the evolution of magmas through snapshots, corresponding to specific evolution steps. This information is available on condition that they remained isolated from the enclosing magma after their entrapment. The following steps of investigation are discussed: (a) detailed petrographic studies to characterise silicate-melt inclusion primary characters and posttrapping evolution, including melt crystallisation; (b) high temperature studies to rehomogenise the inclusion content and select chemically representative inclusions: chemical compositions should be compared to relevant phase diagrams.

Silicate-melt inclusion studies allow us to concentrate on specific topics; inclusion studies in early crystallising phases allow the characterisation of primary magmas, while in more differentiated rocks, they unravel the subsequent chemical evolution. The distribution of volatile species (i.e., H2O, CO2, S, Cl) in inclusion glass can provide information on the degassing processes and on recycling of subducted material. In intrusive rocks, silicate melt inclusions may preserve direct evidence of magmatic stage evolution (e.g., immiscibility phenomena). Melt inclusions in mantle xenoliths indicate that high-silica melts can coexist with mantle peridotites and give information on the presence of carbonate melt within the upper mantle. Thus, combining silicate-melt inclusion data with conventional petrological and geochemical information and experimental petrology can increase our ability to model magmatic processes.  相似文献   


18.
Baerzhe Be–Nb–Zr–REE deposit is hosted in alkaline granite (125 Ma) which intrudes in the late Jurassic Baiyingaolao Formation in the middle of the Great Hinggan Metallogenic Belt in China. The ore‐forming granite consists of three lithological facies: arfvedsonite‐bearing alkaline granite at the bottom, aegirine‐bearing albite aplite in the middle and pegmatite crust on the top. The albite aplite is the main orebody. We recognized three magmatic‐hydrothermal stages: orthomagmatic stage, late‐magmatic stage and hydrothermal stage, with the late‐magmatic stage being divided into two substages, the pegmatite substage and the aplite substage. Petrographic study on the granite, the microthermometric study on fluid inclusions and in situ laser‐ablation inductively coupled plasma mass spectrometry analysis for quartz‐hosted melt inclusions reveal the process of magmatic‐hydrothermal evolution. The finding indicates that primary magma evolved to more peralkaline by fractional crystallization, with synchronously increasing high field strength elements. An extremely high content of Zr and Nb are in the melt inclusions from last stage albite aplite (Zr, min 52 548 ppm, and Nb, min 4104 ppm). This implies that the residual magma directly formed the orebody of rare metal elements. Meanwhile, volatility was increasing during the magma evolution process and F‐bearing aqueous fluid was oversaturated at temperatures higher than 800°C. The separation of fluid from magma caused Li‐REE enrichment in F‐bearing fluid and depletion in residual melt, and led to the difference of the Y/Ho ratio between whole rock compositions and melt inclusion data. Fluid separated into a high‐salinity liquid and a low density vapor phase above 697°C, and enriched REE in the high‐salinity liquid. The oxygen isotope data shows mixing between primary magmatic‐hydrothermal fluid and meteoric water. The ubiquitous pseudo‐secondary fluid inclusions have a wide range of salinity below 462°C, which is similar to the melting temperatures of REE‐bearing daughter minerals. A model involving the mixing by meteoric water could be a mechanism for precipitation of REE minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号