首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MAROS: a decision support system for optimizing monitoring plans   总被引:3,自引:0,他引:3  
The Monitoring and Remediation Optimization System (MAROS), a decision-support software, was developed to assist in formulating cost-effective ground water long-term monitoring plans. MAROS optimizes an existing ground water monitoring program using both temporal and spatial data analyses to determine the general monitoring system category and the locations and frequency of sampling for future compliance monitoring at the site. The objective of the MAROS optimization is to minimize monitoring locations in the sampling network and reduce sampling frequency without significant loss of information, ensuring adequate future characterization of the contaminant plume. The interpretive trend analysis approach recommends the general monitoring system category for a site based on plume stability and site-specific hydrogeologic information. Plume stability is characterized using primary lines of evidence (i.e., Mann-Kendall analysis and linear regression analysis) based on concentration trends, and secondary lines of evidence based on modeling results and empirical data. The sampling optimization approach, consisting of a two-dimensional spatial sampling reduction method (Delaunay method) and a temporal sampling analysis method (Modified CES method), provides detailed sampling location and frequency results. The Delaunay method is designed to identify and eliminate redundant sampling locations without causing significant information loss in characterizing the plume. The Modified CES method determines the optimal sampling frequency for a sampling location based on the direction, magnitude, and uncertainty in its concentration trend. MAROS addresses a variety of ground water contaminants (fuels, solvents, and metals), allows import of various data formats, and is designed for continual modification of long-term monitoring plans as the plume or site conditions change over time.  相似文献   

2.
Dense nonaqueous phase liquids (DNAPLs) are immiscible fluids with a specific gravity greater than, water. When present, DNAPLs present a serious and long-term source of continued ground water and soil contamination (Pankow and Cherry 1996). Accurate characterization and delineation of DNAPL in the subsurface is critical for evaluating restoration potential and for remedy design at a site. However, obtaining accurate and definitive direct evidence of DNAPL is difficult. A field study was recently performed comparing several approaches to DNAPL characterization at a site where anecdotal and limited direct evidence of DNAPL exists. The techniques evaluated included a three-dimensional high-resolution seismic survey, field screening of soil cores with a flame ionization detector (FID)/organic vapor analyzer (OVA), hydrophobic (Sudan IV) dye-impregnated reactive FLUTe® (Flexible Liner Underground Technologies) liner material in combination with Rotasonic drill cores, centrifuged soil with Sudan IV dye, ultraviolet light (UV) fluorescence, a Geoprobe® Membrane Interface Probe (MIP®), and phase equilibrium partitioning evaluations based on laboratory analysis of soil samples. Sonic drilling provided reliable continuous cores from which minor soil structures could be evaluated and screened with an OVA, The screening provided reliable preliminary data for identifying likely DNAPL zones and for selecting samples for further analyses. The FLUTe liner material provided the primary direct evidence of the presence of DNAPL and reliable information on the thickness and nature of its occurrence (i.e., pooled or ganglia). The MIP system provided good information regarding the subsurface lithology and rapid identification and delineation of probable DNAPL areas. The three-dimensional seismic survey was of minimal benefit to this study, and the centrifuging of samples with Sudan IV dye and the use of UV fluorescence provided no benefit. Results of phase equilibrium partitioning concentration calculations for soil samples (to infer the presence of DNAPL) were in good agreement with the site screening data. Additionally, screening data compared well with previous ground water data and supported using 1% of the pure phase solubility limit of Freon 113 (2 mg/L) as an initial means to define the DNAPL study area. Based on the results of this study, the preferred approach for identifying and delineating DNAPL in the subsurface is to initially evaluate ground water data and define an area where dissolved concentrations of the target analyte(s) approach 1% of the pure phase solubility limit. Within this study area, the MIP device is used to more specifically identify areas and lithologic zones where DNAPL may have accumulated. Core samples (either Rotasonic or Geoprobe) are then collected from zones where MIP readings are indicative of the presence of DNAPL. Soil samples from the free-product portions of the core(s) are then submitted to a laboratory for positive analyte identification. Soil analyses are then combined with site-specific geotechnical information (i.e., fraction organic carbon, soil bulk density, and porosity) and equilibrium partitioning algorithms used to estimate concentrations of organic contaminants in soil samples that would be indicative of free product. Used in combination, the soil analysis and the MIP records appear to provide accurate DNAPL identification and delineation.  相似文献   

