首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We use numerical simulations of the fragmentation of a  1000 M  molecular cloud and the formation of a stellar cluster to study how the initial conditions for star formation affect the resulting initial mass function (IMF). In particular, we are interested in the relation between the thermal Jeans mass in a cloud and the knee of the IMF, i.e. the mass separating the region with a flat IMF slope from that typified by a steeper, Salpeter-like, slope. In three isothermal simulations with   M Jeans= 1, 2  and  5 M  , the number of stars formed, at comparable dynamical times, scales roughly with the number of initial Jeans masses in the cloud. The mean stellar mass also increases (though less than linearly) with the initial Jeans mass in the cloud. It is found that the IMF in each case displays a prominent knee, located roughly at the mass scale of the initial Jeans mass. Thus clouds with higher initial Jeans masses produce IMFs which are shallow to higher masses. This implies that a universal IMF requires a physical mechanism that sets the Jeans mass to be near  1 M  . Simulations including a barotropic equation of state as suggested by Larson, with cooling at low densities followed by gentle heating at higher densities, are able to produce realistic IMFs with the knee located at  ≈1 M  , even with an initial   M Jeans= 5 M  . We therefore suggest that the observed universality of the IMF in the local Universe does not require any fine tuning of the initial conditions in star forming clouds but is instead imprinted by details of the cooling physics of the collapsing gas.  相似文献   

2.
We argue that the first stars may have spanned the conventional mass range rather than be identified with the very massive objects  (∼100–103 M)  favoured by numerical simulations. Specifically, we find that magnetic field generation processes acting in the first protostellar systems suffice to produce fields that exceed the threshold for magneto-rotational instability (MRI) to operate, and thereby allow the MRI dynamo to generate equipartition-amplitude magnetic fields on protostellar mass scales below  ∼50 M  . Such fields allow primordial star formation to occur at essentially any metallicity by regulating angular momentum transfer, fragmentation, accretion and feedback in much the same way as occurs in conventional molecular clouds.  相似文献   

3.
We investigate the behaviour of asymptotic giant branch (AGB) stars between metallicities   Z = 10−4  and 10−8. We determine which stars undergo an episode of flash-driven mixing, where protons are ingested into the intershell convection zone, as they enter the thermally pulsing AGB phase and which undergo third dredge-up. We find that flash-driven mixing does not occur above a metallicity of   Z = 10−5  for any mass of star and that stars above  2 M  do not experience this phenomenon at any metallicity. We find carbon ingestion (CI), the mixing of carbon into the tail of hydrogen-burning region, occurs in the mass range  2 M  to around  4 M  . We suggest that CI may be a weak version of the flash-driven mechanism. We also investigate the effects of convective overshooting on the behaviour of these objects. Our models struggle to explain the frequency of Carbon-Enhanced Metal-Poor (CEMP) stars that have both significant carbon and nitrogen enhancement. Carbon can be enhanced through flash-driven mixing, CI or just third dredge-up. Nitrogen can be enhanced through hot bottom burning and the occurrence of hot dredge-up also converts carbon into nitrogen. The C/N ratio may be a good indicator of the mass of the primary AGB stars.  相似文献   

4.
A Population III/Population II transition from massive to normal stars is predicted to occur when the metallicity of the star-forming gas crosses the critical range   Z cr= 10−5±1 Z  . To investigate the cosmic implications of such a process, we use numerical simulations which follow the evolution, metal enrichment and energy deposition of both Population II and Population III stars. We find that: (i) due to inefficient heavy element transport by outflows and slow 'genetic' transmission during hierarchical growth, large fluctuations around the average metallicity arise; as a result, Population III star formation continues down to   z = 2.5  , but at a low peak rate of  10−5 M yr−1 Mpc−3  occurring at   z ≈ 6  (about 10−4 of the Population II one); and (ii) Population III star formation proceeds in an 'inside–out' mode in which formation sites are progressively confined to the periphery of collapsed structures, where the low gas density and correspondingly long free-fall time-scales result in a very inefficient astration. These conclusions strongly encourage deep searches for pristine star formation sites at moderate  (2 < z < 5)  redshifts where metal-free stars are likely to be hidden.  相似文献   

