首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conversion from neutron stars with different equation of states (EOSs) for neutron matter into strange stars with different EOSs for strange quark matter has been studied in a general relativistic numerical calculation in this paper. For hot neutron stars, their conversion may lead to great variations in their rotation periods, of which the magnitude would be greatly dependent upon the EOS for neutron matter, and of which the timescale would be greatly determined by the EOS for strange matter. This phenomenon appears as giant glitches, which might provide a probe of EOSs for both neutron matter and strange matter. But for cold neutron stars, their conversion may result in a population of gamma-ray bursts.  相似文献   

2.
中子星可以通过重子物质和暗物质的相互作用吸积暗物质,且在一定条件下, 中子星吸积的暗物质粒子可以引发自引力塌缩形成小型黑洞, 生成的黑洞可能会进一步吞噬中子星.依据文献已有模型, 基于以上物理过程给出了在暗物质粒子不同质量下对暗物质粒子--中子的散射截面的限制.使用弱相互作用大质量粒子(Weakly Interacting Massive Particle, WIMP)模型, 并考虑暗物质粒子是玻色子的情形, 讨论了暗物质粒子有无自相互作用以及有无湮灭等条件下对限制暗物质参数的影响.既考虑了已发现的两个中子星系统来给出对暗物质参数空间的限制,也考虑了两个可能存在的年老中子星来预测未来观测可能对暗物质参数空间的限制.对于考虑玻色--爱因斯坦凝聚(Bose-Einstein Condensate, BEC)的玻色子暗物质, 在无自相互作用或有弱自相互作用, 无湮灭或有很小湮灭截面的条件下,中子星给出的间接观测对暗物质粒子-中子散射截面的限制的强度比XENON1T直接探测实验来得更强.未来, 如果在银心附近能观测到年老中子星, 其观测结果可以提升模型给出的对暗物质粒子--中子散射截面的限制, 从而帮助人们进一步理解暗物质.  相似文献   

3.
Models of neutron stars with a quark core are calculated on the basis of an extensive set of equations of state for superdense matter. The possible existence of a new branch of stable layered neutron stars is revealed for some realistic equations of state of neutron matter.  相似文献   

4.
By the relativistic mean field theory and relevant weak-interactional cooling theory, the relativistic cooling properties in the conventional and hyperonic neutron star matter are studied. Also a comparison between the relativistic and non-relativistic results after taking consideration of the gravity correction is performed. The results show that the relativistic effect of neutrino emission reduces the neutrino emissivity, luminosity, and the cooling rate of stellar objects, in comparison with the non-relativistic case. In the neutron star matter without hyperon, the amplitude of the cooling rate reduction caused by the relativistic effect is maximal after taking the gravity correction into consideration, it attains 56% for a 2 M neutron star composed of conventional neutron star matter, and in the hyperonic matter the amplitude of reduction is minimal, about 38%.  相似文献   

5.
《New Astronomy》2007,12(3):165-168
We derive the bulk viscous damping timescale of hybrid stars, neutron stars with quark matter core. The r-mode instability windows of the stars show that the theoretical results are consistent with the rapid rotation pulsar data, which may give an indication for the existence of quark matter in the interior of neutron stars. Hybrid stars instead of neutron or strange stars may lead to submillisecond pulsars.  相似文献   

6.
We have considered a hot neutron star with a quark core,a mixed phase of quark-hadron matter,and a hadronic matter crust and have determined the equation of state of the hadronic phase and the quark phase.We have then found the equation of state of the mixed phase under the Gibbs conditions.Finally,we have computed the structure of a hot neutron star with a quark core and compared our results with those of the neutron star without a quark core.For the quark matter calculations,we have used the MIT bag model...  相似文献   