3.
Conant B 《Ground water》2004,42(2):243-257
Streambed temperature mapping, hydraulic testing using minipiezometers, and geochemical analyses of interstitial water of the streambed were used to delineate the pattern of ground water discharge in a sandy streambed and to develop a flux-based conceptual model for ground water/surface water interactions. A new and simple empirical method was used to relate fluxes obtained from minipiezometer data to streambed temperatures. The relationship allowed flux to be calculated at locations where only streambed temperature measurements were made. Slug testing and potentiomanometer measurements at 34 piezometers indicated ground water discharge ranged from 0.03 to 446 L/m2/day (and possibly as high as 7060 L/m2/day) along a 60 m long by 11 to 14 m wide reach of river. Complex but similar plan-view patterns of flux were calculated for both summer and winter using hundreds of streambed temperatures measured on a 1 by 2 m grid. The reach was dominated by ground water discharge and 5% to 7% of the area accounted for approximately 20% to 24% of the total discharge. < 12% of the total area consisted of recharge zones or no-discharge zones. A conceptual model for ground water/surface water interactions consisting of five different behaviors was developed based on the magnitude and direction of flux across the surface of the streambed. The behaviors include short-circuit discharge (e.g., high-flow springs), high discharge (e.g., preferential flowpaths), low to moderate discharge, no discharge (e.g., horizontal hyporheic or ground water flow), and recharge. Geological variations at depth played a key role in determining which type of flow behavior occurred in the streambed.  相似文献   

4.
The recognition and assurance of the quality of ground water monitoring data are crucial to the correct assessment of the magnitude and extent of a ground water contamination problem. This article addresses an approach being developed to systematically evaluate the quality of a given set of ground water monitoring data collected during site investigation/ remedial action efforts. The system consists of a checklist of criteria, grouped into four major categories, which can be applied to laboratory or field measurements.
The first category, basis of measurement, considers whether the appropriate sampling, boring and/or analytical methods were chosen to obtain the measurement and the limitations of each method. Secondly, application of the method is assessed. This includes examination of the extent to which procedures were correctly performed, the use of quality control measures and calibration, and possible sources of error in the measurements. Third, evaluation of applied statistical methods is made, with consideration given to which statistics are meaningful in a given context and whether measurements are reproducible. The final category, corroborative information, considers whether independent data or other information are available that add credibility to the values measured.
In this approach, a "high quality" data value is defined as one in which accuracy is supported by meeting the preceding criteria. When accompanied by precision information, high quality data allow for defensible assessments and actions. This evaluation system is useful in developing monitoring programs and in guiding documentation of field and laboratory methods during data collection. It relies heavily on experienced judgment and can be catalyst for the beneficial exchange of knowledge and ideas among ground water professionals.  相似文献   

5.
Numerical models constitute the most advanced physical-based methods for modeling complex ground water systems. Spatial and/or temporal variability of aquifer parameters, boundary conditions, and initial conditions (for transient simulations) can be assigned across the numerical model domain. While this constitutes a powerful modeling advantage, it also presents the formidable challenge of overcoming parameter uncertainty, which, to date, has not been satisfactorily resolved, inevitably producing model prediction errors. In previous research, artificial neural networks (ANNs), developed with more accessible field data, have achieved excellent predictive accuracy over discrete stress periods at site-specific field locations in complex ground water systems. In an effort to combine the relative advantages of numerical models and ANNs, a new modeling paradigm is presented. The ANN models generate accurate predictions for a limited number of field locations. Appending them to a numerical model produces an overdetermined system of equations, which can be solved using a variety of mathematical techniques, potentially yielding more accurate numerical predictions. Mathematical theory and a simple two-dimensional example are presented to overview relevant mathematical and modeling issues. Two of the three methods for solving the overdetermined system achieved an overall improvement in numerical model accuracy for various levels of synthetic ANN errors using relatively few constrained head values (i.e., cells), which, while demonstrating promise, requires further research. This hybrid approach is not limited to ANN technology; it can be used with other approaches for improving numerical model predictions, such as regression or support vector machines (SVMs).  相似文献   

6.
A single-hole multilevel sampling piezometer system (MLSPS) has been designed by the Geological Survey of Canada (GSC) to be installed using drilling systems that continuously core (e.g., Rotosonic) or continuously sample (e.g., hollow-stem auger, Becker hammer) overburden and that have the flexibility of allowing additional coring (diamond drilling) or sampling (hammer drilling) of bedrock. The GSC-MLSPS (under license to Solinst Canada Ltd.) uses a patented GSC dry injection system for accurate emplacement of filter packs and seals. This system permits (a) the use of variable screen lengths; (b) the complete evacuation of piezometers before introduction of new ground water (no bailing); (c) the use of a number of types of hydraulic tests (e.g., slug, withdrawal/recovery, vacuum, pressure-pulse); (d) ground water sampling under a nitrogen atmosphere; (e) dissolved gas sampling; (f) a great deal of flexibility in the use of design materials; and (g) the elimination of bridging and collapse of filter packs and seals.  相似文献   