5.
We have developed a detailed stellar evolution code capable of following the simultaneous evolution of both stars in a binary system, together with their orbital properties. To demonstrate the capabilities of the code, we investigate potential progenitors for the Type IIb Supernova 1993J, which is believed to have been an interacting binary system prior to its primary exploding. We use our detailed binary stellar evolution code to model this system to determine the possible range of primary and secondary masses that could have produced the observed characteristics of this system, with particular reference to the secondary. Using the luminosities and temperatures for both stars (as determined by Maund et al.) and the remaining mass of the hydrogen envelope of the primary at the time of explosion, we find that if mass transfer is 100 per cent efficient, the observations can be reproduced by a system consisting of a  15 M  primary and a  14 M  secondary in an orbit with an initial period of 2100 days. With a mass transfer efficiency of 50 per cent, a more massive system consisting of a  17 M  primary and a  16 M  secondary in an initial orbit of 2360 days is needed. We also investigate some of the uncertainties in the evolution, including the effects of tidal interaction, convective overshooting and thermohaline mixing.  相似文献   

6.
7.
We explore the implications of a possible cosmic-ray (CR) background generated during the first supernova explosions that end the brief lives of massive Population III stars. We show that such a CR background could have significantly influenced the cooling and collapse of primordial gas clouds in minihaloes around redshifts of   z ∼ 15–20  , provided the CR flux was sufficient to yield an ionization rate greater than about 10−19 s−1 near the centre of the minihalo. The presence of CRs with energies  ≲107  eV would indirectly enhance the molecular cooling in these regions, and we estimate that the resulting lower temperatures in these minihaloes would yield a characteristic stellar mass as low as  ∼10 M  . CRs have a less-pronounced effect on the cooling and collapse of primordial gas clouds inside more massive dark matter haloes with virial masses  ≳108 M  at the later stages of cosmological structure formation around   z ∼ 10–15  . In these clouds, even without CR flux the molecular abundance is already sufficient to allow cooling to the floor set by the temperature of the cosmic microwave background.  相似文献   

8.
We study the evolution of supernova remnants in a low-metallicity medium   Z /Z= 10−4 to 10−2  in the early universe, using one-dimensional hydrodynamics with non-equilibrium chemistry. Once a post-shock layer is able to cool radiatively, a dense shell forms behind the shock. If this shell becomes gravitationally unstable and fragments into pieces, next-generation stars are expected to form from these fragments. To explore the possibility of this triggered star formation, we apply a linear perturbation analysis of an expanding shell to our results and constrain the parameter range of ambient density, explosion energy and metallicity where fragmentation of the shell occurs. For the explosion energy of  1051 erg (1052 erg)  , the shell fragmentation occurs for ambient densities higher than  ≳102 cm−3 (10 cm−3  ), respectively. This condition depends little on the metallicity in the ranges we examined. We find that the mode of star formation triggered occurs only in massive  (≳108 M)  haloes.  相似文献   

9.
Self-gravitating protostellar discs are unstable to fragmentation if the gas can cool on a time-scale that is short compared with the orbital period. We use a combination of hydrodynamic simulations and N -body orbit integrations to study the long-term evolution of a fragmenting disc with an initial mass ratio to the star of   M disc/ M *= 0.1  . For a disc that is initially unstable across a range of radii, a combination of collapse and subsequent accretion yields substellar objects with a spectrum of masses extending (for a Solar-mass star) up to  ≈0.01 M  . Subsequent gravitational evolution ejects most of the lower mass objects within a few million years, leaving a small number of very massive planets or brown dwarfs in eccentric orbits at moderately small radii. Based on these results, systems such as HD 168443 – in which the companions are close to or beyond the deuterium burning limit – appear to be the best candidates to have formed via gravitational instability. If massive substellar companions originate from disc fragmentation, while lower-mass planetary companions originate from core accretion, the metallicity distribution of stars which host massive substellar companions at radii of ∼1 au should differ from that of stars with lower mass planetary companions.  相似文献   