7.
The long awaited event of the detection of a gravitational wave from a binary neutron star merger and its electromagnetic counterparts marked the beginning of a new era in observational astrophysics. The brand-new field of gravitational wave astronomy combined with multi-messenger observations will uncover violent, highly energetic astrophysical events that could not be explored before by humankind. This article focuses on the presumable appearance of a hadron–quark phase transition and the formation of regions of deconfined quark matter in the interior of a neutron star merger product. The evolution of density and temperature profiles inside the inner region of the produced hypermassive/supramassive neutron star advises an incorporation of a hadron–quark phase transition in the equation of state of neutron star matter. The highly densed and hot neutron star matter of the remnant populate regions in the QCD phase diagram where a non neglectable amount of deconfined quark matter is expected to be present. If a strong hadron–quark phase transition would happen during the post-merger phase, it will be imprinted in the spectral properties of the emitted gravitational wave signal and might give an additional contribution to the dynamically emitted outflow of mass.  相似文献   

8.
The interior of neutron stars consists of the densest, although relatively cold, matter known in the universe. Here, baryon number densities might reach values close to ten times the nuclear saturation density. These suggest that the constituents of neutron star cores not only consist of nucleons, but also of more exotic baryons like hyperons or a phase of deconfined quarks. We discuss the consequences of such exotic particles on the gross properties and phenomenology of neutron stars. In addition, we determine the general phase structure of dense and also hot matter in the chiral parity-doublet model and confront model results with the recent constraints derived from the neutron star merger observation.  相似文献   

9.
As a neutron star spins down, the nuclear matter is continuously converted into quark matter due to the core density increase, and then latent heat is released. We have investigated the thermal evolution of neutron stars undergoing such deconfinement phase transition. We have taken into account the conversion in the frame of the general theory of relativity. The released energy has been estimated as a function of changed rate of deconfinement baryon number. The numerical solutions to the cooling equation are seen to be very different from those without the heating effect. The results show that neutron stars may be heated to higher temperatures which is well matched with pulsar's data despite the onset of fast cooling in neutron stars with quark matter cores. It is also found that the heating effect has a magnetic field strength dependence. This feature could be particularly interesting for high temperatures of low-field millisecond pulsars at a later stage. The high temperature could fit the observed temperature for PSR J0437−4715.  相似文献   

10.
We derive an upper bound on neutron star masses by using model equations of state in the nuclear matter density region and the causality limited equation of state in the ultradense region. Supposing that the model equations of state describe neutron star matter at nuclear matter density correctly we find as bound 3.75 M. For large fiducial densities one gets a maximum mass which is above a previous estimate.  相似文献   

11.
Neutron stars provide a unique laboratory with which to study cold, dense matter. The observational quantities of primary astrophysics interest are the maximum mass and the typical radius of a neutron star. These quantities are related to the relative stiffness of neutron-rich matter at supernuclear densities and the density dependence of the nuclear symmetry energy near the nuclear saturation density. The measurements of these nuclear properties via nuclear systematics and structure, heavy-ion collisions and parity-violating electron scattering from neutron-rich nuclei, are discussed. Several new observations, including mass measurements of binary pulsars and a confirmed distance determination for a nearby cooling neutron star, will be summarized. Additionally addressed will be observations of thermal emissions from cooling neutron stars in globular clusters and thermonuclear explosions from accreting stars. It will be demonstrated how this astrophysical data is shedding light on the pressure-density relation of extremely dense matter.  相似文献   

12.
We investigate the effect of exotic matter in particular, hyperon matter on neutron star properties such as equation of state (EoS), mass-radius relationship and bulk viscosity. Here we construct equations of state within the framework of a relativistic field theoretical model. As hyperons are produced abundantly in dense matter, hyperon–hyperon interaction becomes important and is included in this model. Hyperon–hyperon interaction gives rise to a softer EoS which results in a smaller maximum mass neutron star compared with the case without the interaction. Next we compute the coefficient of bulk viscosity and the corresponding damping time scale due to the non-leptonic weak process including Λ hyperons. Further, we investigate the role of the bulk viscosity on gravitational radiation driven r-mode instability in a neutron star of given mass and temperature and find that the instability is effectively suppressed.   相似文献   