7.
Groundwater dependency is increasing globally, while millions of potentially contaminated sites are yet to be characterized for contamination levels. In particular, groundwater contamination due to light nonaqueous phase liquids (LNAPLs) continues to be a global challenge. Mathematical approaches (i.e., analytical, semi-analytical, empirical, numerical) are preferred for an initial site assessment to circumvent the high characterization costs and limited site data availability. However, the site-specific nature of contamination restricts the generalization of any single approach. Hence, the requirement is for an easy-to-use computing interface that provides site-specific data management, the selection and use of multiple-model interfaces for computing, and site characterization, with extension for the latest models as they become available. This work provides one such interface called CAST or Contamination Assessment and Site-management Tool. CAST is an open-source browser-based (online/offline) tool that provides an interface for six different analytical models (e.g., BIOSCREEN-AT), a MODFLOW based numerical model, and two empirical models (including a hybrid numerical-analytical model). Additionally, CAST includes interfaces for site data management, their evaluation, and scenario-based modeling. CAST's development is in a modular format, which simplifies the addition of new computing or data interfaces. Furthermore, the entire code-base of CAST is based on open-source (dominantly Python programming) libraries and standards. This further simplifies the modification or extension of this tool. This paper introduces CAST, its different computing, and data management interfaces and provides examples of the tool's functionality primarily for the initial evaluation of contaminated sites.  相似文献   

8.
When modeling the fate and transport of chemicals in ground water, a common assumption is that sorption equilibrium is achieved rapidly. This local equilibrium assumption is valid when the rate of chemical sorption to soil particles is more rapid than the rate of aqueous chemical change by other processes. However, for some chemicals (e.g., weathered hydrocarbons) this assumption is not necessarily correct. As a result, an increasing body of knowledge related to the extent and rate of release (ROR) of hydrocarbons from soil has been generated.
When evaluating site remediation options, it is important to know when nonequilibrium sorption conditions may have a significant impact on such decisions. In this study, a tiered procedure was developed to consistently evaluate the importance of ROR information at a site. The procedure consists of three tiers, each requiring more information and computational effort than the previous one. The first tier employs three power-law relationships between site parameters and the importance of ROR kinetics to quickly and easily estimate the importance of ROR information at a site. The second tier involves running and evaluating the deterministic component of a ground water fate and transport model. The third tier involves running and evaluating the probabilistic component of the ground water model. Given the sequential nature of the procedure, it is not necessary to perform Tier II (or Tier III) unless the Tier I (or Tier II) evaluation indicates that ROR kinetics may be important at the specific site under consideration. An example of applying the Tier I analysis to a specific site is provided. The results illustrate the influence of the chemical removal processes (e.g., advection and biodegradation) on the predicted importance of ROR kinetics. For the site considered, ROR kinetics had an important impact on model predictions when the biodegradation rate was high.  相似文献   

9.
Bank filtration and artificial ground water recharge are important, effective, and cheap techniques for surface water treatment and removal of microbes, as well as inorganic, and some organic, contaminants. Nevertheless, physical, chemical, and biological processes of the removal of impurities are not understood sufficiently. A research project titled Natural and Artificial Systems for Recharge and Infiltration attempts to provide more clarity in the processes affecting the removal of these contaminants. The project focuses on the fate and transport of selected emerging contaminants during bank filtration at two transects in Berlin, Germany. Several detections of pharmaceutically active compounds (PhACs) in ground water samples from bank filtration sites in Germany led to furthering research on the removal of these compounds during bank filtration. In this study, six PhACs including the analgesic drugs diclofenac and propyphenazone, the antiepileptic drugs carbamazepine and primidone, and the drug metabolites clofibric acid and 1-acetyl-1-methyl-2-dimethyl-oxamoyl-2-phenylhydrazide were found to leach from the contaminated streams and lakes into the ground water. These compounds were also detected at low concentrations in receiving public supply wells. Bank filtration either decreased the concentrations by dilution (e.g., for carbamazepine and primidone) and partial removal (e.g., for diclofenac), or totally removed PhACs (e.g., bezafibrate, indomethacine, antibiotics, and estrogens). Several PhACs, such as carbamazepine and especially primidone, were readily transported during bank filtration. They are thought to be good indicators for evaluating whether surface water is impacted by contamination from municipal sewage effluent or whether contamination associated with sewage effluent can be transported into ground water at ground water recharge sites.  相似文献   