10.
We report the identification, from a photometric, astrometric and spectroscopic study, of a massive white dwarf member of the nearby, approximately solar metallicity, Coma Berenices open star cluster (Melotte 111). We find the optical to near-infrared energy distribution of WD 1216+260 to be entirely consistent with that of an isolated DA and determine the effective temperature and surface gravity of this object to be   T eff= 15 739+197−196 K  and  log  g = 8.46+0.03−0.02  . We set tight limits on the mass of a putative cool companion,   M ≳ 0.036 M  (spatially unresolved) and   M ≳ 0.034 M  (spatially resolved and   a ≲ 2500 au  ). Based on the predictions of CO core, thick H layer evolutionary models we determine the mass and cooling time of WD 1216+260 to be   M WD= 0.90 ± 0.04 M  and  τcool= 363+46−41 Myr  , respectively. For an adopted cluster age of  τ= 500 ± 100 Myr  we infer the mass of its progenitor star to be   M init= 4.77+5.37−0.97 M  . We briefly discuss this result in the context of the form of the stellar initial mass–final mass relation.  相似文献   

11.
We present stellar evolution calculations for Population III stars for both single- and binary-star evolutions. Our models include 10- and  16.5-M  single stars and a  10-M  model star that undergoes an episode of accretion resulting in a final mass of  16.1 M  . For comparison, we present the evolution of a solar heavy element abundance model. We use the structure from late-stage evolution models to calculate simulated supernova light curves. Light curve comparisons are made between accretion and non-accretion progenitor models, and models for single-star evolution of comparable masses. Where possible, we make comparisons to previous works. Similar investigations have been carried out, but primarily for solar or near-solar heavy metal abundance stars and not including both the evolution and the supernova explosions in one work.  相似文献   

12.
Distances to nine dark globules are determined by a method using optical ( VRI ) and near-infrared (near-IR) ( JHK ) photometry of stars projected towards the field containing the globules. In this method, we compute intrinsic colour indices of stars projected towards the direction of the globule by dereddening the observed colour indices using various trial values of extinction   A V   and a standard extinction law. These computed intrinsic colour indices for each star are then compared with the intrinsic colour indices of normal main-sequence stars and a spectral type is assigned to the star for which the computed colour indices best match with the standard intrinsic colour indices. Distances ( d ) to the stars are determined using the   A V   and absolute magnitude  ( MV )  corresponding to the spectral types thus obtained. A distance versus extinction plot is made and the distance at which   A V   undergoes a sharp rise is taken to be the distance to the globule. All the clouds studied in this work are in the distance range 160–400 pc. The estimated distances to dark globules LDN 544, LDN 549, LDN 567, LDN 543, LDN 1113, LDN 1031, LDN 1225, LDN 1252 and LDN 1257 are  180 ± 35, 200 ± 40, 180 ± 35, 160 ± 30, 350 ± 70, 200 ± 40, 400 ± 80, 250 ± 50  and 250 ± 50 pc, respectively. Using the distances determined, we have estimated the masses of the globules and the far-IR luminosity of the IRAS sources associated with them. The mass of the clouds studied are in the range  10–200 M  .  相似文献   