13.
Current theories, and the astrophysical implications, of the nature of high density neutron star matter are reviewed. Suggestions are made for a compromise between the alternatives of neutron crystallization and pion condensation.  相似文献   

14.
We present and discuss the results of simulations of unshielded and shielded neutron background in underground gaseous nuclear recoil detectors for dark matter searches. Also included are measurements of the U and Th content of the rock using an unshielded Ge detector, first studies of neutron veto systems to reject neutron background from detector components, and signal discrimination by varying gas mixtures.  相似文献   

15.
The spherically symmetric accretion of matter onto a neutron star with a weak magnetic field is shown to be accompanied by the generation of gamma rays due to the Comptonization of X=rays from the neutron star on the flow of incident plasma.  相似文献   

16.
We study the conversion of a neutron star to a strange star as a possible energy source for gamma-ray bursts. We use different recent models for the equation of state of neutron star matter and strange quark matter. We show that the total amount of energy liberated in the conversion is in the range of &parl0;1-4&parr0;x1053 ergs (1 order of magnitude larger than previous estimates) and is in agreement with the energy required to power gamma-ray burst sources at cosmological distances.  相似文献   

17.
We consider a system consisting of a neutron star surrounded by a disc of dense degenerate matter, and study the sequence of events following the impact of comets on to the disc. The direct signature of the impact event is a short burst of high-energy radiation (X-rays to UV, depending on the impact location) emitted from the bubble of hot gas created at the impact site. We assume that the bubble is confined by the magnetic field of the central neutron star. Part of the bubble matter may be channelled along magnetic field lines and rain down on the polar caps. The surface density at the neutron star surface may be sufficient to initiate a runaway thermonuclear reaction. These X-rays or the direct effect of the transferred plasma crossing charge-depleted regions in the outer magnetosphere may re-ignite an otherwise dead pulsar.  相似文献   

18.
Sivaram  C.  Arun  Kenath 《Earth, Moon, and Planets》2019,123(1-2):9-13

Gravitational waves from mergers of black holes and neutron stars are now being detected by LIGO. Here we look at a new source of gravitational waves, i.e., a class of dark matter objects whose properties were earlier elaborated. We show that the frequency of gravitational waves and strains on the detectors from such objects (including their mergers) could be within the sensitivity range of LIGO. The gravitational waves from the possible mergers of these dark matter objects will be different from those produced by neutron star mergers in the sense that they will not be accompanied by electromagnetic radiation since dark matter does not couple with radiation.

  相似文献   

19.
As neutron stars spin-down and contract, the deconfinement phase transition can continue to occur, resulting in energy release (so-called deconfinement heating) in case of the first-order phase transition. The thermal evolution of neutron stars is investigated to combine phase transition and the related energy release self-consistently. We find that the appearance of deconfinement heating during spin-down result in not only the cooling delay but also the increase of surface temperature of stars. For stars characterized by intermediate and weak magnetic field strength, a period of increasing surface temperature could exist. Especially, a sharp jump in surface temperature can be produced as soon as quark matter appears in the core of stars with a weak magnetic field. We think that this may serve as evidence for the existence of deconfinement quark matter. The results show that deconfinement heating facilitates the emergence of such characteristic signature during the thermal evolution process of neutron stars.  相似文献   

20.
早期中子星和夸克物质   总被引:1,自引:0,他引:1  
夸克禁闭的解除与夸克物质的存在一直是物理学家极感兴趣的问题。尽管理论上已指出在超高温或超高密的条件下可以有夸克物质存在,但是由于地面实验室的条件所限,目前还不能通过实验证实这一点.宇宙中被观测到的中子星(例如crab和Vela脉冲星)的中心密度大于4倍的核物质密度,其中心温度也可以达到10~8—10~9K,于是人们希  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号