10.
A suspected increase in the salinity of fresh water resources can trigger a site investigation to identify the source(s) of salinity and the extent of any impacts. These investigations can be complicated by the presence of naturally elevated total dissolved solids or chlorides concentrations, multiple potential sources of salinity, and incomplete data and information on both naturally occurring conditions and the characteristics of potential sources. As a result, data evaluation techniques that are effective at one site may not be effective at another. In order to match the complexity of the evaluation effort to the complexity of the specific site, this paper presents a strategic tiered approach that utilizes established techniques for evaluating and identifying the source(s) of salinity in an efficient step‐by‐step manner. The tiered approach includes: (1) a simple screening process to evaluate whether an impact has occurred and if the source is readily apparent; (2) basic geochemical characterization of the impacted water resource(s) and potential salinity sources coupled with simple visual and statistical data evaluation methods to determine the source(s); and (3) advanced laboratory analyses (e.g., isotopes) and data evaluation methods to identify the source(s) and the extent of salinity impacts where it was not otherwise conclusive. A case study from the U.S. Gulf Coast is presented to illustrate the application of this tiered approach.  相似文献   

11.
A comparison of two stochastic inverse methods in a field-scale application   总被引:1,自引:0,他引:1  
Inverse modeling is a useful tool in ground water flow modeling studies. The most frequent difficulties encountered when using this technique are the lack of conditioning information (e.g., heads and transmissivities), the uncertainty in available data, and the nonuniqueness of the solution. These problems can be addressed and quantified through a stochastic Monte Carlo approach. The aim of this work was to compare the applicability of two stochastic inverse modeling approaches in a field-scale application. The multi-scaling (MS) approach uses a downscaling parameterization procedure that is not based on geostatistics. The pilot point (PP) approach uses geostatistical random fields as initial transmissivity values and an experimental variogram to condition the calibration. The studied area (375 km2) is part of a regional aquifer, northwest of Montreal in the St. Lawrence lowlands (southern Québec). It is located in limestone, dolomite, and sandstone formations, and is mostly a fractured porous medium. The MS approach generated small errors on heads, but the calibrated transmissivity fields did not reproduce the variogram of observed transmissivities. The PP approach generated larger errors on heads but better reproduced the spatial structure of observed transmissivities. The PP approach was also less sensitive to uncertainty in head measurements. If reliable heads are available but no transmissivities are measured, the MS approach provides useful results. If reliable transmissivities with a well inferred spatial structure are available, then the PP approach is a better alternative. This approach however must be used with caution if measured transmissivities are not reliable.  相似文献   

12.
In Part 1 of this work (Akmaev, 1999), an overview of the theory of optimal interpolation (OI) (Gandin, 1963) and related techniques of data assimilation based on linear optimal estimation (Liebelt, 1967; Catlin, 1989; Mendel, 1995) is presented. The approach implies the use in data analysis of additional statistical information in the form of statistical moments, e.g., the mean and covariance (correlation). The a priori statistical characteristics, if available, make it possible to constrain expected errors and obtain optimal in some sense estimates of the true state from a set of observations in a given domain in space and/or time. The primary objective of OI is to provide estimates away from the observations, i.e., to fill in data voids in the domain under consideration. Additionally, OI performs smoothing suppressing the noise, i.e., the spectral components that are presumably not present in the true signal. Usually, the criterion of optimality is minimum variance of the expected errors and the whole approach may be considered constrained least squares or least squares with a priori information. Obviously, data assimilation techniques capable of incorporating any additional information are potentially superior to techniques that have no access to such information as, for example, the conventional least squares (e.g., Liebelt, 1967; Weisberg, 1985; Press et al., 1992; Mendel, 1995).  相似文献   