13.
Recent evidence of a young progenitor population for many Type Ia supernovae (SNe Ia) raises the possibility that evolved intermediate-mass progenitor stars may be detected in pre-explosion images. NGC 1316, a radio galaxy in the Fornax cluster, is a prolific producer of SNe Ia, with four detected since 1980. We analyse Hubble Space Telescope ( HST ) pre-explosion images of the sites of two of the SNe Ia that exploded in this galaxy, SN2006dd (a normal Type Ia) and SN2006mr (likely a subluminous, 1991bg-like, SN Ia). Astrometric positions are obtained from optical and near-infrared ground-based images of the events. We find no candidate point sources at either location, and set upper limits on the flux in B, V and I from any such progenitors. We also estimate the amount of extinction that could be present, based on analysis of the surface-brightness inhomogeneities in the HST images themselves. At the distance of NGC 1316, the limits correspond to absolute magnitudes of  ∼−5.5, −5.4  and −6.0 mag in   M B , M V   and   M I   , respectively. Comparison to stellar evolution models argues against the presence at the supernova sites, 3 yr prior to the explosion, of normal stars with initial masses  ≳6 M  at the tip of their asymptotic-giant branch (AGB) evolution, young post-AGB stars that had initial masses  ≳4 M  and post-red giant stars of initial masses  ≳9 M  .  相似文献   

14.
We have studied the effects of a hypothetical initial generation containing very massive stars [   M > 100 M  , pair-creation supernovae] on the chemical and photometric evolution of elliptical galaxies. To this purpose, we have computed the evolution of a typical elliptical galaxy with luminous mass of the order of  1011 M  and adopted chemical evolution models already tested to reproduce the main features of ellipticals. We have tested several sets of yields for very massive zero-metallicity stars: these stars should produce quite different amounts of heavy elements than lower-mass stars. We found that the effects of Population III stars on the chemical enrichment is negligible if only one or two generations of such stars occurred, whereas they produce quite different results from the standard models if they continuously formed for a period not shorter than 0.1 Gyr. In this case, the results are at variance with the main observational constraints of ellipticals such as the average  [〈α/ Fe〉*]  ratio in stars and the integrated colours. Therefore, we conclude that if Population III stars ever existed they must have been present for a very short period of time and their effects on the following evolution of the parent galaxy must have been negligible. This effect is minimum if a more realistic model with initial infall of gas rather than the classic monolithic model is adopted. Ultimately, we conclude that there is no need to invoke a generation of very massive stars in ellipticals to explain their chemical and photometric properties.  相似文献   

15.
Recent theoretical investigations have suggested that the formation of the very first stars, forming out of metal-free gas, was fundamentally different from the present-day case. The question then arises which effect was responsible for this transition in the star formation properties. In this paper, we study the effect of metallicity on the evolution of the gas in a collapsing dark matter mini-halo. We model such a system as an isolated 3 σ peak of mass     that collapses at     , using smoothed particle hydrodynamics. The gas has a supposed level of pre-enrichment of either     or 10−3 Z. We assume that H2 has been radiatively destroyed by the presence of a soft UV background. Metals therefore provide the only viable cooling at temperatures below 104 K. We find that the evolution proceeds very differently for the two cases. The gas in the lower metallicity simulation fails to undergo continued collapse and fragmentation, whereas the gas in the higher metallicity case dissipatively settles into the centre of the dark matter halo. The central gas, characterized by densities     , and a temperature,     , that closely follows that of the cosmic microwave background, is gravitationally unstable and undergoes vigorous fragmentation. We discuss the physical reason for the existence of a critical metallicity,     , and its possible dependence on redshift. Compared with the pure H/He case, the fragmentation of the     gas leads to a larger relative number of low-mass clumps.  相似文献   

16.
We explore the hypothesis that some high-velocity runaway stars attain their peculiar velocities in the course of exchange encounters between hard massive binaries and a very massive star (either an ordinary  50–100 M  star or a more massive one, formed through runaway mergers of ordinary stars in the core of a young massive star cluster). In this process, one of the binary components becomes gravitationally bound to the very massive star, while the second one is ejected, sometimes with a high speed. We performed three-body scattering experiments and found that early B-type stars (the progenitors of the majority of neutron stars) can be ejected with velocities of  ≳200–400 km s−1  (typical of pulsars), while  3–4 M  stars can attain velocities of  ≳300–400 km s−1  (typical of the bound population of halo late B-type stars). We also found that the ejected stars can occasionally attain velocities exceeding the Milky Ways's escape velocity.  相似文献   