13.
Huang J  Christ JA  Goltz MN 《Ground water》2008,46(6):882-892
When managing large-scale ground water contamination problems, it is often necessary to model flow and transport using finely discretized domains--for instance (1) to simulate flow and transport near a contamination source area or in the area where a remediation technology is being implemented; (2) to account for small-scale heterogeneities; (3) to represent ground water-surface water interactions; or (4) some combination of these scenarios. A model with a large domain and fine-grid resolution will need extensive computing resources. In this work, a domain decomposition-based assembly model implemented in a parallel computing environment is developed, which will allow efficient simulation of large-scale ground water flow and transport problems using domain-wide grid refinement. The method employs common ground water flow (MODFLOW) and transport (RT3D) simulators, enabling the solution of almost all commonly encountered ground water flow and transport problems. The basic approach partitions a large model domain into any number of subdomains. Parallel processors are used to solve the model equations within each subdomain. Schwarz iteration is applied to match the flow solution at the subdomain boundaries. For the transport model, an extended numerical array is implemented to permit the exchange of dispersive and advective flux information across subdomain boundaries. The model is verified using a conventional single-domain model. Model simulations demonstrate that the proposed model operated in a parallel computing environment can result in considerable savings in computer run times (between 50% and 80%) compared with conventional modeling approaches and may be used to simulate grid discretizations that were formerly intractable.  相似文献   

14.
Probabilistic seismic hazard analysis in Nepal   总被引:3,自引:0,他引:3  
The seismic ground motion hazard for Nepal has been estimated using a probabilistic approach. A catalogue of earthquakes has been compiled for Nepal and the surrounding region (latitude 26% N and 31.7% N and longitude 79° E and 90° E) from 1255 to 2011. The distribution of catalogued earthquakes, together with available geological and tectonic information were used to delineate twenty-three seismic source seismic source information and probabilistic earthquake hazard prediction relationship, peak ground accelerations (PGAs) have zones in Nepal and the surrounding region. By using the parameters in conjunction with a selected ground motion been calculated at bedrock level with 63%, 10%, and 2% probability of exceedance in 50 years. The estimated PGA values are in the range of 0.07-0.16 g, 0.21 0.62 g, and 0.38-1.1 g for 63%, 10%, and 2% probability of exceedance in 50 years, respectively. The resulting ground motion maps show different characteristics of PGA distribution, i.e., high hazard in the far-western and eastern sections, and low hazard in southern Nepal. The quantified PGA values at bedrock level provide information for microzonation studies in different parts of the country.  相似文献   

15.
Integrating toxicology and ecology: putting the "eco" into ecotoxicology   总被引:1,自引:0,他引:1  
Environmental toxicology has been and continues to be an important discipline (e.g., single-species testing for screening purposes). However, ecological toxicology (ecotoxicology--more realism in tests, test species and exposures) is required for predicting real world effects and for site-specific assessments. Ecotoxicology and ecology have shown similar developmental patterns over time; closer cooperation between ecologists and toxicologists would benefit both disciplines. Ecology can be incorporated into toxicology either extrinsically (separately, e.g., providing information on pre-selected test species) or intrinsically (e.g., as part of test species selection)--the latter is preferable. General guidelines for acute and chronic testing and criteria for species selection differ for ecotoxicology and environmental toxicology, and are outlined. An overall framework is proposed based on ecological risk assessment (ERA), for combining ecology and toxicology (environmental and ecological) for decision-making. Increased emphasis on ecotoxicology represents a shift from reductionist to holistic approaches.  相似文献   

16.
Probabilistic earthquake hazard analysis for Cairo,Egypt   总被引:1,自引:1,他引:0  
Cairo is the capital of Egypt and the largest city in the Arab world and Africa, and the sixteenth largest metropolitan area in the world. It was founded in the tenth century (969 ad) and is 1046 years old. It has long been a center of the region’s political and cultural life. Therefore, the earthquake risk assessment for Cairo has a great importance. The present work aims to analysis the earthquake hazard of Cairo as a key input’s element for the risk assessment. The regional seismotectonics setting shows that Cairo could be affected by both far- and near-field seismic sources. The seismic hazard of Cairo has been estimated using the probabilistic seismic hazard approach. The logic tree frame work was used during the calculations. Epistemic uncertainties were considered into account by using alternative seismotectonics models and alternative ground motion prediction equations. Seismic hazard values have been estimated within a grid of 0.1°?×?0.1 ° spacing for all of Cairo’s districts at different spectral periods and four return periods (224, 615, 1230, and 4745 years). Moreover, the uniform hazard spectra have been calculated at the same return periods. The pattern of the contour maps show that the highest values of the peak ground acceleration is concentrated in the eastern zone’s districts (e.g., El Nozha) and the lowest values at the northern and western zone’s districts (e.g., El Sharabiya and El Khalifa).  相似文献   

17.
Seismic intensity measure (IM) selection is associated with consideration of multiple criteria, and there are uncertainties within the selection process. In this paper, a novel multi-criteria decision making (MCDM) approach by incorporating stochastic multi-criteria acceptability analysis (SMAA) with technique for order preference by similarity to ideal solution (TOPSIS) is proposed to solve the stochastic decision making problem of IM selection. TOPSIS provides an alternative rank function, and the SMAA is used to address the uncertainties within the IM selection. The performance criteria (e.g., efficiency, proficiency, practicality, sufficiency, and correlation) are evaluated for the investigated structural components, and the decision matrix is formulated based on the criteria of each IM alternative. Furthermore, the importance of the component to system reliability is quantified in a probabilistic manner using nonlinear time history analysis and serves as the weighting factors in MCDM stage. The holistic acceptability indices indicating the overall acceptability levels of IM alternatives are computed by the proposed approach. Additionally, the effects of different IMs (e.g., average spectral acceleration, peak ground velocity, and spectral acceleration) on probabilistic seismic loss and resilience are investigated to further support the IM selection. The proposed approach is illustrated on a highway bridge, and the results are presented.  相似文献   

18.
A systematic approach is presented for the design of a multiphase vadose zone monitoring system recognizing that, as in ground water monitoring system design, complete subsurface coverage is not practical. The approach includes identification and prioritization of vulnerable areas: select ion of cost-effective indirect monitoring methods that will provide early warning of contaminant migration: selection of direct monitoring methods for diagnostic confirmation; identification of background monitoring locations; and identification of an appropriate temporal monitoring plan. An example of a monitoring system designed for a solid waste landfill is presented and utilized to illustrate the approach and provide details of system implementation. The example design described incorporates the use of neutron moisture probes deployed in both vertical and horizontal access tubes beneath the lcachate recovery collection system of the landfill. Early warning of gaseous phase contaminant migration is monitored utilizing whole-air active soil gas sampling points deployed in gravel- filled trenches beneath the subgrade. Diagnostic confirmation of contaminant migration is provided utilizing pore- liquid samplers. Conservative tracers can be used to distinguish between chemical species released by a landfill from those attributable to other (e.g. off-site) sources or present naturally in the subsurface. A discussion of background monitoring point location is also presented.  相似文献   

19.
Two of the biggest drawbacks of using permeable reactive barriers (PRBs) to treat contaminated ground water are the high capital cost of installation, particularly when the contaminated ground water is deep below ground surface, and the uncertainty of whether or not PRBs remain effective for the long time scales (e.g., decades) needed for many contaminant plumes. The use of an injection-extraction treatment well pair (IETWP) for capture and treatment of contaminated ground water can circumvent these difficulties, while still providing many of the same advantages offered by PRBs. In this paper, the hydraulics of IETWPs and PRBs are compared, focusing primarily on the width of the captured plume. It is demonstrated that IETWPs act as hydraulic barriers in a manner similar to PRBs, and that IETWPs provide excellent plume capture. A mathematical expression is presented for the plume capture width of an IETWP oriented perpendicular to the ground water flow direction in a homogeneous aquifer. Also discussed are other practical considerations that might determine whether an IETWP is better suited than a PRB for a particular contaminated site; these considerations include operating and maintenance costs, and the conditions under which an IETWP system can be used for in situ remediation.  相似文献   

20.
A post audit of a model-designed ground water extraction system   总被引:1,自引:0,他引:1  
Andersen PF  Lu S 《Ground water》2003,41(2):212-218
Model post audits test the predictive capabilities of ground water models and shed light on their practical limitations. In the work presented here, ground water model predictions were used to design an extraction/treatment/injection system at a military ammunition facility and then were re-evaluated using site-specific water-level data collected approximately one year after system startup. The water-level data indicated that performance specifications for the design, i.e., containment, had been achieved over the required area, but that predicted water-level changes were greater than observed, particularly in the deeper zones of the aquifer. Probable model error was investigated by determining the changes that were required to obtain an improved match to observed water-level changes. This analysis suggests that the originally estimated hydraulic properties were in error by a factor of two to five. These errors may have resulted from attributing less importance to data from deeper zones of the aquifer and from applying pumping test results to a volume of material that was larger than the volume affected by the pumping test. To determine the importance of these errors to the predictions of interest, the models were used to simulate the capture zones resulting from the originally estimated and updated parameter values. The study suggests that, despite the model error, the ground water model contributed positively to the design of the remediation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号