17.
We compile a sample of Sun-like stars with accurate effective temperatures, metallicities and colours (from the ultraviolet to the near-infrared). A crucial improvement is that the effective temperature scale of the stars has recently been established as both accurate and precise through direct measurement of angular diameters obtained with stellar interferometers. We fit the colours as a function of effective temperature and metallicity, and derive colour estimates for the Sun in the Johnson–Cousins, Tycho, Strömgren, 2MASS and SDSS photometric systems. For  ( B − V )  , we favour the 'red' colour 0.64 versus the 'blue' colour 0.62 of other recent papers, but both values are consistent within the errors; we ascribe the difference to the selection of Sun-like stars versus interpolation of wider colour– T eff–metallicity relations.  相似文献   

18.
We present theoretical evolutionary sequences of intermediate-mass stars  ( M = 3 − 6.5 M)  with metallicity   Z = 0.004  . Our goal is to test whether the self-enrichment scenario by massive asymptotic giant branch stars may work for the high-metallicity globular clusters, after previous works by the same group showed that the theoretical yields by this class of objects can reproduce the observed trends among the abundances of some elements, namely the O–Al and O–Na anticorrelations, at intermediate metallicities, i.e.  [Fe/H]=−1.3  . We find that the increase in the metallicity favours only a modest decrease of the luminosity and the temperature at the bottom of the envelope for the same core mass, and also the efficiency of the third dredge-up is scarcely altered. On the contrary, differences are found in the yields, due to the different impact that processes with the same efficiency have on the overall abundance of envelopes with different metallicities. We expect the same qualitative patterns as in the intermediate-metallicity case, but the slopes of some of the relationships among the abundances of some elements are different. We compare the sodium–oxygen anticorrelation for clusters of intermediate metallicity ( Z ≈ 10−3) and clusters of metallicity large as in these new models. Although the observational data are still too scarce, the models are consistent with the observed trends, provided that only stars of   M ≳ 5 M  contribute to self-enrichment.  相似文献   

19.
We study the full evolution of low-mass white dwarfs with helium and oxygen cores. We revisit the age dichotomy observed in many white dwarf companions to millisecond pulsar on the basis of white dwarf configurations derived from binary evolution computations. We evolve 11 dwarf sequences for helium cores with final masses of 0.1604, 0.1869, 0.2026, 0.2495, 0.3056, 0.3333, 0.3515, 0.3844, 0.3986, 0.4160 and  0.4481 M  . In addition, we compute the evolution of five sequences for oxygen cores with final masses of 0.3515, 0.3844, 0.3986, 0.4160 and  0.4481 M  . A metallicity of   Z = 0.02  is assumed. Gravitational settling, chemical and thermal diffusion are accounted for during the white dwarf regime. Our study reinforces the result that diffusion processes are a key ingredient in explaining the observed age and envelope dichotomy in low-mass helium-core white dwarfs, a conclusion we arrived at earlier on the basis of a simplified treatment for the binary evolution of progenitor stars. We determine the mass threshold where the age dichotomy occurs. For the oxygen white dwarf sequences, we report the occurrence of diffusion-induced, hydrogen-shell flashes, which, as in the case of their helium counterparts, strongly influence the late stages of white dwarf cooling. Finally, we present our results as a set of white dwarf mass–radius relations for helium and oxygen cores.  相似文献   

20.
Dust grains coagulate into larger aggregates in dense gas. This changes their size distribution and possibly affects the thermal evolution of star-forming clouds. We here investigate dust coagulation in collapsing pre-stellar cores with different metallicities by considering the thermal motions of grains. We show that coagulation does occur even at low metallicity  ∼10−6 Z  . However, we also find (i) that the H2 formation rate on dust grains is reduced only after the majority of H2 is formed and (ii) that the dust opacity is modified only after the core becomes optically thick. Therefore, we conclude that the effects of dust coagulation can safely be neglected in discussing the temperature evolution of the pre-stellar cores for any metallicity as long as the grain motions are thermal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号